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Preface 
 
 
Particle swarm optimization (PSO) is a population based stochastic optimization tech-

nique developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by social behavior of 
bird flocking or fish schooling. 

PSO shares many similarities with evolutionary computation techniques such as Genetic 
Algorithms (GA). The system is initialized with a population of random solutions and 
searches for optima by updating generations. However, unlike GA, PSO has no evolution 
operators such as crossover and mutation. In PSO, the potential solutions, called particles, 
fly through the problem space by following the current optimum particles.  

 
This book represents the contributions of the top researchers in this field and will serve as 

a valuable tool for professionals in this interdisciplinary field. 
 

This book is certainly a small sample of the research activity on Particle Swarm Optimiza-
tion going on around the globe as you read it, but it surely covers a good deal of what has 
been done in the field recently, and as such it works as a valuable source for researchers 
interested in the involved subjects. 

 
Special thanks to all authors, which have invested a great deal of time to write such inter-

esting and high quality chapters. 

 
 
 

Aleksandar Lazinica 
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Novel Binary Particle Swarm Optimization 
Mojtaba Ahmadieh Khanesar, Hassan Tavakoli, Mohammad Teshnehlab 

andMahdi Aliyari Shoorehdeli 
K N. Toosi University of Technology 

Iran 

1. Introduction 
Particle swarm optimization (PSO) was originally designed and introduced by Eberhart and 
Kennedy (Ebarhart, Kennedy, 1995; Kennedy, Eberhart, 1995; Ebarhart, Kennedy, 2001). The 
PSO is a population based search algorithm based on the simulation of the social behavior of 
birds, bees or a school of fishes. This algorithm originally intends to graphically simulate the 
graceful and unpredictable choreography of a bird folk. Each individual within the swarm is 
represented by a vector in multidimensional search space. This vector has also one assigned 
vector which determines the next movement of the particle and is called the velocity vector. 
The PSO algorithm also determines how to update the velocity of a particle. Each particle 
updates its velocity based on current velocity and the best position it has explored so far; 
and also based on the global best position explored by swarm (Engelbrecht, 2005; Sadri, 
Ching, 2006; Engelbrecht, 2002). 
The PSO process then is iterated a fixed number of times or until a minimum error based on 
desired performance index is achieved. It has been shown that this simple model can deal 
with difficult optimization problems efficiently. The PSO was originally developed for real-
valued spaces but many problems are, however, defined for discrete valued spaces where 
the domain of the variables is finite. Classical examples of such problems are: integer 
programming, scheduling and routing (Engelbrecht, 2005). In 1997, Kennedy and Eberhart 
introduced a discrete binary version of PSO for discrete optimization problems (Kennedy, 
Eberhart, 1997). In binary PSO, each particle represents its position in binary values which 
are 0 or 1. Each particle's value can then be changed (or better say mutate) from one to zero 
or vice versa. In binary PSO the velocity of a particle defined as the probability that a 
particle might change its state to one. This algorithm will be discussed in more detail in next 
sections. 
Upon introduction of this new algorithm, it was used in number of engineering 
applications. Using binary PSO, Wang and Xiang (Wang & Xiang, 2007) proposed a high 
quality splitting criterion for codebooks of tree-structured vector quantizers (TSVQ). Using 
binary PSO, they reduced the computation time too. Binary PSO is used to train the 
structure of a Bayesian network (Chen et al., 2007). A modified discrete particle swarm 
optimization (PSO) is successfully used based technique for generating optimal preventive 
maintenance schedule of generating units for economical and reliable operation of a power 
system while satisfying system load demand and crew constraints (Yare & 
Venayagamoorthy, 2007). Choosing optimum input subset for SVM (Zhang & Huo, 2005), 
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designing dual-band dual-polarized planar antenna (Marandi et. al, 2006) are two other 
engineering applications of binary PSO. Also some well-known problems are solved using 
binary PSO and its variations. For example, binary PSO has been used in many applications 
like Iterated Prisoner's Dilemma (Franken & Engelbrecht, 2005) and traveling salesman 
(Zhong, et. al. 17). 
Although binary PSO is successfully used in number of engineering applications, but this 
algorithm still has some shortcomings. The difficulties of binary PSO will be discussed, and 
then a novel binary PSO algorithm will be proposed. In novel binary PSO proposed here, 
the velocity of a particle is its probability to change its state from its previous state to its 
complement value, rather than the probability of change to 1. In this new definition the 
velocity of particle and also its parameters has the same role as in real-valued version of the 
PSO. This algorithm will be discussed. Also simulation results are presented to show the 
superior performance of the proposed algorithm over the previously introduced one. There 
are also other versions of binary PSO. In (Sadri & Ching, 2006) authors add birth and 
mortality to the ordinary PSO. AMPSO is a version of binary PSO, which employs a 
trigonometric function as a bit string generator (Pampara et al., 2005). Boolean algebra can 
also be used for binary PSO (Marandi et al., 2006). Also fuzzy system can be used to 
improve the capability of the binary PSO as in (Wei Peng et al., 2004). 

2. THE PARTICLE SWARM OPTIMIZATION 
A detailed description of PSO algorithm is presented in (Engelbrecht, 2005; Sadri, Ching, 
2006; Engelbrecht, 2002). Here we will give a short description of the real- valued and binary 
PSO proposed by Kennedy and Eberhart. 

2.1 Real-valued particle swarm optimization 
Assume that our search space is d-dimensional, and the i-th particle of the swarm can be 
represented by a d-dimensional position vector . The velocity of the 
particle is denoted by . Also consider best visited position for the 
particle is    and also the best position explored so far is 

. So the position of the particle and its velocity is being updated 
using following equations: 

  (1) 

  (2) 

Where  are positive constants, and  are two random 
variables with uniform distribution between 0 and 1. In this equation, W is the inertia 
weight which shows the effect of previous velocity vector on the new vector. An upper 
bound is placed on the velocity in all dimensions . This limitation prevents the particle 
from moving too rapidly from one region in search space to another. This value is usually 
initialized as a function of the range of the problem. For example if the range of all  is [—
50,50] then  is proportional to 50.  for each particle is updated in each iteration 
when a better position for the particle or for the whole swarm is obtained. The feature that 
drives PSO is social interaction. Individuals (particles) within the swarm learn from each 
other, and based on the knowledge obtained then move to become similar to their "better" 



Novel Binary Particle Swarm Optimization 

 

3 

previously obtained position and also to their "better" neighbors. Individual within a 
neighborhood communicate with one other. Based on the communication of a particle 
within the swarm different neighborhood topologies are defined. One of these topologies 
which is considered here, is the star topology. In this topology each particle can 
communicate with every other individual, forming a fully connected social network. In this 
case each particle is attracted toward the best particle (best problem solution) found by any 
member of the entire swarm. Each particle therefore imitates the overall best particle. So the 

 updated when a new best position within the whole swarm is found. The algorithm 
for the PSO can be summarized as follows: 
1. Initialize the swarm X i , the position of particles are randomly initialized within the 

hypercube of feasible space. 
2. Evaluate the performance F of each particle, using its current position Xi (t). 
3. Compare the performance of each individual to its best performance so far: 

. 

/ 

4. Compare the performance of each particle to the global best particle: if 
 

 
5. Change the velocity of the particle according to (1). 
6. Move each particle to a new position using equation (2). 
7. Go to step 2, and repeat until convergence. 

2.2 Binary particle swarm optimization 
Kennedy and Eberhart proposed a discrete binary version of PSO for binary problems [4]. In 
their model a particle will decide on "yes" or " no", "true" or "false", "include" or "not to 
include" etc. also this binary values can be a representation of a real value in binary search 
space. 
In the binary PSO, the particle's personal best and global best is updated as in real- valued 
version. The major difference between binary PSO with real-valued version is that velocities 
of the particles are rather defined in terms of probabilities that a bit will change to one. 
Using this definition a velocity must be restricted within the range [0,1] . So a map is 
introduced to map all real valued numbers of velocity to the range [0,1] [4]. The 
normalization function used here is a sigmoid function as: 

  (3) 
Also the equation (1) is used to update the velocity vector of the particle. And the new 
position of the particle is obtained using the equation below: 

  
(4)

 
Where  is a uniform random number in the range [0,1]. 
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2.3 Main problems with binary PSO 
Here two main problems and concerns about binary PSO is discussed the first is the 
parameters of binary PSO and the second is the problem with memory of binary PSO. 
a) Parameters of the binary PSO 
It is not just the interpretation of the velocity and particle trajectories that changes for the 
binary PSO. The meaning and behavior of the velocity clamping and the inertia weight 
differ substantially from the real-valued PSO. In fact, the effects of these parameters are the 
opposite of those for the real valued PSO. In fact, the effects of these parameters are the 
opposite of those for the real-valued PSO (Engelbrecht, 2005). 
In real-valued version of PSO large numbers for maximum velocity of the particle encourage 
exploration. But in binary PSO small numbers for  promotes exploration, even if a 
good solution is found. And if  = 0, then the search changes into a pure random search. 
Large values for  limit exploration. For example if = 4, then  = 0.982 is 
the probability of  to change to bit 1. 
There is also some difficulties with choosing proper value for inertia weight w . For binary 
PSO, values of  prevents convergence. For values of  becomes 0 over 
time. For which    so for  we have  . If  velocity 

increases over time and    so all bits change to 1.  If      then 

 so the probability that bits change to bit 0 increases. 

As discussed in (Engelbrecht, 2005) the inertia weight and its effect is a problem. Also two 
approaches are suggested there: First is to remove the momentum term. According to 
(Engelbrecht, 2005), as the change in particle's position is randomly influenced by f/y , so 
the momentum term might not be needed. This approach is unexplored approach although 
it is used in (Pampara et al., 2005), but no comparisons are provided there. The second 
approach is to use a random number for w in the range: (-1,1) . In fact inertia weight has 
some valuable information about previously found directions found. Removing this term 
can't give any improvement to the binary PSO and the previous direction will be lost in this 
manner. Also using a random number for win the range (-1, 1) or any range like this can't be 
a good solution. It is desired that the algorithm is quite insensible to the values selected for 
w. Also using negative values for w makes no sense because this term provides the effect of 
previous directions in the next direction of the particle. Using a negative value for this 
parameter is not logical.  
b) Memory of the binary PSO 
Considering equation (4) the next value for the bit is quite independent of the current value 
of that bit and the value is solely updated using the velocity vector. In real-valued version of 
PSO the update rule uses current position of the swarm and the velocity vector just 
determines the movement of the particle in the space. 

3. THE NOVEL BINARY PARTICLE SWARM OPTIMIZATION 
Here, the  and  of the swarm is updated as in real-valued or binary version. The 
major difference between this algorithm and other version of binary PSO is the 
interpretation of velocity. Here, as in real-valued version of PSO, velocity of a particle is the 
rate at which the particle changes its bit's value. Two vectors for each particle are introduced 
as:  and .  is the probability of the bits of the particle to change to zero while  is 
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the probability that bits of particle change to one. Since in update equation of these 
velocities, which will be introduced later, the inertia term is used, these velocities are not 
complement. So the probability of change in j-th bit of i-th particle is simply defined as 
follows: 

  
(4)

 

In this way the velocity of particle is simply calculated. Also the update algorithm for  
and  is as follows: consider the best position visited so far for a particle is  and the 
global best position for the particle is . Also consider that the j-th bit of i-th best 
particle is one. So to guide the bit j-th of i-th particle to its best position, the velocity of 
change to one ( ) for that particle increases and the velocity of change to zero ( ) is 
decreases. Using this concept following rules can be extracted: 

  

(6)

 

Where  are two temporary values,  are two random variable in the range of 
(0,1) which are updated each iteration. Also  are two fixed variables which are 
determined by user. Then: 

  
(7)

 
Where  is the inertia term. In fact in this algorithm if the j-th bit in the global best variable 
is zero or if the j-th bit in the corresponding personal best variable is zero the velocity (  ) 
is increased. And the probability of changing to one is also decreases with the same rate. In 
addition, if the j-th bit in the global best variable is one  is increased and  decreases. 
In this approach previously found direction of change to one or change to zero for a bit is 
maintained and used so particles make use of previously found direction. After updating 
velocity of particles,  and , the velocity of change is obtained as in (5). A normalization 
process is also done. Using sigmoid function as introduced in (3). And then the next 
particles state is computed as follows: 

  
(7)
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Where  is the 2's complement of . That is, if  then  and if  
then . And  is a uniform random number between 0 and 1. 
The meaning of the parameters used in velocity equation, are exactly like those for the real-
valued PSO. The inertia weight used here maintains the previous direction of bits of particle 
to the personal best bit or global best bit whether it is 1 or 0. Also the meaning of velocity is 
the same as meaning of the velocity in real-valued version of PSO which is the rate of 
change in particle's position. Also as in real-valued PSO if the maximum velocity value 
considered is large, random search will happen. Small values for maximum velocity cause 
the particle to move less. Here also the previous states of the bits of the particles are taking 
into account. Using the equation (7) the previous value of the particle is taken into account, 
while in binary PSO just velocity determined the next value of particle. So, better 
performance and better learning from experiments in this algorithm is achieved. 
Experimental results in the next section support these complain. The algorithm proposed 
here for the binary PSO can be summarized as follows: 
1. Initialize the swarm X i , the position of particles are randomly initialized within the 

hypercube. Elements of X i are randomly selected from binary values 0 and 1. 
2. Evaluate the performance F of each particle, using its current position Xi (t) . 
3. Compare the performance of each individual to its best performance so far: if if 

. 

 

4. Compare the performance of each particle to the global best particle: 
: 

 

5. Change the velocity of the particle,  and  according to (6,7). 
6. Calculate the velocity of change of the bits,  as in (5). 
7. Generate the random variable   in the range:  (0,1). Move each particle to a new 

position using equation (8). 
8. Go to step 2, and repeat until convergence. 

4. EXPERIMENTAL RESULTS 
In this section we will compare the performance of proposed binary PSO and the binary 
PSO proposed by Kennedy and Eberhart in (Kennedy & Ebarhart, 1997) and the binary PSO 
used in (Tasgetiren & Liang,2007). In our experiments we investigated methods on the 
minimization of test functions set which is proposed in (Kennedy & Ebarhart, 1997). The 
functions used here are: Sphere, Rosenbrock, Griewangk and Rastrigin which are 
represented in equations (9-12) respectively. The global minimum of all of these functions is 
zero. The expression of these test functions are as follows: 
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(9)

 

  
(10)

 

  
(11)

 

  
(12)

 

These functions have been used by many researchers as benchmarks for evaluating and 
comparing different optimization algorithms. In all of these functions N is the dimension of 
our search space. In our experiments the range of the particles were set to [-50 ,50] and 20 
bits are used to represent binary values for the real numbers. Also population size is 100 and 
the number of iteration assumed to be 1000. The different values assumed in tests for N are 
3, 5,10, where N is the dimension of solution space. As it is shown in Table (1-8), the results 
are quite satisfactory and much better than the algorithms proposed in (Kennedy & 
Ebarhart, 1997) and (Tasgetiren & Liang,2007). As it was mentioned earlier, the method 
proposed here uses the previous direction found effectively and velocity has the same 
interpretation as the real-valued PSO, which is the rate of changes. The method of selecting 
inertia weight in binary PSO proposed in (Kennedy & Ebarhart, 1997) is still a problem 
(Engelbrecht, 2005). But removing the inertia weight is also undesirable because the 
previous direction is completely losses. In fact the previous velocities of a particle contain 
some information about the direction to previous personal best and global bests of the 
particle and surely have some valuable information which can help us faster and better find 
the solution. But in the proposed algorithm the effect of previous direction and also the 
effect of previous state of the system is completely taken into account. The results obtained 
here quite support the idea. 

5. CONCLUSION 
In this study a new interpretation for the velocity of binary PSO was proposed, which is the 
rate of change in bits of particles. Also the main difficulty of older version of binary PSO 
which is choosing proper value for wis solved. The previous direction and previous state of 
each particle is also taken into account and helped finding good solutions for problems. This 
approach tested and returned quite satisfactory results in number of test problems. The 
binary PSO can be used in variety of applications, especially when the values of the search 
space are discrete like decision making, solving lot sizing problem, the traveling salesman 
problem, scheduling and routing. 
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Dimension of input 
space 

The   Novel   Binary 
PSO 

Binary      PSO      as 
(Kennedy 1997) 

Binary      PSO      as 
(Tasgetiren 2007) 

N=3 6.82 x10-9 0.06 0.15 

N=5 1. 92 x10-6 7.96 22.90 
N=10 0.11 216.61 394.71 

Table 1. The results of best global best of minimization for sphere function 

Dimension of input 
space 

The   Novel   Binary 
PSO 

Binary      PSO      as 
(Kennedy 1997) 

Binary      PSO      as 
(Tasgetiren 2007) 

N=3 2.57 x10-8 9.21 0.15 

N=5 5.29 x10-4 171.54 224.40 
N=10 1.98 1532.90 1718.3 

Table 2. The results of best mean of personal bests for sphere function 

Dimension of input 
space 

The   Novel   Binary 
PSO 

Binary      PSO      as 
(Kennedy 1997) 

Binary      PSO      as 
(Tasgetiren2007) 

N=3 0.09 0.93 0.86 
N=5 2.25 1406 3746 
N=10 32.83 1.3094xl06 1.523xl06 

Table 3. The results of best global best of minimization for Rosenbrock function 

Dimension of input 
space 

The   Novel   Binary 
PSO 

Binary      PSO      as 
(Kennedy 1997) 

Binary      PSO      as 
(Tasgetiren2007) 

N=3 0.52 837.62 2945.8 
N=5 2.52 304210 6000503 
N=10 367.84 3.62 x107 5.02 x107 

Table 4. The results of best mean of personal bests for Rosenbrock function 

Dimension of input 
space 

The   Novel   Binary 
PSO 

Binary      PSO      as 
(Kennedy 1997) 

Binary      PSO      as 
(Tasgetiren2007) 

N=3 2.09 x109 3.00 x10-3 0.03 

N=5 7.4 x103 0.21 0.15 
N=10 0.06 0.83 1.03 

Table 5. The results of best global best of minimization for Grienwangk function 

Dimension of input 
space 

The   Novel   Binary 
PSO 

Binary      PSO      as 
(Kennedy 1997) 

Binary      PSO      as 
(Tasgetiren2007) 

N=3 3.78 x10-8 0.17 0.20 
N=5 0.012 0.58 0.66 
N=10 0.30 1.39 1.43 

Table 6. The results of best mean of personal bests for Grienwangk function 
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Dimension of input 
space 

The   Novel   Binary 
PSO 

Binary      PSO      as 
(Kennedy 1997) 

Binary      PSO      as 
(Tasgetiren2007) 

N=3 1.35 x10-6 2.67 3.71 

N=5 3.40 x10-3 25.88 51.32 
N=10 10.39 490.82 539.34 

Table 7. The results of best global best of minimization for Rastrigrin function  

Dimension of input 
space 

The   Novel   Binary 
PSO 

Binary      PSO      as 
(Kennedy 1997) 

Binary      PSO      as 
(Tasgetiren2007) 

N=3 6.51 x10-6 32.03 46.79 
N=5 0.38 215.59 268.40 
N=10 39.14 1664.3 1820.2 

Table 8. The results of best mean of personal bests for Rastrigrin function 
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1. Introduction      
Particle Swarm Optimization (PSO) has potential applications in electric drives.  The 
excellent characteristics of PSO may be successfully used to optimize the performance of 
electric machines in many aspects. 
In this chapter, a field-oriented controller that is based on Particle Swarm Optimization is 
presented. In this system, the speed control of two asymmetrical windings induction motor 
is achieved while maintaining maximum efficiency of the motor.  PSO selects the optimal 
rotor flux level at any operating point.  In addition, the electromagnetic torque is also 
improved while maintaining a fast dynamic response.  A novel approach is used to evaluate 
the optimal rotor flux level by using Particle Swarm Optimization.  PSO method is a 
member of the wide category of Swarm Intelligence methods (SI).  There are two speed 
control strategies will demonstrate in next sections.  These are field-oriented controller 
(FOC), and FOC based on PSO.  The strategies are implemented mathematically and 
experimental.  The simulation and experimental results have demonstrated that the FOC 
based on PSO method saves more energy than the conventional FOC method. 
In this chapter, another application of PSO for losses and operating cost minimization 
control is presented for the induction motor drives.  Two strategies for induction motor 
speed control are proposed in this section.  These strategies are based on PSO and called 
maximum efficiency strategy and minimum operating cost Strategy.  The proposed 
technique is based on the principle that the flux level in a machine can be adjusted to give 
the minimum amount of losses and minimum operating cost for a given value of speed and 
load torque.   
In the demonstrated systems, the flux and torque hysteresis bands are the only adjustable 
parameters to achieve direct torque control (DTC) of induction motors.  Their selection 
greatly influences the inverter switching loss, motor harmonic loss and motor torque 
ripples, which are the major performance criteria.  In this section, the effects of flux and 
torque hysteresis bands are investigated and optimized by the particle swarms optimization 
technique.  A DTC control strategy with variable hysteresis bands, which improves the 
drive performance compared to the classical DTC, is presented.   
Online Artificial Neural Networks (ANNs) could be also trained based on PSO optimized 
data.  Here the fast response of ANN is used to optimize the operating conditions of the 
machine.   
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It is very important to note that, these applications were achieved without any additional 
hardware cost,   because the PSO is a software scheme.  Consequently, PSO has positive 
promises for a wide range of variable speed drive applications. 

2. Losses Minimization of Two Asymmetrical Windings Induction Motor  
In this section, applying field orientation based on Particle Swarm Optimization (PSO) 
controls the speed of two-asymmetrical windings induction motor is the first application of 
PSO. The maximum efficiency of the motor is obtained by the evaluation of optimal rotor 
flux at any operating point.  In addition, the electro-magnetic torque is also improved while 
maintaining a fast dynamic response. In this section, a novel approach is used to evaluate 
the optimal rotor flux level.   This approach is based on Particle Swarm Optimization 
(PSO).  This section presents two speed control strategies.   These are field-oriented 
controller (FOC) and FOC based on PSO.  The strategies are implemented mathematically 
and experimental. The simulation and experimental results have demonstrated that the FOC 
based on PSO method saves more energy than the conventional FOC method. 
The two asymmetrical windings induction motor is treated as a two-phase induction motor 
(TPIM).  It is used in many low power applications, where three–phase supply is not readily 
available.  This type of motor runs at an efficiency range of 50% to 65% at rated operating 
conditions [1, 2].  
The conventional field-oriented controller normally operates at rated flux at any values with 
its torque range.  When the load is reduced considerably, the core losses become so high 
causing poor efficiency.  If significant energy savings are required, it is necessary to 
optimize the efficiency of the motor. The optimum efficiency is obtained by the evaluation of 
the optimal rotor flux level .  This flux level is varied according to the torque and the speed 
of the operating point. 
PSO is applied to evaluate the optimal flux.  It has the straightforward goal of minimizing 
the total losses for a given load and speed. It is shown that the efficiency is reasonably close 
to optimal. 

2.1 Mathematical Model of the Motor  
The d-q model of an unsymmetrical windings induction motor in a stationary reference 
frame can be used for a dynamic analysis.    This model can take in account the core losses.   
The d-q model as applied to TPIM is described in [1, 2].   The equivalent circuit is shown in 
fig. 1.  The machine model may be expressed by the following voltage and flux linkage 
equations : 
Voltage Equations:   

 
qsqsmqs pirv λ+=

  (1) 

 dsdsads pirv λ+=
  (2) 

 qrdrrqrr pkir λλω +−= *)/1(0
  

(3)
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 drqrrdsR pkir λλω ++= *0
  (4)  

)(0 qfeqrqsmqqfeqfe ipipipLRi −++−=
  

(5)
  

)(0 dfedrdsmddfedfe ipipipLRi −++−=
  (6) 

Flux Linkage Equations:  

 )( qfeqrqsmqqslmqs iiiLiL −++=λ   (7) 

 )( dfedrdsmddslads iiiLiL −++=λ    (8)  
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Figure 1. The d-q axes two-phase induction motor Equivalent circuit with iron losses [5] 

 
)iii(LiL qfeqrqsmqqrlrqr −++=λ

   (9)  

 
)iii(LiL dfedrdsmddrlRdr −++=λ

   (10) 
Electrical torque equation is expressed as:  

)(1)((
2 qfedrdsqrmdqfeqrqsdrmq iiiiL

k
iiiiLkPTe −+−−+=  (11) 
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Dynamic equation is given as follows:    

   rmrml BpjTTe ωω +=−
   (12) 

2.2 Field-Oriented Controller [FOC]  
The stator windings of the motor are unbalanced.  The machine parameters differ from the d 
axis to the q axis. The waveform of the electromagnetic torque demonstrates the unbalance 
of the system. The torque in equation (11) contains an AC term; it can be observed that two 
values are presented for the referred magnetizing inductance.  It is possible to eliminate the 
AC term of electro-magnetic torque by an appropriate control of the stator currents. 
However, these relations are valid only in linear conditions.  Furthermore, the  model is 
implemented using a non-referred equivalent circuit, which presumes some complicated 
measurement of the magnetizing mutual inductance of the stator and the rotor circuits [3].  
The indirect field-oriented control scheme is the most popular scheme for field-oriented 
controllers. It provides decoupling between the torque of flux currents.   The electric torque 
must be a function of the stator currents and rotor flux in synchronous reference frame [6].  
Assuming that the stator currents can be imposed as:  

 1dsds
ss ii =   (13)  

 1qs
s

qs
s iki =    (14) 

 Where:  k= Msrd / Msrq 

 [ ]qrdr
s

ds
s

sdr
s

qs
s

sqr
r

e iMiM
L

PT λλ −=
2   (15) 

By substituting the variables ids, and iqs by auxiliary variables ids1, and iqs1 into (15) the 
torque can be expressed by 

 [ ]qrdsdrqs
ssss

r

sdr
e ii

L
MPT λλ 112

−=   (16) 

In synchronous reference frame, the electromagnetic torque is expressed as :  

[ ]qrdsdrqs
eeee

r

sdr
e ii

L
MPT λλ 112

−=   (17) 

 [ ]rqs
ee

r

sdr
e i

L
MP

T λ12
=  (18) 
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e

ds
e
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2.3 Model with the Losses of two asymmetrical windings induction motor 
Finding the losses expression for the two asymmetrical windings induction motor with 
losses model is a very complex.   In this section, a simplified induction motor model with 
iron losses will be developed [4].  For this purpose, it is necessary to transform all machine 
variables to the synchronous reference frame.   The voltage equations are written in 
expanded form as follows: 

 )( e
mdmd

e
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e
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mq
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e
dsmdse

e
qm iLv ω=   (28) 

The losses in the motor are mainly: 
a. Stator copper losses, 
b.   Rotor copper losses, 
c.   Core losses, and 
d. Friction losses. 
The total electrical losses can be expressed as follows 

  Plosses = Pcu1 + Pcu2 +Pcor   (29)  

Where:  
Pcu1:  Stator copper losses  
Pcu2  :  Rotor copper losses 
Pcore:  Core losses 
The stator copper losses of the two asymmetrical windings induction motor are caused by 
electric currents flowing through the stator windings.  The core losses of the motor due to 
hysteresis and eddy currents in the stator.   The total electrical losses of motor can be 
rewritten as: 
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The total electrical losses are obtained as follows: 
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Where:   
ωe = ωr+ ωsl, and ωsl  is the slip speed r/sec. 

 2*
*2

r

re
sl P

rT
λ

ω =   (32)  

Equation (31) is the electrical losses formula, which depends on rotor flux (λr) according to 
operating point (speed and load torque). 

Total Plosses (TP losses) = Plosses + friction power losses 

 = Pin -  Pout 

 Efficiency (η) = Po / (Po + Total Plosses)  (33)  



Swarm Intelligence Applications in Electric Machines 

 

17 

Where: 
Friction power losses = F ∗ωr2 , and 
Output power (Po) =  TL∗ωr. 
The equation (31) is the cost function, which depends on rotor flux (λr) according to the 
operating point.  Figure 2 presents the distribution of losses in motor and its variation with 
the flux.   As the flux reduces from the rated value, the core losses decrease, but the motor 
copper losses increase.   However, the total losses decrease to a minimum value and then 
increase again.   It is desirable to set the rotor flux at the optimal value, so that the efficiency 
is optimum. 

 
Figure 2. Losses variation of the motor with varying flux 

The function of the losses minimization of the motor problem can be formulated as follows: 
Minimize Total Losses which are a function of  λ , Te ,  and ωr  
• The losses formula is the cost function of PSO.  The particle swarm optimization (PSO) 

technique is used for minimizing this cost function.  
• The PSO is applied to evaluate the optimal rotor flux that minimizes the motor losses at 

any operating point.  Figure 3 presents the flowchart of the execution of PSO, which 
evaluates the optimal flux by using MATLAB /SIMULINK. 
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Figure 3. The flowchart of the execution of PSO  
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The optimal flux is the input of the indirect rotor flux oriented controller.   The indirect field-
oriented controller generates the required two reference currents to drive the motor 
corresponding to the optimal flux.  These currents are fed to the hysteresis current controller 
of the two-level inverter.  The switching pattern is generated according to the difference 
between the reference current and the load current through the hysteresis band.  Figure 4 
shows a whole control diagram of the proposed losses-minimization control system.   
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Figure 4. Proposed losses minimization control system 

2.4  Simulation study with FOC 
The motor used in this study has the following parameters, which were measured by 
using experimental tests .  The FOC module is developed with closed loop speed control.  
The input of the FOC module is the reference speed and the rated rotor flux. The field–
oriented controller generates the required reference currents to drive the motor as shown in 
fig.5.  These currents are  based on the flux level, which determines the value of direct 
current, and the reference torque, which determines the value of quadrature current. The 
reference torque is calculated according to the speed error.    In this section, six-cases of 
motor operation with FOC are presented.   
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Figure 5. Block diagram of indirect rotor flux oriented control of the motor 
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Figure 6 shows the performance of the motor at case (1), where the motor is loaded by 
0.25p.u.  The control technique   based on the PI controller has been developed. The 
proportional (Kp) and integral (Ki) constants of PI controller are chosen by trial and error.   
The speed-time curve for the motor is shown in fig. 6a. It is noticed that the speed 
oscillations are eliminated when the FOC is applied to the drive system. 
Figure 6b illustrates the developed torque-time curve of the motor.  In this figure, the 
pulsating torque is eliminated.   

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 6. Simulation results of the motor at case (1),  (a) Speed-time curve, (b) Torque-time 
curve, (c)The stator current in q-axis, (d) the stator current in d-axis 

The efficiency is calculated from equation (33). Therefore, the efficiency is found to be equal 
to 33.85 %. The six-cases are summarized in Table 1. 

Torque load (TL) 
p.u Speed (N) Flux rated  

p.u Efficiency (%) 
0.25 0.5 Nrated 1 33.85 
0.375 0.5 Nrated 1 36.51 
0.5 0.5 Nrated 1 48.21 
0.6125 0.5 Nrated 1 55.15 
0.75 0.5 Nrated 1 60.175 
1 0.5 Nrated 1 63.54 

Table 1. The summary of the cases 
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It is clear that, the indirect field-oriented controller with a rated rotor flux generally exhibits 
poor efficiency of the motor at light load.  If significant energy savings need to be obtained, 
it is necessary to optimize the efficiency of the motor.  The optimum efficiency of the motor 
is obtained by the evaluation of the optimal rotor flux level. 

2.5 Losses minimization control scheme            
As swarm intelligence is based on real life observations of social animals (usually insects), it 
is more flexibility and robust than any traditional optimization methods.  PSO method is a 
member of the wide category of swarm intelligence methods (SI).   In this section,  PSO is 
applied to evaluate the optimal flux that minimizes the motor losses.  The problem can be 
formulated as follows: 
Minimize Total Losses which are a function of  λ , Te ,  and ωr  
• The motor used as a two-asymmetrical windings induction motor. The parameters used 

are shown in Table 2 [10]. 

Parameters Value 

Population size 10 
Max. iter 50 

c1 0.5 
c2 0.5 

Max. weight 1.4 
Min. weight 0.1 

r1 [ 0,1] 
r2 [ 0,1] 

Lbnd 0.2 
upbnd 2 

Table 2.   PSO Algorithm Parameters  

A simplified block diagram of the proposed speed control scheme is shown in fig.7.    
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Figure 7. Proposed losses minimization control system 
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A Four-Switch Inverter (FSI) feeds the two-asymmetrical windings induction motor.  The 
optimal flux is fed to the indirect rotor flux oriented control. The indirect field-oriented 
control generates the required reference current to drive the motor corresponding to this 
flux 

2.6 Simulation results with FO based on PSO 
The optimal rotor flux provides the maximum efficiency at any operating point, next the 
previous six-cases are repeated by using FOC based on PSO.   PSO will evaluate the optimal 
rotor flux level.  This flux is fed to the FOC module.   Figure 8  shows the performance of the 
motor at case (1), when PSO is applied side-by-side FOC. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Figure 8. Simulation results of the motor at case (1). (a) Speed-time curve ,  (b)Torque-time 
curve,  (c) The stator current in q-axis, (d) The stator current in d-axis, (e) Total Losses 
against iterations 
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It is noticed that, the PSO implementation increased the efficiency of the motor to 46.11% at 
half the rated speed.  The six-cases are summarized in Table 3. 

Torque load 
(TL) p.u Speed (N) Optimal flux(p.u) Efficiency (%) 

0.25 0.5 Nrated 0.636 46.11 
0.375 0.5 Nrated 0.6906 49.15 
0.5 0.5 Nrated 0.722 57.11 

0.6125 0.5 Nrated 0.761 62.34 
0.75 0.5 Nrated 0.8312 65.31 

1 0.5 Nrated 0.8722 68.15 
Table 3. The summary of the six-cases at optimal flux 

In practical system, the flux level  based on PSO at different operating points  ( torque and 
speed) is calculated and stored in  a look up table.  The use of look up table will enable the 
system to work in real time without any delay that might be needed to calculate the optimal 
point.   The proposed controller would receive the operating point (torque and speed) and 
get the optimum flux from the look up table. It will generate the required reference current.  
It is noticed that, the efficiency with the FOC based on PSO method is higher than the 
efficiency with the FOC method only.  

2.7 Experimental Results 
To verify the validity of the proposed control scheme, a laboratory prototype is built and 
tested.   The basic elements of the proposed experimental scheme are shown in fig. 9 and fig. 
10.  The experimental results of the motor are achieved by coupling the motor to an eddy 
current dynamometer. The experimental results are achieved using two control methods: 
• Field-Oriented Control [FOC], and 
• Field-Oriented Control [FOC] based on PSO. 
The reference and the actual motor currents are fed to the hysteresis current controller.  The 
switching pattern of the two-level four-switch inverter [FSI] is generated according to the 
difference between the reference currents and the load currents.  Figure 11 shows the 
experimental results of the motor with FOC at case (1), where the motor is loaded by Tl = 
0.25 p.u. 
The measured input power of the motor is about 169 watts, and then the efficiency is 
calculated about 44.92 %, whereas the efficiency with FOC is 32.30 %.  It is noticed that, the 
PSO implementation increased the efficiency of the motor by 12.62 %. The cases are 
summarized in Table 4 as follows. 

FOC FOC with PSO 
Cases Flux 

p.u 
Power 
Input 

η 
(%) 

Flux 
p.u 

Power 
Input 

η 
(%) 

(1) 1 235 32.3 0.636 169 44.92 

(2) 1 323 35.2 0.690 243 47.06 

Table 5   the summary of the two-cases 
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The improvement of the efficiency in case (1) is around 12.62 % when PSO is applied. The 
improvement of the efficiency in case (2) is around 11.84 %, where the motor is loaded by Tl 
= 0.375 p.u. These results demonstrate that, the FOC based on PSO method saves more 
energy than conventional FOC method. Thus, the efficiency with PSO is improved than it's 
at FOC. 
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Figure 9. Block diagram of the proposed drive system 
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Figure 10. The power circuit of Four Switch inverter [FSI] 
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(a) 

 
(b) 

 
(c) 

Figure 11. Experimental results of FOC method. (a)The reference and actual speed,   (b) The 
reference and actual current in q-axis, (c) The reference and actual current in d-axis 
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The measured total input power of the motor is 235 watts.   The efficiency is calculated from 
equation (33).  The efficiency is found to be equal to 32.30 %.    Figure 11 shows the 
experimental result of the motor with FOC based on PSO at case (1). 

 
(a) 

 
(b) 

Figure 11. Experimental results of FOC method based on PSO. (a) The reference and actual 
current in q-axis, (b)The reference and actual current in d-axis 

3. Maximum Efficiency and Minimum Operating Cost of Induction  motors 
This section presents another application of PSO for losses and operating cost minimization 
control in the induction motor drives. In this paper, two strategies for induction motor 
speed control are proposed. Those two strategies are based on PSO and called Maximum 
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Efficiency Strategy and Minimum Operating Cost Strategy.  The proposed technique is 
based on the principle that the flux level in the machine can be adjusted to give the 
minimum amount of losses and minimum operating cost for a given value of speed and 
load torque. The main advantages of the proposed technique are; its simple structure and its 
straightforward maximization of induction motor efficiency and its operating cost for a 
given load torque. As will be demonstrated, PSO is so efficient in finding the optimum 
operating machine's flux level. The optimum flux level is a function of the machine 
operating point. 
Simulation results show that a considerable energy and cost savings are achieved in 
comparison with the conventional method of operation under the condition of constant 
voltage to frequency ratio [5, 6]. 
It is estimated that, electric machines consume more than 50% of the world electric energy 
generated. Improving efficiency in electric drives is important, mainly, for two reasons: 
economic saving and reduction of environmental pollution. Induction motors have a high 
efficiency at rated speed and torque. However, at light loads, the iron losses increase 
dramatically, reducing considerably the efficiency. The main induction motor losses are 
usually split into 5 components: stator copper losses, rotor copper losses, iron losses, 
mechanical losses, and stray losses.  
The efficiency that decreases with increasing losses can be improved by minimizing the 
losses. Copper losses reduce with decreasing the stator and the rotor currents, while the core 
losses essentially increase with increasing air-gap flux density. A study of the copper and 
core losses components reveals that their trends conflict. When the core losses increase, the 
copper losses tends to decrease. However, for a given load torque, there is an air-gap flux 
density at which the total losses is minimized. Hence, electrical losses minimization process 
ultimately comes down to the selection of the appropriate air-gap flux density of operation. 
Since the air-gap flux density must be variable when the load is changing, control schemes 
in which the (rotor, air-gap) flux linkage is constant will yield sub-optimal efficiency 
operation especially when the load is light. Then to improve the motor efficiency, the flux 
must be reduced when it operates under light load conditions by obtaining a balance 
between copper and iron losses.  
The challenge to engineers, however, is to be able to predict the appropriate flux values at 
any operating points over the complete torque and speed range which will minimize the 
machines losses, hence maximizing the efficiency. In general, there are three different 
approaches to improve the induction motor efficiency especially under light-load 
conditions. 
 
a. Losses Model Controller (LMC) 
This controller depends on a motor losses model to compute the optimum flux analytically. 
The main advantage of this approach is its simplicity and it does not require extra hardware. 
In addition, it provides smooth and fast adaptation of the flux, and may offer optimal 
performance during transient operation. However, the main problem of this approach is 
that it requires the exact values of machine parameters. These parameters include the core 
losses and the main inductance flux saturation, which are unknown to the users and change 
considerably with temperature, saturation, and skin effect. In addition, these parameters 
may vary due to changes in the operating conditions. However, with continuing 



Particle Swarm Optimization 

 

30 

improvement of evolutionary parameter determination algorithms, the disadvantages of 
motor parameters dependency are slowly disappearing. 
 
b. Search Controller (SC) 
This controller measures the input power of the machine drive regularly at fixed time 
intervals and searches for the flux value, which results in minimum power input for given 
values of speed and load torque [5]. This particular method does not demand knowledge of 
the machine parameters and the search procedure is simple to implement. 
However, some disadvantages appear in practice, such as continuous disturbances in the 
torque, slow adaptation (7sec.), difficulties in tuning the algorithm for a given application, 
and the need for precise load information. In addition, the precision of the measurements 
may be poor due to signal noise and disturbances. This in turn may cause the SC method to 
give undesirable control performance. Moreover, nominal flux is applied in transient state 
and is tuned after the system reaches steady state to an optimal value by numerous 
increments, thus lengthening the optimization process. Therefore, the SC technique may be 
slow in obtaining the optimal point. In addition, in real systems, it may not reach a steady 
state and so cause oscillations in the air gap flux that result in undesirable torque 
disturbances. For these reasons, this is not a good method in industrial drives. 
 
c. Look Up Table Scheme 
It gives the optimal flux level at different operating points. This table, however, requires 
costly and time-consuming prior measurements for each motor . In this section, a new 
control strategy uses the loss model controller based on PSO is proposed. This strategy is 
simple in structure and has the straightforward goal of maximizing the efficiency for a given 
load torque. The resulting induction motor efficiency is reasonably close to optimal. It is 
well known that the presence of uncertainties ,the rotor resistance, for instance makes the 
result no more optimal. Digital computer simulation results are obtained to demonstrate the 
effectiveness of the proposed method. 

3.1  Differences between PSO and Other Evolutionary Computation (EC) Techniques 
The most striking difference between PSO and the other evolutionary algorithms is that PSO 
chooses the path of cooperation over competition. The other algorithms commonly use some 
form of decimation, survival of the fittest. In contrast, the PSO population is stable and 
individuals are not destroyed or created.  Individuals are influenced by the best 
performance of their neighbors. Individuals eventually converge on optimal points in the 
problem domain. In addition, the PSO traditionally does not have genetic operators like 
crossover between individuals and mutation, and other individuals never substitute 
particles during the run. Instead, the PSO refines its search by attracting the particles to 
positions with good solutions. Moreover, compared with genetic algorithms (GAs), the 
information sharing mechanism in PSO is significantly different. In GAs, chromosomes 
share information with each other. So the whole population moves like a one group towards 
an optimal area. In PSO, only Gbest (or Pbest) gives out the information to others. It is a one-
way information sharing mechanism. The evolution only looks for the best solution. In PSO, 
all the particles tend to converge to the best solution quickly, comparing with GA, even in 
the local version in most cases [7, 8]. 
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3.2  Definition of Operating Strategies 
The following definitions are useful in subsequent analyses. Referring to the analysis of the 
induction motor presented in [3], the per-unit frequency is 

  

 (34)

 
The slip is defined by 

  

(35)

 
The rotor current is given by 

   

 (36) 

The electromagnetic torque is given by 

   

(37) 

The stator current is related to the air gap flux and the electromagnetic torque as: 

   (38) 

Where   

 
The air gap flux is related to the electromagnetic torque as: 

   (
39) 
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The efficiency is defined as the output power divided by the electric power supplied to the 
stator (inverter losses are included): 

  

(40)

 

3.1.1 Maximum Efficiency Strategy 
In MES (Maximum Efficiency Strategy), the slip frequency is adjusted so that the efficiency 
of the induction motor drive system is maximized. 
The induction motor losses are the following: 
1. Copper losses: these are due to flow of the electric current through the stator and rotor  

windings and are given by: 

   (41) 

2. Iron losses: these are the losses due to eddy current and hysteresis, given by 

  (42) 

3. Stray losses: these arise on the copper and iron of the motor and are given by: 

   (43) 

4. Mechanical losses: these are due to the friction of the machine rotor with the bearings 
and are given by 

      (44) 

5. Inverter losses : The approximate inverter loss as a function of stator current is given 
by: 

   (45) 

Where:  K1inv, K2inv are coefficients determined by the electrical characteristics of a switching 
element where: K1inv= 3.1307e-005, K2inv=0.0250. 
The total power losses are expressed as: 

  

(46) 
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The output power is given by: 

    (47) 

The input power is given by: 

   

(48) 

The efficiency is expressed as: 

  

(49)  

The efficiency maximization of the induction motor problem can be formulated as follows: 

     (50) 

The maximization should observe the fact that the amplitude of the stator current and flux 
cannot exceed their specified maximum point. 

3.2.2 Minimum Operating Cost Strategy 
In Minimum Operating cost Strategy (MOCS), the slip frequency is adjusted so that the 
operating cost of the induction motor is minimized. The operating cost of the induction 
machine should be calculated over the whole life cycle of the machine. That calculation can 
be made to evaluate the cost of the consumed electrical energy. The value of average energy 
cost considering the power factor penalties can be determined by the following stages: 
1. If 0 ≤ PF < 0.7 

   
(51) 
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2. If 0.7 ≤ PF ≤ 0.92, If PF ≥ 0.9, PF = 0.9 

  
(52) 

3. If 0.9 ≤ PF ≤ 1, If 0.95 ≤ PF ≤ 1, PF = 0.95 

   
(53) 

If the average energy cost C is calculated, it can be used to establish the present value of 
losses. The total cost of the machine is the sum of its initial cost plus the present worth value 
of losses and maintenance costs. 

  
(54) 

Where: 
PWL = present worth value of losses 
C0    = energy cost (L.E/KwH), L.E is the Egyptian Pound 
C      = modified energy cost (L.E/KwH) 
T      = running time per year (Hrs / year) 
N     = evaluation life (years) 
Pout = the output power (Kwatt) 
η      = the efficiency 
The operating cost minimization of the induction motor problem can be formulated as follows: 

   

(55) 

The optimization in each case should observe the fact that the amplitude of the stator 
current and flux cannot exceed their specified maximum. 

3.3 Simulation Results 
The simulation is carried out on a three-phase, 380 V, 1-HP, 50 Hz, and 4-pole, squirrel cage 
induction motor. The motor parameters are Rs=0.0598, Xls=0.0364, Xm=0.8564, Xlr=0.0546, 
Rr=0.0403, Ke=0.0380, Kh=0.0380, Cstr =0.0150, Cfw=0.0093, S1=1.07, S2=-0.69, S3=0.77. For 
cost analysis, the following values were assumed: C0=0.05, N=15, T=8000.  Figure 12 shows 
the efficiency variation with respect to the rotor and slip speed at various levels of load 
torque.   At certain load torque and rotor speed, a certain value of slip frequency at which 
the maximum efficiency occurs is optimal. The task of PSO controller is to find that value of 
slip at which the maximum efficiency occurs. At certain load torque and rotor speed, the 
PSO controller determines the slip frequency ωs at which the maximum efficiency and 
minimum operating cost occur. The block diagram of the optimization process based on 
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PSO is shown in fig.13. In the proposed controller, the PSO algorithm receives the rotor 
speed, load torque, and the fitness function (efficiency equation). 
The PSO determines the slip frequency at which the maximum efficiency or minimum 
operating cost occurs at that rotor speed and load torque. Figures (14) and (15) show the 
efficiency of the machine as a function of the load torque and rotor speed under constant 
voltage to frequency ratio strategy and field oriented control strategy. From these figures it 
is obvious that, the efficiency decreases substantially when either the torque or rotor speed 
is small. On the other hand, fig. 16 shows the efficiency versus the load torque and rotor 
speed using the proposed technique (MES). This figure shows a great improving in 
efficiency especially at light loads and small rotor speed. To observe the improvements in 
efficiency using the suggested PSO controller, fig. 17 shows the efficiency of the selected 
machine for all operating conditions using conventional methods (constant voltage to 
frequency ratio, field oriented control strategy) and using the proposed PSO controller at 
different rotor speed levels, Wr = 0.2 PU, and Wr = 1 PU respectively. This figure shows that 
a considerable energy saving is achieved in comparison with the conventional method (field 
oriented control strategy and constant voltage to frequency ratio). Table (1) shows the 
efficiency comparison using few examples of operating points. 

 
Figure 12. Efficiency versus rotor speed and slip speed at load torque TL = 1 PU 

 
Figure 13. The proposed drive system based on PSO 
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Figure 14. Efficiency versus rotor speed and load torque under constant voltage to 
frequency ratio strategy 

 
Figure 15. Efficiency versus rotor speed and load torque under field Oriented control strategy 

 
Figure 8. Efficiency versus rotor speed and load torque using the Proposed PSO controller (MES) 
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Table 1. Some examples of efficiency comparison under different Load torque levels  
and Wr = 1 PU 

Figure (10) compares the efficiency of the induction motor drive system under the 
maximum efficiency strategy with the minimum operating cost strategy at Wr = 0.2 PU and 
Wr = 1 PU, respectively. It is obvious from the figure that the efficiency is almost the same 
for both strategies for all operating points. On the other hand, fig. 11 shows the percentage 
of the operating cost saving for the two strategies for Wr = 0.2 and Wr = 1 PU respectively. 
The percentage of the operating cost saving is calculated according to the following 
equation: 

  

(56) 

Where:   PWlMES is the present worth value of losses under MES, and PWlMOCS is the present 
worth value of losses under MOCS.  It is obvious from fig (11) that the saving has a 
noticeable value especially at light loads and rated speed that can as high as 11.2 %.  It is 
clear that the PWL using the minimum operating cost strategy is less than the PWL using 
the maximum efficiency strategy. This difference in operating cost is shown in table (2). The 
reason for that difference is due to the difference in their power factor values. The difference 
in power factor values is shown in fig.12. 
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Figure 9. The efficiency of the induction motor using the maximum efficiency strategy 
compared with the efficiency using the conventional methods (field oriented control 
strategy and constant voltage to frequency ratio) for different rotor speed levels.  
(a) Wr = 0.2 PU,     (b) Wr= 1 PU 
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Figure 10. the efficiency of the induction motor using the maximum efficiency strategy 
compared with the efficiency using minimum operating cost strategy for different rotor 
speed levels. (a) Wr = 0.2 PU,     (b) Wr= 1 PU 
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Table 2. Some examples of operating cost comparison under different load torque levels and 
Wr = 1 PU 

 
Figure 11. the PWL using maximum efficiency strategy compared with the PWL using the 
minimum operating cost strategy for different rotor speed levels.  
(a) Wr = 0.2 PU, (b) Wr= 1 PU 
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Figure 12. The Power factor of the induction motor using the maximum efficiency strategy 
compared with the Power factor using minimum operating cost strategy for different rotor 
speed levels, (a) Wr = 0.2 PU,     (b) Wr= 1 PU 

Finally, this section presents the application of PSO for losses and operating cost 
minimization control in the induction motor drives.  Two strategies for induction motor 
speed control are proposed. Those two strategies are based on PSO and called Maximum 
Efficiency Strategy and Minimum Operating Cost Strategy. The proposed PSO-controller 
adaptively adjusts the slip frequency such that the drive system is operated at the minimum 
loss and minimum operating cost. It was found that the optimal system slip changes with 
variations in speed and load torque.  When comparing the proposed strategy with the 
conventional methods field oriented control strategy and constant voltage to frequency 
ratio), It was found that a significant efficiency improvement It was found that a significant 
efficiency improvement is found at light loads for all speeds. On the other hand, small 
efficiency improvement is achieved at near rated loads. Finally, when comparing the MOCS 
with MES, it was found that, the saving in PWL using the MOCS is greater than that of the 
MES, especially at light loads and rated speed. 
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4. Particle Swarm Optimized Direct Torque Control of Induction Motors 
The  flux  and  torque  hysteresis  bands  are  the  only adjustable  parameters  in  direct  
torque  control  (DTC)  of induction motors. Their selection greatly influences the inverter 
switching loss, motor harmonic loss and motor torque ripples, which are major performance 
criteria. In this section, the effects of flux and  torque   hysteresis  bands  on  these  criteria  
are investigated and optimized via the minimization, by the particle swarm optimization 
(PSO) technique, of a suitably selected cost function.  A  DTC control   strategy with variable 
hysteresis bands, which improves the drive performance compared to the classical DTC, is 
proposed.  Online operating Artificial Neural Networks (ANNs) use the offline optimum 
values obtained by PSO, to modify the hysteresis bands in order to improve the 
performance. The implementation of the proposed scheme is illustrated by simulation 
results [9]. 
In this section, the effects of flux and torque hysteresis bands on inverter switching loss, 
motor harmonic loss and motor torque ripple of induction motor are investigated. To reduce 
speed and torque ripples it is desirable to make the hysteresis band as small as possible, 
thus increasing the switching frequency, which results in reduced efficiency of the drive by 
enlarging the inverter switching and motor harmonic losses. Hence, these hysteresis bands 
should be optimized in order to achieve a suitable compromise between efficiency and 
dynamic performance. In order to find their optimum values at each operating condition, a 
cost function combining losses and torque ripples is defined and optimized.  A DTC control 
strategy with variable hysteresis bands is proposed, such that the optimum hysteresis band 
values are used at each operating condition. The proposed method combines the emerging 
Particle Swarm Optimization (PSO) for offline optimization of the cost function and the 
ANN technique for online determination of the suitable hysteresis band values at the 
operating point. 

4.1 DTC Performance Cost Function Optimization 
The design of the DTC involves the selection of suitable hysteresis band. In this section, the 
hysteresis band is selected so that it results in an optimal performance cost function.  Since 
the optimal hysteresis bands depend on the operating conditions, the    optimization    
procedure    is implemented via PSO at several operating conditions that covers the possible 
working conditions of the drive system [9, 10, 11].  Fig. 13 shows the flow chart of the 
optimization method. A  computer  model  of  the  overall  drive  system  has  been 
developed   using  MATLAB/SIMULINK  software.   The simulations  have  been  
performed  for  a  10  Hp  induction motor (the motor parameters are given in the appendix).  
The cost function is expressed as follows: 

      (57) 

Where: 
ΔTe:   is the torque hysteresis band, 
Δλs :   is the flux hysteresis band, 
PIL:   is inverter switching loss, 
PC:   is core loss, and 
Wi : is a designer specified weighting factor. 
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The weighting terms are selected to be W1 = 0.2, W2 = 0.2 and W3 = 0.6. The reduction of 
torque ripples is the most important objective of the optimization.  In the thirty-six different 
operating conditions, corresponding to the combination of six different speed and six 
different load torque values, are considered. The harmonic spectrum of the motor stator flux 
is calculated up to 30th harmonic and the Simulink model is run for 2.5 seconds.    For  PSO,  
the  following  parameters  are  used:  Size  of  the  swarm = 10, maximum number of 
iterations = 100, maximum inertia weight’s value = 1.2, minimum inertia weight’s value = 
0.1, C1 =C2 = 0.5 ,lower and upper bound for initial position of the swarm are 0 and 20 
respectively maximum initial velocities value = 2 and the weight vary linearly from 1.2 to 
0.1.  Table 1  presents the optimum torque and flux hysteresis bands (TB, and FB 
respectively) obtained by PSO. 

 
Table 3. The optimum hysteresis bands obtained by PSO optimization process 

4.2 Neural Network Controller For DTC 
In the previous section, PSO is used as an offline optimization technique that determines the 
optimal values of the hysteresis bands. These bands depend on loading conditions. To 
ensure keeping the drive system running at the optimal performance cost function, the 
hysteresis band must be changed online depending on the current operating conditions. 
Neural networks (NNs) have good approximation ability and can interpolate and 
extrapolate its training data.  Hence, to achieve the online selection of the hysteresis bands, 
two neural networks are trained by the offline optimum results obtained by PSO for flux 
and torque bands respectively. The inputs of these NN are the desired motor speed and the 
desired load torque.  
The two considered NN's are Feed-forward type networks. Each NN has two inputs, one 
output, and two layers. The flux neural network has 8 neurons in the input layer and one 
neuron in the output layer. The torque neural network has 9 neurons in the input layer and 
one neuron in the output layer.  The activation function of the hidden layer is log sigmoid 
while the output layer is linear. For both networks, the Neural Network Matlab Toolbox is 
used for the training. The training algorithm selected is Levenberg-Marquarbt back 
propagation, the adaptation learning function is "trains" sequential order incremental 
update, and the performance function is the sum-squared error. 
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Figure 13. The flow chart of the optimization process 
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4.3 Comparison Between Classical and the Neural Network Controller for DTC 
Simulations have been performed for the above mentioned 10 Hp induction motor to 
compare between the classical and the neural network controller for direct torque controlled 
IM.  For classical DTC the results have been obtained for flux and torque hysteresis band 
amplitude equal to 2 %.  In neural network Controller the above flux and torque neural 
networks are used to set the optimal hysteresis bands. Fig. 14 and Fig. 15 show the 
simulation results for the classical and the neural network controller respectively for a test 
run that covers wide operating range.  It is clear that, the proposed scheme achieves a 
considerable reduction in inverter switching loss, motor harmonic loss, and motor torque 
ripple of the direct torque controlled induction motor drives compared to the 
Classical DTC. Table 4 shows the comparison between classical DTC and NN DTC 
 

 
Table 4. Comparison between classical and NN controller for DTC 

 
 
 

 
Figure 14. The classical direct torque controlled IM simulation results 
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Figure 15. The neural network direct torque controlled IM simulation results 

Finally, the DTC control strategy with variable hysteresis bands, which improves the drive 
performance compared to the classical DTC, is proposed. Particle swarm optimization is 
used offline to minimize a cost function that represents the effect of the hysteresis band on 
the inverter switching loss, motor harmonic loss and motor torque ripples at different 
operating conditions. Online operating ANNs use the offline optimum  values  obtained  by  
PSO,  to  decide  the  suitable hysteresis bands based on  the current  operating  condition. 
Simulation results indicate   the   validity of the  proposed scheme in achieving better 
performance of the drive system in a wide operating range. 

5. Index I 
List of principal symbols 

ωe  : synchronous speed 
ωr  : rotor speed 
p   : differential operator 
rm , ra   : main, auxiliary stator windings resistance 
rr   : rotor winding resistance 
Rfeq,d   : equivalent iron-loss  resistance(d and q axis) 
Llm ,Lla   :  main, auxiliary stator leakage    inductance 
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Lmd ,Lm q   : magnetizing inductance (d& q  axis) 
Llr      : rotor leakage inductance 
K     : turns ratio auxiliary/main windings 
Te      : electromagnetic torque 
J     : inertia of motor 
λds,qs      : stator flux(d and q axis) 
λdr,qr      : rotor flux(d and q axis) 
Vds,qs      : stator voltage (d and q axis) 
ids,qs      : stator current (d and q axis) 
M   : mutual inductance 
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1. Introduction  

Embedded systems typically consist of application specific hardware parts and 
programmable parts, e.g. processors like DSPs, core processors or ASIPs. In comparison to 
the hardware parts, the software parts are much easier to develop and modify. Thus, 
software is less expensive in terms of costs and development time. Hardware, however, 
provides better performance. For this reason, a system designer's goal is to design a system 
fulfilling all system constraints. The co-design phase, during which the system specification 
is partitioned onto hardware and programmable parts of the target architecture, is called 
Hardware/Software partitioning. This phase represents one key issue during the design 
process of heterogeneous systems. Some early co-design approaches [Marrec et al. 1998, 
Cloute et al. 1999] carried out the HW/SW partitioning task manually. This manual 
approach is limited to small design problems with small number of constituent modules. 
Additionally, automatic Hardware/Software partitioning is of large interest because the 
problem itself is a very complex optimization problem.  
Varieties of Hardware/Software partitioning approaches are available in the literature. 
Following Nieman [1998], these approaches can be distinguished by the following aspects: 
1. The complexity of the supported partitioning problem, e.g. whether the target 

architecture is fixed or optimized during partitioning. 
2. The supported target architecture, e.g. single-processor or multi-processor, ASIC or 

FPGA-based hardware. 
3. The application domain, e.g. either data-flow or control-flow dominated systems. 
4. The optimization goal determined by the chosen cost function, e.g. hardware 

minimization under timing (performance) constraints, performance maximization 
under resource constraints, or low power solutions. 

5. The optimization technique, including heuristic, probabilistic or exact methods, 
compared by computation time and the quality of results. 

6. The optimization aspects, e.g. whether communication and/or hardware sharing are 
taken into account. 

7. The granularity of the pieces for which costs are estimated for partitioning, e.g. granules 
at the statement, basic block, function, process or task level. 

8. The estimation method itself, whether the estimations are computed by special 
estimation tools or by analyzing the results of synthesis tools and compilers. 
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9. The cost metrics used during partitioning, including cost metrics for hardware 
implementations (e.g. execution time, chip area, pin requirements, power consumption, 
testability metrics), software cost metrics (e.g. execution time, power consumption, 
program and data memory usage) and interface metrics (e.g. communication time or 
additional resource-power costs). 

10. The number of these cost metrics, e.g. whether only one hardware solution is 
considered for each granule or a complete Area/Time curve. 

11. The degree of automation. 
12. The degree of user-interaction to exploit the valuable experience of the designer. 
13. The ability for Design-Space-Exploration (DSE) enabling the designer to compare 

different partitions and to find alternative solutions for different objective functions in 
short computation time. 

In this Chapter, we investigate the application of the Particle Swarm Optimization (PSO) 
technique for solving the Hardware/Software partitioning problem. The PSO is attractive 
for the Hardware/Software partitioning problem as it offers reasonable coverage of the 
design space together with O(n) main loop's execution time, where n is the number of 
proposed solutions that will evolve to provide the final solution.  
This Chapter is an extended version of the authors’ 2006 paper [Abdelhalim et al. 2006]. The 
organization of this chapter is as follows: In Section 2, we introduce the HW/SW 
partitioning problem. Section 3 introduces the Particle Swarm Optimization formulation for 
HW/SW Partitioning problem followed by a case study. Section 4 introduces the technique 
extensions, namely, hardware implementation alternatives, HW/SW communications 
modeling, and fine tuning algorithm. Finally, Section 5 gives the conclusions of our work. 

2. HW/SW Partitioning 
The most important challenge in the embedded system design is partitioning; i.e. deciding 
which components (or operations) of the system should be implemented in hardware and 
which ones in software. The granularity of each component can be a single instruction, a 
short sequence of instructions, a basic block or a function (procedure). To clarify the 
HW/SW partitioning problem, let us represent the system by a Data Flow Graph (DFG) that 
defines the sequencing of the operations starting from the input capture to the output 
evaluation. Each node in this DFG represents a component (or operation). Implementing a 
given component in HW or in SW implies different delay/ area/ power/ design-time/ 
time-to-market/ … design costs.  The HW/SW partitioning problem is, thus, an 
optimization problem where we seek to find the partition ( an  assignment vector of each 
component to HW or SW) that minimizes a user-defined global cost function (or functions) 
subject to given area/ power/ delay …constraints.  Finding an optimal HW/SW partition is 
hard because of the large number of possible solutions for a given granularity of the 
“components” and the many different alternatives for these granularities. In other words, 
the HW/SW partitioning problem is hard since the design (search) space is typically huge. 
The following survey overviews the main algorithms used to solve the HW/SW partitioning 
problem. However, this survey is by no means comprehensive.  
Traditionally, partitioning was carried out manually as in the work of Marrec et al. [1998] 
and Cloute et al. [1999]. However, because of the increase of complexity of the systems, 
many research efforts aimed at automating the partitioning as much as possible. The 
suggested partition approaches differ significantly according to the definition they used to 



Particle Swarm Optimization for HW/SW Partitioning 

 

51 

the problem. One of the main differences is whether to include other tasks (such as scheduling 
where starting times of the components should be determined) as in Lopez-Vallejo et al [2003] 
and in Mie et al. [2000], or just map components to hardware or software only as in the work 
of Vahid [2002] and Madsen et al [1997]. Some formulations assign communication events to 
links between hardware and/or software units as in Jha and Dick [1998]. The system to be 
partitioned is generally given in the form of task graph, the graph nodes are determined by the 
model granularity, i.e. the semantic of a node. The node could represent a single instruction, 
short sequence of instructions [Stitt et al. 2005], basic block [Knudsen et al. 1996], a function or 
procedure [Ditzel 2004, and Armstrong et al. 2002]. A flexible granularity may also be used 
where a node can represent any of the above [Vahid 2002; Henkel and Ernst 2001]. Regarding 
the suggested algorithms, one can differentiate between exact and heuristic methods. The 
proposed exact algorithms include, but are not limited to, branch-and-bound [Binh et al 1996], 
dynamic programming [Madsen et al. 1997], and integer linear programming [Nieman  1998; 
Ditzel 2004]. Due to the slow performance of the exact algorithms, heuristic-based algorithms 
are proposed. In particular, Genetic algorithms are widely used [Nieman  1998; Mann 2004] as 
well as simulated annealing [Armstrong et al 2002; Eles et al. 1997], hierarchical clustering 
[Eles et al. 1997], and Kernighan-Lin based algorithms such as in [Mann 2004]. Less popular 
heuristics are used such as Tabu search [Eles et al. 1997] and greedy algorithms [Chatha and 
Vemuri 2001]. Some researchers used custom heuristics, such as Maximum Flow-Minimum 
Communications (MFMC) [Mann 2004], Global Criticality/Local Phase (GCLP) [Kalavade and 
Lee 1994], process complexity [Adhipathi 2004], the expert system presented in [Lopez-Vallejo 
et al. 2003], and Balanced/Unbalanced partitioning (BUB) [Stitt 2008]. 
The ideal Hardware/Software partitioning tool produces automatically a set of high-quality 
partitions in a short, predictable computation time. Such tool would also allow the designer to 
interact with the partitioning algorithm. 
De Souza et al. [2003] propose the concepts of ”quality requisites” and a method based on 
Quality Function Deployment (QFD) as references to represent both the advantages and 
disadvantages of existing HW/SW partitioning methods,  as well as, to define a set of features 
for an optimized partitioning algorithm. They classified the algorithms according to the 
following criterion: 
1. Application domain: whether they are "multi-domain" (conceived for more than one or 

any application domain, thus not considering particularities of these domains and being 
technology-independent) or "specific domain" approaches. 

2. The target architecture type. 
3. Consideration for the HW-SW communication costs. 
4. Possibility of choosing the best implementation alternative of HW nodes. 
5. Possibility of sharing HW resources among two or more nodes. 
6. Exploitation of HW-SW parallelism. 
7. Single-mode or multi-mode systems with respect to the clock domains. 
In this Chapter, we present the use of the Particle Swarm Optimization techniques to solve the 
HW/SW partitioning problem. The aforementioned criterions will be implicitly considered 
along the algorithm presentation. 

3. Particle swarm optimization 
Particle swarm optimization (PSO) is a population based stochastic optimization technique 
developed by Eberhart and Kennedy  in 1995 [Kennedy and Eberhart 1995; Eberhart and 
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Kennedy 1995; Eberhart and Shi 2001]. The PSO algorithm is inspired by social behavior of 
bird flocking, animal hording, or fish schooling. In PSO, the potential solutions, called 
particles, fly through the problem space by following the current optimum particles. PSO 
has been successfully applied in many areas. A good bibliography of PSO applications could 
be found in the work done by Poli [2007]. 

3.1 PSO algorithm 
As stated before, PSO simulates the behavior of bird flocking. Suppose the following 
scenario: a group of birds is randomly searching for food in an area. There is only one piece 
of food in the area being searched. Not all the birds know where the food is. However, 
during every iteration, they learn via their inter-communications, how far the food is. 
Therefore, the best strategy to find the food is to follow the bird that is nearest to the food.  
PSO learned from this bird-flocking scenario, and used it to solve optimization problems. In 
PSO, each single solution is a "bird" in the search space. We call it "particle". All of particles 
have fitness values which are evaluated by the fitness function (the cost function to be 
optimized), and have velocities which direct the flying of the particles. The particles fly 
through the problem space by following the current optimum particles. 
PSO is initialized with a group of random particles (solutions) and then searches for optima 
by updating generations. During every iteration, each particle is updated by following two 
"best" values. The first one is the position vector of the best solution (fitness) this particle has 
achieved so far. The fitness value is also stored. This position is called pbest. Another "best" 
position that is tracked by the particle swarm optimizer is the best position, obtained so far, 
by any particle in the population. This best position is the current global best and is called 
gbest.  
After finding the two best values, the particle updates its velocity and position according to 
equations (1) and (2) respectively. 
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where i
kv is the velocity of ith particle at the kth iteration, i

kx  is current the solution (or 
position) of the ith particle. r1 and r2 are random numbers generated uniformly between 0 
and 1. c1 is the self-confidence (cognitive) factor and c2 is the swarm confidence (social) 
factor. Usually c1 and c2 are in the range from 1.5 to 2.5. Finally, w is the inertia factor that 
takes linearly decreasing values downward from 1 to 0 according to a predefined number of 
iterations as recommended by Haupt and Haupt [2004].  
The 1st term in equation (1) represents the effect of the inertia of the particle, the 2nd term 
represents the particle memory influence, and the 3rd term represents the swarm (society) 
influence. The flow chart of the procedure is shown in Fig. 1. 
The velocities of the particles on each dimension may be clamped to a maximum velocity 
Vmax, which is a parameter specified by the user. If the sum of accelerations causes the 
velocity on that dimension to exceed Vmax, then this velocity is limited to Vmax [Haupt and 
Haupt 2004]. Another type of clamping is to clamp the position of the current solution to a 
certain range in which the solution has valid value, otherwise the solution is meaningless 
[Haupt and Haupt 2004]. In this Chapter, position clamping is applied with no limitation on 
the velocity values. 
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Figure 1. PSO Flow chart 

3.2 Comparisons between GA and PSO 
The Genetic Algorithm (GA) is an evolutionary optimizer (EO) that takes a sample of 
possible solutions (individuals) and employs mutation, crossover, and selection as the 
primary operators for optimization. The details of GA are beyond the scope of this chapter, 
but interested readers can refer to Haupt and Haupt [2004]. In general, most of evolutionary 
techniques have the following steps:  

1. Random generation of an initial population. 
2. Reckoning of a fitness value for each subject. This fitness value depends directly on 

the distance to the optimum. 
3. Reproduction of the population based on fitness values.  
4. If requirements are met, then stop. Otherwise go back to step 2. 

From this procedure, we can learn that PSO shares many common points with GA. Both 
algorithms start with a group of randomly generated population and both algorithms have 
fitness values to evaluate the population, update the population and search for the optimum 
with random techniques, and finally, check for the attainment of a valid solution.  
On the other hand, PSO does not have genetic operators like crossover and mutation. Particles 
update themselves with the internal velocity. They also have memory, which is important to 
the algorithm (even if this memory is very simple as it stores only pbesti  and gbestk positions). 
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Also, the information sharing mechanism in PSO is significantly different: In GAs, 
chromosomes share information with each other. So the whole population moves like one 
group towards an optimal area even if this move is slow. In PSO, only gbest gives out the 
information to others. It is a one-way information sharing mechanism. The evolution only 
looks for the best solution. Compared with GA, all the particles tend to converge to the best 
solution quickly in most cases as shown by Eberhart and Shi [1998] and Hassan et al. [2004]. 
When comparing the run-time complexity of the two algorithms, we should exclude the 
similar operations (initialization, fitness evaluation, and termination) form our comparison. 
We exclude also the number of generations, as it depends on the optimization problem 
complexity and termination criteria (our experiments in Section 3.4.2 indicate that PSO needs 
lower number of generations than GA to reach a given solution quality). Therefore, we focus 
our comparison to the main loop of the two algorithms. We consider the most time-consuming 
processes (recombination in GA as well as velocity and position update in PSO). 
For GA, if the new generation replaces the older one, the recombination complexity is O(q), 
where q is group size for tournament selection. In our case, q equals the Selection rate*n, 
where n is the size of population. However, if the replacement strategy depends on the 
fitness of the individual, a sorting process is needed to determine which individuals to be 
replaced by which new individuals. This sorting is important to guarantee the solution 
quality. Another sorting process is needed any way to update the rank of the individuals at 
the end of each generation. Note that the quick sorting complexity ranges from O(n2) to 
O(nlog2 n) [Jensen 2003, Harris and Ross 2006].  
In the other hand, for PSO, the velocity and position update processes complexity is O(n) as 
there is no need for pre-sorting. The algorithm operates according to equations (1) and (2) 
on each individual (particle) [Rodriguez et al. 2008]. 
From the above discussion, GA's complexity is larger than that of PSO.  Therefore, PSO is 
simpler and faster than GA. 

3.3 Algorithm Implementation  
The PSO algorithm is written in the MATLAB program environment. The input to the 
program is a design that consists of the number of nodes.  Each node is associated with cost 
parameters. For experimental purpose, these parameters are randomly generated. The used 
cost parameters are: 
A Hardware implementation cost: which is the cost of implementing that node in hardware 
(e.g. number of gates, area, or number of logic elements).  This hardware cost is uniformly 
and randomly generated in the range from 1 to 99 [Mann 2004]. 
A Software implementation cost: which is the cost of implementing that node in software 
(e.g. execution delay or number of clock cycles). This software cost is uniformly and 
randomly generated in the range from 1 to 99 [Mann 2004]. 
A Power implementation cost: which is the power consumption if the node is implemented 
in hardware or software. This power cost is uniformly and randomly generated in the range 
from 1 to 9. We use a different range for Power consumption values to test the addition of 
other cost terms with different range characteristics. 
Consider a design consisting of m nodes. A possible solution (particle) is a vector of m 
elements, where each element is associated to a given node. The elements assume a “0” 
value (if node is implemented in software) or a “1” value (if the node is implemented in 
hardware).  There are n initial particles; the particles (solutions) are initialized randomly. 
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The velocity of each node is initialized in the range from (-1) to (1), where negative velocity 
means moving the particle toward 0 and positive velocity means moving the particle toward 
1. 
For the main loop, equations (1), (2) are evaluated in each loop. If the particle goes outside 
the permissible region (position from 0 to 1), it will be kept on the nearest limit by the 
aforementioned clamping technique.  
The cost function is called for each particle, the used cost function is a normalized weighted 
sum of the hardware, software, and power cost of each particle according to equation (3). 

 
⎭
⎬
⎫

⎩
⎨
⎧ γ+β+α=

tcosallPOWER
tcosPOWER

tcosallSW
tcosSW

tcosallHW
tcosHW*100Cost  (3) 

where allHWcost (allSWcost) is the Maximum Hardware (Software) cost when all nodes 
are mapped to Hardware (Software), and allPOWERcost is the average of the power cost of  
all-Hardware solution and all-Software solution. α, β, and γ are weighting factors. They are 
set by the user according to his/her critical design parameters. For the rest of this chapter, 
all the weighting factors are considered equal unless otherwise mentioned. The 
multiplication by 100 is for readability only.  
The HWCost (SWCost) term represent the cost of the partition implemented in hardware 
(software), it could represent the area and the delay of the partition (the area and the delay 
of the software partition). However, the software cost has a fixed (CPU area) term that is 
independent on the problem size. 
The weighted sum of normalized metrics is a classical approach to transform Multi-objective 
Optimization problems into a single objective optimization [Donoso and Fabregat 2007] 
The PSO algorithm proceeds according to the flow chart shown in Fig. 1. For simplicity, the 
cost value could be considered as the inverse of the fitness where good solutions have low 
cost values. 
According to equations (1) and (2), the particle nodes values could take any value between 0 
and 1. However, as a discrete, i.e. binary, partitioning problem, the nodes values must take 
values of 1 or 0.  Therefore, the position value is rounded to the nearest integer [Hassan et al. 
2004]. 
The main loop is terminated when the improvement in the global best solution gbest for the 
last number iterations is less than a predefined value (ε). The number of these iterations and 
the value of (ε) are user controlled parameters. 
For GA parameters, the most important parameters are: 

• Selection rate which is the percentage of the population members that are kept 
unchanged while the others go under the crossover operators.  

• Mutation rate which is the percentage of the population that undergo the gene 
alteration process after each generation.  

• The mating technique which determines the mechanism of generating new 
children form the selected parents. 

3.4 Results 

3.4.1 Algorithms parameters 
The following experiments are performed on a Pentium-4 PC with 3GHz processor speed, 1 
GB RAM and WinXP operating system. The experiments were performed using MATLAB 7 
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program. The PSO results are compared with the GA. Common parameters between the two 
algorithms are as follows: 
No. of particles (Population size) n = 60, design size m = 512 nodes, ε = 100 * eps, where eps 
is defined in MATLAB as a very small (numerical resolution) value and equals 2.2204*10-16 
[Hanselman and Littlefield 2001]. 
For PSO, c1 = c2 = 2, w starts at 1 and decreases linearly until reaching 0 after 100 iterations. 
Those values are suggested in [Shi and Eberhart 1998; Shi and Eberhart 1999; Zheng et al. 
2003].  
To get the best results for GA, the parameters values are chosen as suggested in [Mann 2004; 
Haupt and Haupt 2004] where Selection rate = 0.5,  Mutation rate = 0.05 , and The mating is 
performed using randomly selected single point crossover. 
The termination criterion is the same for both PSO and GA. The algorithm stops after 50 
unchanged iterations, but at least 100 iterations must be performed to avoid quick 
stagnation.  

3.4.2 Algorithm results 
Figures 2 and 3 shows the best cost as well as average population cost of GA and PSO 
respectively.  
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Figure 2. GA Solution   

As shown in the figures, the initialization is the same, but at the end, the best cost of GA is 
143.1 while for PSO it is 131.6.  This result represents around 8% improvement in the result 
quality in favor of PSO. Another advantage of PSO is its performance (speed), as it 
terminates after 0.609 seconds while GA terminates after 0.984 seconds. This result 
represents around 38% improvement in performance in favor of PSO. 
The results vary slightly from one run to another due to the random initialization.  Hence, 
decisions based on a single run are doubtful. Therefore, we ran the two algorithms 100 times 
for the same input and took the average of the final costs. We found the average best cost of 
GA is 143 and it terminates after 155 seconds, while for the PSO the average best cost was 
131.6 and it terminates after 110.6 seconds. Thus, there are 8% improvement in the result 
quality and 29% speed improvement. 



Particle Swarm Optimization for HW/SW Partitioning 

 

57 

0 20 40 60 80 100 120
130

135

140

145

150

155

Generation

C
os

t

HW/SW partitioning using PSO

Best
Population average
Global Best

 
Figure 3. PSO Solution  

3.4.3 Improved Algorithms. 
To further enhance the quality of the results, we tried cascading two runs of the same 
algorithm or of different algorithms. There are four possible cascades of this type: GA 
followed by another GA run (GA-GA algorithm), GA followed by PSO run (GA – PSO 
algorithm), PSO followed by GA run (PSO-GA algorithm), and finally PSO followed by 
another PSO run (PSO-PSO algorithm). For these cascaded algorithms, we kept the 
parameters values the same as in the Section 3.4.1.  
Only the last combination, PSO-PSO algorithm proved successful.  For GA-GA algorithm, 
the second GA run is initialized with the final results of the first GA run. This result can be 
explained as follows. When the population individuals are similar, the crossover operator 
yields no improvements and the GA technique depends on the mutation process to escape 
such cases, and hence, it slowly escapes local minimums. Therefore, cascading several GA 
runs takes a very long time to yield significant improvement in results. 
The PSO-GA algorithm did not fair any better. This negative result can be explained as 
follows. At the end of the first PSO run, the whole swarm particles converge around a 
certain point (solution) as shown in Fig. 3. Thus, the GA is initialized with population 
members of close fitness with small or no diversity. In fact, this is a poor initialization of the 
GA, and hence it is not expected to improve the PSO results of the first step of this algorithm 
significantly. Our numerical results confirmed this conclusion 
The GA-PSO algorithm was not also successful. Figures 4 and 5 depict typical results for this 
algorithm. PSO starts with the final solutions of the GA stage (The GA best output cost is 
~143, and the population final average is ~147) and continues the optimization until it 
terminates with a best output cost equals ~132. However, this best output cost value is 
achieved by PSO alone as shown in Fig. 3. This final result could be explained as the PSO 
behavior is not strongly dependent on the initial particles position obtained by GA due to 
the random velocities assigned to the particles at the beginning of PSO phase. Notice that, in 
Fig. 5, the cost increases at the beginning due to the random velocities that force the particles 
to move away from the positions obtained by GA phase. 
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Figure 4. GA output of GA-PSO 
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Figure 5. PSO output of GA-PSO 

3.4.4 Re-exited PSO algorithm. 
As the PSO proceeds, the effect of the inertia factor (w) is decreased until reaching 0. 
Therefore, i

1kv + at the late iterations depends only on the particle memory influence and the 
swarm influence (2nd and 3rd terms in equation (1)). Hence, the algorithm may give non-
global optimum results. A hill-climbing algorithm is proposed, this algorithm is based on 
the assumption that if we take the run's final results (particles positions) and start allover 
again with (w) = 1 and re-initialize the velocity (v) with new random values, and keeping 
the pbest and gbest vectors in the particles memories, the results can be improved. We 
found that the result quality is improved with each new round until it settles around a 
certain value. Fig. 6 plots the best cost in each round. The curve starts with cost ~133 and 
settles at round number 30 with cost value ~116.5 which is significantly below the results 
obtained in the previous two subsections (about 15% quality improvement). The program 
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performed 100 rounds, but it could be modified to stop earlier by using a different 
termination criterion (i.e.  if the result remains unchanged for a certain number of rounds). 
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Figure 6. Successive improvements in Re-excited PSO 

As the new algorithm depends on re-exciting new randomized particle velocities at the 
beginning of each round, while keeping the particle positions obtained so far, it allows 
another round of domain exploration. We propose to name this successive PSO algorithm as 
the Re-excited PSO algorithm. In nature, this algorithm looks like giving the birds a big 
push after they are settled in their best position. This push re-initializes the inertia and 
speed of the birds so they are able to explore new areas, unexplored before. Hence, if the 
birds find a better place, they will go there, otherwise they will return back to the place from 
where they were pushed.  
The main reason of the advantage of re-excited PSO over successive GA is as follows: The 
PSO algorithm is able to switch a single node from software to hardware or vice versa 
during a single iteration. Such single node flipping is difficult in GA as the change is done 
through crossover or mutation. However, crossover selects large number of nodes in one 
segment as a unit of operation. Mutation toggles the value of a random number of nodes. In 
either case, single node switching is difficult and slow. 
This re-excited PSO algorithm can be viewed as a variant of the re-start strategies for PSO 
published elsewhere. However, our re-excited PSO algorithm is not identical to any of these 
previously published re-starting PSO algorithms as discussed below. 
In Settles and Soule [2003], the restarting is done with the help of Genetic Algorithm 
operators, the goal is to create two new child particles whose position is between the parents 
position, but accelerated away from the current direction to increase diversity. The 
children’s velocity vectors are exchanged at the same node and the previous best vector is 
set to the new position vector, effectively restarting the children’s memory. Obviously, our 
restarting strategy is different in that it depends on pure PSO operators.  
In Tillett et al. [2005], the restarting is done by spawning a new swarm when stagnation 
occurs, i.e. the swarm spawns a new swarm if a new global best fitness is found. When a 
swarm spawns a new swarm, the spawning swarm (parent) is unaffected. To form the 
spawned (child) swarm, half of the children particles are randomly selected from the parent 
swarm and the other half are randomly selected from a random member of the swarm 
collection (mate). Swarm creation is suppressed when there are large numbers of swarms in 
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existence. Obviously, our restarting strategy is different in that it depends on a single 
swarm. 
In Pasupuleti and Battiti [2006], the Gregarious PSO or G-PSO, the population is attracted by 
the global best position and each particle is re-initialized with a random velocity if it is stuck 
close to the global best position. In this manner, the algorithm proceeds by aggressively and 
greedily scouting the local minima whereas Basic-PSO proceeds by trying to avoid them. 
Therefore, a re-initialization mechanism is needed to avoid the premature convergence of 
the swarm. Our algorithm differs than G-PSO in that the re-initialization strategy depends 
on the global best particle not on the particles that stuck close to the global best position 
which saves a lot of computations needed to compare each particle position with the global 
best one. 
Finally, the re-start method of Van den Bergh [2002], the Multi-Start PSO (MPSO), is the 
nearest to our approach, except that when the swarm converges to a local optima. The 
MPSO records the current position and re-initialize the positions of the particles. The 
velocities are not re-initialized as MPSO depends on a different version of the velocity 
equation that guarantees that the velocity term will never reach zero. The modified 
algorithm is called Guaranteed Convergence PSO (GCPSO). Our algorithm differs in that we 
use the velocity update equation defined in Equation (1) and our algorithm re-initializes the 
velocity and the inertia of the particles but not the positions at the restart.  

3.5 Quality and Speed Comparison between GA, PSO, and re-excited PSO 
For the sake of fair comparison, we assumed that we have different designs where their 
sizes range from 5 nodes to 1020 nodes. We used the same parameters as described in 
previous experiments and we ran the algorithms on each design size 10 times and took the 
average results. Another stopping criterion is added to the re-excited PSO where it stops 
when the best result is the same for the last 10 rounds. Fig. 7 represents the design quality 
improvement of PSO over GA, re-excited PSO over GA, and re-excited PSO over PSO. We 
noticed that when the design size is around 512, the improvement is about 8% which 
confirms the quality improvement results obtained in Section 3.4.2. 
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Figure 7. Quality improvement 
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Figure 8. Speed improvement 

Fig. 8 represents the performance (speed) improvement of PSO over GA (original and fitted 
curve, the curve fitting is done using MATLAB Basic Fitting tool). Re-excited PSO is not 
included as it depends on multi-round scheme where it starts a new round internally when 
the previous round terminates, while GA and PSO runs once and produces their outputs 
when a termination criterion is met.  
It is noticed that in a few number of points in Fig. 8, the speed improvement is negative 
which means that GA finishes before PSO, but the design quality in Fig. 7 does not show 
any negative values. Fig. 7 also shows that, on the average, PSO outperforms GA by a ratio 
of 7.8% improvements in the result quality and Fig. 8 shows that, on the average, PSO 
outperforms GA by a ratio 29.3% improvement in speed. 
On the other hand, re-excited PSO outperforms GA by an average ratio of 17.4% in design 
quality, and outperforms normal PSO by an average ratio of 10.5% in design quality. 
Moreover, Fig. 8 could be divided into three regions. The first region is the small size 
designs region (lower than 400 nodes) where the speed improvement is large (from 40% to 
60%). The medium size design region (from 400 to 600 nodes) depicts an almost linear 
decrease in the speed improvement from 40% to 10%. The large size design region (bigger 
than 600 nodes) shows an  almost constant (around 10%) speed improvement, with some 
cases where GA is faster than PSO. Note that most of the practical real life HW/SW 
partitioning problems belong to the first region where the number of nodes < 400. 

3.6 Constrained Problem Formulation  

3.6.1 Constraints definition and violation handling 
In embedded systems, the constraints play an important role in the success of a design, where 
hard constraints mean higher design effort and therefore a high need for automated tools to 
guide the designer in critical design decisions. In most of the cases, the constraints are mainly the 
software deadline times (for real-time systems) and the maximum available area for hardware. 
For simplicity, we will refer to them as software constraint and hardware constraint respectively. 
Mann [2004] divided the HW/SW partitioning problem into 5 sub-problems (P1 – P5). The 
unconstrained problem (P5) is discussed in Section 3.3. The P1 problem involves with both 
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Hardware and Software constraints. The P2 (P3) problem deals with hardware (software) 
constrained designs. Finally, the P4 problem minimizes HW/SW communications cost while 
satisfying hardware and software constraints. The constraints affect directly the cost 
function. Hence, equation (3) should be modified to account for constraints violations. 
In Lopez-Vallejo et al. [2003] three different techniques are suggested for the cost function 
correction and evaluation: 
Mean Square Error minimization: This technique is useful for forcing the solution to meet 
certain equality, rather than inequality, constraints. The general expression for Mean Square 
Error based cost function is: 
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where constrainti is the constraint on parameter i and ki is a weighting factor. The costi is the 
parameter cost function. costi is calculated using the associated term (i.e. area or delay) of 
the general cost function (3).  
Penalty Methods: These methods punish the solutions that produce medium or large 
constraints violations, but allow invalid solutions close to the boundaries defined by the 
constraints to be considered as good solutions [Lopez-Vallejo et al. 2003]. The cost function 
in this case is formulated as: 
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where x is the solution vector to be evaluated, ki and kci are weighting factors (100 in our 
case). i denotes the design parameters such as: area, delay, power consumption, etc., ci 
denotes a constrained parameter, and viol(ci,x) is the correction function of the constrained 
parameters. viol(ci,x) could be expressed in terms of the percentage of violation defined by : 
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Lopez-Vallejo and Lopez et al. [2003] proposed to use the squared value of viol(ci,x).  
The penalty methods have an important characteristic in which there might be invalid 
solutions with better overall cost than valid ones. In other words, the invalid solutions are 
penalized but could be ranked better than valid ones.  
Barrier Techniques: These methods forbid the exploration of solutions outside the allowed 
design-space. The barrier techniques rank the invalid solutions worse than the valid ones. 
There are two common forms of the barrier techniques. The first form assigns a constant 
high cost to all invalid solutions (for example infinity). This form is unable to differentiate 
between near-barrier or far-barrier invalid solutions. it also needs to be initialized with at 
least one valid solution, otherwise all the costs are the same (i.e. ∞) and the algorithm fails. 
The other form, suggested in Mann [2004], assigns a constant-base barrier to all invalid 
solutions. This base barrier could be a constant larger than maximum cost produced by any 
valid solution. In our case for example, from equation (3), each cost term is normalized such 
that its maximum value is one. Therefore, a good choice of the constant-base penalty is "one" 
for each violation ("one" for hardware violation, "one" for software violation, and so on). 



Particle Swarm Optimization for HW/SW Partitioning 

 

63 

3.6.2 Constraints modeling 
In order to determine the best method to be adopted, a comparison between the penalty 
methods (first order or second order percentage violation term) and the barrier methods 
(infinity vs. constant-base barrier) is performed. The details of the experiments are not 
shown here for the sake of brevity. 
Our experiments showed that combining the constant-base barrier method with any penalty 
method (first-order error or second-order error term) gives higher quality solutions and 
guarantees that no invalid solutions beat valid ones. Hence, in the following experiments, 
equation (7) will be used as the cost function form. Our experiments further indicate that the 
second-order error penalty method gives a slight improvement over first-order one.  
For double constraints problem (P1), generating valid initial solutions is hard and time 
consuming, and hence, the barrier methods should be ruled out for such problems. When 
dealing with single constraint problems (P2 and P3), one can use the Fast Greedy Algorithm 
(FGA) proposed by Mann [2004] to generate valid initial solutions. FGA starts by assigning 
all nodes to the unconstrained side. It then proceeds by randomly moving nodes to the 
constrained side until the constraint is violated.  

 ))ci(viol_Barrier)x,ci(viol_Penalty(k
tcosTotal
)x(tcos*k)x(Cost
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ci
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3.6.3 Single constraint experiments 
As P2 and P3 are treated the same in our formulation, we consider the software constrained 
problem (P3) only. Two experiments were performed, the first one with relaxed constraint 
where the deadline (Maximum delay) is 40% of all-Software solution delay, the second one 
is a hard real-time system where the deadline is 15% of the all-Software solution delay. The 
parameters used are the same as in Section 3.4. Fast Greedy Algorithm is used to generate 
the initial solutions and re-excited PSO is performed for 10 rounds. In the cases of GA and 
normal PSO only, all results are based on averaging the results of 100 runs. 
For the first experiment; the average quality of the GA is ~ 137.6 while for PSO it is  ~ 131.3, 
and for re-excited PSO it is ~ 120. All final solutions are valid due to the initialization 
scheme used (Fast Greedy Algorithm). 
For the second experiment, the average quality of the solution of GA is ~ 147 while for PSO 
it is   ~ 137 and for re-excited PSO it is ~ 129. 
The results confirm our earlier conclusion that the re-excited PSO again outperforms normal 
PSO and GA,  and that the normal PSO again outperforms GA. 

3.6.4 Double constraints experiments 
When testing P1 problems, the same parameters as the single-constrained case are used 
except that FGA is not used for initialization. Two experiments were performed: balanced 
constraints where maximum allowable hardware area is 45% of the area of the all-Hardware 
solution and the maximum allowable software delay is 45% of the delay of the all-Software 
solution. The other one is an unbalanced-constraints problem where maximum allowable 
hardware area is 60% of area of the all-Hardware solution and the maximum allowable 
software delay is 20% of the delay of the all-Software solution. Note that these constraints 
are used to guarantee that at least a valid solution exists. 
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For the first experiment, the average quality of the solution of GA is ~ 158 and invalid 
solutions are obtained during the first 22 runs out of xx total runs. The best valid solution 
cost was 137. For PSO the average quality is ~ 131 with valid solutions during all the runs. 
The best valid solution cost was 128.6. Finally for the re-excited PSO; the final solution 
quality is 119.5. It is clear that re-excited PSO again outperforms both PSO and GA. 
For the second experiment; the average quality of the solution of GA is ~ 287 and no valid 
solution is obtained during the runs. Note that a constant penalty barrier of value 100 is 
added to the cost function in the case of a violation. For PSO the average quality is ~ 251 and 
no valid solution is obtained during the runs. Finally, for the re-excited PSO, the final 
solution quality is 125 (As valid solution is found in the seventh round). This shows the 
performance improvement of re-excited PSO over both PSO and GA. 
Hence, for the rest of this Chapter, we will use the terms PSO and re-excited PSO 
interchangeably to refer to the re-excited algorithm. 

3.7 Real-Life Case Study  

 
Figure 9. CDFG for JPEG encoding system [Lee et al. 2007c] 
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To further validate the potential of PSO algorithm for HW/SW partitioning problem we 
need to test it on a real-life case study, with a realistic cost function terrain. We also wanted 
to verify our PSO generated solutions against a published “benchmark” design. The 
HW/SW cost matrix for all the modules of such real life case study should be known. We 
carried out a comprehensive literature search in search for such case study. Lee et al. [2007c] 
provided such details for a case study of the well-known Joint Picture Expert Group (JPEG) 
encoder system. The hardware implementation is written in "Verilog" description language, 
while the software is written in "C" language. The Control-Data Flow Graph (CDFG) for this 
implementation is shown in Fig. 9. The authors pre-assumed that the RGB to YUV converter 
is implemented in SW and will not be subjected to the partitioning process. For more details 
regarding JPEG systems, interested readers can refer to Jonsson [2005]. 
Table 1 shows measured data for the considered cost metrics of the system components. 
Including such table in Lee et al. [2007c] allows us to compare directly our PSO search 
algorithm with the published ones without re-estimating the HW or SW costs of the design 
modules on our platform. Also, armed with this data, there is no need to re-implement the 
published algorithms or trying to obtain them from their authors. 

Execution Time Cost Percentage Power Consumption Component 
HW(ns) SW(us) HW(10-3) SW(10-3) HW(mw) SW(mw)  
155.264 9.38 7.31 0.58 4 0.096 Level Offset (FEa) 
1844.822 20000 378 2.88 274 45 DCT (FEb) 
1844.822 20000 378 2.88 274 45 DCT (FEc) 
1844.822 20000 378 2.88 274 45 DCT (FEd) 
3512.32 34.7 11 1.93 3 0.26 Quant (FEe) 
3512.32 33.44 9.64 1.93 3 0.27 Quant (FEf) 
3512.32 33.44 9.64 1.93 3 0.27 Quant (FEg) 
5.334 0.94 2.191 0.677 15 0.957 DPCM (FEh) 

399.104 13.12 35 0.911 61 0.069 ZigZag (FEi) 
5.334 0.94 2.191 0.677 15 0.957 DPCM(FEj) 

399.104 13.12 35 0.911 61 0.069 ZigZag (FEk) 
5.334 0.94 2.191 0.677 15 0.957 DPCM (FEl) 

399.104 13.12 35 0.911 61 0.069 ZigZag (FEm) 
2054.748 2.8 7.74 14.4 5 0.321 VLC (FEn) 
1148.538 43.12 2.56 6.034 3 0.021 RLE (FEo) 
2197.632 2.8 8.62 14.4 5 0.321 VLC (FEp) 
1148.538 43.12 2.56 6.034 3 0.021 RLE (FEq) 
2197.632 2.8 8.62 14.4 5 0.321 VLC (FEr) 
1148.538 43.12 2.56 6.034 3 0.021 RLE (FEs) 
2668.288 51.26 19.21 16.7 6 0.018 VLC (FEt) 
2668.288 50 1.91 16.7 6 0.018 VLC (FEu) 
2668.288 50 1.91 16.7 6 0.018 VLC (FEv) 

Table 1. Measured data for JPEG system 
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The data is obtained through implementing the hardware components targeting ML310 
board using Xilinx ISE 7.1i design platform. Xilinx Embedded Design Kit (EDK 7.1i) is used 
to measure the software implementation costs.  
The target board (ML310) contains Virtex2-Pro XC2vP30FF896 FPGA device that contains 
13696 programmable logic slices and 2448 Kbytes memory and two embedded IBM Power 
PC (PPC) processor cores. In general, one slice approximately represents two 4-input Look-
Up Tables (LUTs) and two Flip-Flops [Xilinx 2007]. 
The first column in the table shows the component name (cf. Fig. 9) along with a character 
unique to each component. The second and third columns show the power consumption in 
mWatts for the hardware and software implementations respectively. The fourth column 
shows the software cost in terms of memory usage percentage while the fifth column shows 
the hardware cost in terms of slices percentage. The last two columns show the execution 
time of the hardware and software implementations. 
Lee et al. [2007c] also provided detailed comparison of their methodology with another four 
approaches. The main problem is that the target architecture in Lee et al. [2007c] has two 
processors and allows multi-processor partitioning while our target architecture is based on 
a single processor. A slight modification in our cost function is performed that allows up to 
two processors to run on the software part concurrently. 
Equation (3) is used to model the cost function after adding the memory cost term as shown 
in Equation (8) 
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The added memory cost term (MEMcost) and its weight factor (η) account for the memory 
size (in bits). allMEMcost is the maximum size (upper-bound) of memory bits i.e., memory 
size of all software solution. 
Another modification to the cost function of Equation (8) is affected if the number of 
multiprocessors  is limited. Consider that we have only two processors. Thus, only two 
modules can be assigned to the SW side at any control step. For example, in the step 3 of Fig. 
9, no more than two DCT modules can be assigned to the SW side. The solution that assigns 
the three DCT modules of this step to SW side is penalized by a barrier violation term of 
value "one".  
Finally, as more than one hardware component could run in parallel, the hardware delay is 
not additive. Hence, we calculate the hardware delay by accumulation the maximum delay 
of each control steps as shown in Fig. 9. In other words, we calculate the critical-path delay.  
In Lee et al. [2007c], the results of four different algorithms were presented. However, for 
the sake brevity, details of such algorithms are beyond the scope of this chapter. We used 
these results and compared them with our algorithm in Table 2.  
In our experiments, the parameters used for the PSO are the population size is fixed to 50 
particles, the round terminates after 50 unimproved runs, and 100 runs must run at the 
beginning to avoid trapping in local minimum. The number of re-excited PSO rounds is 
selected by the user. 
The power constraint is constrained to 600 mW, area and memory are constrained to the 
maximum available FPGA resources, i.e. 100%, and maximum number of concurrent 
software tasks is two.  
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Method 
Results 

Lev / DCT / Q / DPCM-Zig / 
VLC-RLE / VLC 

Execution 
Time (us)

Memory 
(KB) 

Slice use 
rate (%) 

Power 
(mW) 

FBP [Lee et al. 2007c] 1/001/111/101111/111101/111 20022.26 51.58 53.9 581.39 
GHO [Lee et al. 

2007b] 1/010/111/111110/111111/111 20021.66 16.507 54.7 586.069 

GA [Lin et al. 2006] 0/010/010/101110/110111/010 20111.26 146.509 47.1 499.121 

HOP [Lee et al. 2007a] 0/100/010/101110/110111/010 20066.64 129.68 56.6 599.67 

PSO-delay 1/010/111/111110/111111/111 20021.66 16.507 54.7 586.069 

PSO-area 0/100/001/111010/110101/010 20111.26 181.6955 44.7 494.442 

PSO-power 0/100/001/111010/110101/010 20111.26 181.6955 44.7 494.442 

PSO-memory 1/010/111/111110/111111/111 20021. 66 16.507 54.7 586.069 

PSO-NoProc 0/000/111/000000/111111/111 20030.9 34.2328 8.6 189.174 

PSO-Norm 0/010/111/101110/111111/111 20030.9 19.98 50.6 521.234 

Table 2. Comparison of partitioning results 

Different configurations of the cost function are tested for different optimization goals. PSO-
delay, PSO-area, PSO-power, and PSO-memory represent the case where the cost function 
includes only one term, i.e. delay, area, power, and memory, respectively. PSO-NoProc is 
the normal PSO-based algorithm with the cost function shown in equation (7) but the 
number of processors is unconstrained. Finally, PSO-Norm is the normal PSO with all 
constraints being considered, i.e. the same as PSO-NoProc with maximum number of two 
processors.  
The second column in Table 2 shows the resulting partition where '0' represents software 
and '1' represents hardware. The vector is divided into sets, each set represents a control 
step as shown in Fig. 9. The third to fifth columns of this table list the execution time, 
memory size, % of slices used and the power consumption respectively of the optimum 
solutions obtained according to the algorithms identified in the first column. As shown in 
the table, the bold results are the best results obtained for each design metrics. 
Regarding PSO performance, all the PSO-based results are found within two or three rounds 
of the Re-excited PSO. Moreover, for each individual optimization objective, PSO obtains the 
best result for that specific objective. For example, PSO-delay obtains the same results as 
GHO algorithm [ref.] does and it outperforms the other solutions in the execution time and 
memory utilization and it produces good quality results that meet the constraints. Hence, 
our cost function formulation enables us to easily select the optimization criterion that suits 
our design goals.  
In addition, PSO-a and PSO-p give the same results as they try to move nodes to software 
while meeting the power and number of processors constraints. On the other hand, PSO-del 
and PSO-mem try to move nodes to hardware to reduce the memory usage and the delay, 
so their results are similar.  
PSO-NoProc is used as a what-if analysis tool, as its results answer the question of what is 
the optimum number of parallel processors that could be used to find the optimum design. 



Particle Swarm Optimization 

 

68 

In our case, obtaining six processors would yield the results shown in the table even if three 
of them will be used only for one task, namely, the DCT.  

4. Extensions 
4.1 Modeling Hardware Implementation alternatives  
As shown previously, HW/SW partitioning depends on the HW area, delay, and power 
costs of the individual nodes. Each node represents a grain (from an instruction up to a 
procedure), and the grain level is selected by the designer. The initial design is usually 
mapped into a sequencing graph that describes the flow dependencies of the individual 
nodes. These dependencies limit the maximum degree of parallelism possible between these 
nodes. Whereas a sequencing graph denotes the partial order of the operations to be 
performed, the scheduling of a sequencing graph determines the detailed starting time for 
each operation. Hence, the scheduling task sets the actual degree of concurrency of the 
operations, with the attendant delay and area costs [De Micheli 1994]. In short, delay and 
area costs needed for the HW/SW partitioning task are only known accurately post the 
scheduling task. Obviously, this situation calls for time-wasteful iterations. The other 
solution is to prepare a library of many implementations for each node and select one of 
them during the HW/SW partitioning task as the work done by Kalavade and Lee [2002]. 
Again, such approach implies a high design time cost.  
Our approach to solve this egg-chicken coupling between the partitioning and scheduling 
tasks is as follows:  represent the hardware solution of each node by two limiting solutions, 
HW1 and HW2, which are automatically generated from the functional specifications. These 
two limiting solutions bound the range of all other possible schedules. The partitioning 
algorithm is then called on to select the best implementation for the individual nodes: SW, 
HW1 or HW2. These two limiting solutions are: 
1. Minimum-Latency solution: where As-Soon-As-Possible (ASAP) scheduling algorithm 

is applied to find the fastest implementation by allowing unconstrained concurrency. 
This solution allows for two alternative implementations, the first where maximum 
resource-sharing is allowed. In this implementation, similar operational units are 
assigned to the same operation instance whenever data precedence constraints allow. 
The other solution, the non-shared parallel solution, forbids resource-sharing altogether 
by instantiating a new operational unit for each operation. Which of these two parallel 
solutions yields a lower area is difficult to predict as the multiplexer cost of the shared 
parallel solution, added to control the access to the shared instances, can offset the extra 
area cost of the non-shared solution. Our modeling technique selects the solution with 
the lower area. This solution is, henceforth, referred to as the parallel hardware 
solution. 

2. Maximum Latency solution: where no concurrency is allowed, or all operations are 
simply serialized. This solution results in the maximum hardware latency and the 
instantiation of only one operational instance for each operation unit. This solution is, 
henceforth, referred to as the serial hardware solution. 

To illustrate our idea, consider a node that represents the operation y = (a*b) + (c*d). Fig. 
10.a (10.b) shows the parallel (serial) hardware implementations. 
From Fig. 10 and assuming that each operation takes only one clock cycle, the first 
implementation finishes in 2 clock cycles but needs 2 multiplier units and one adder unit. 
The second implementation ends in 3 clock cycles but needs only one unit for each operation 
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(one adder unit and one multiplier unit). The bold horizontal lines drawn in Fig. 10 
represent the clock boundaries. 

  
(a)      (b) 

Figure 10. Two extreme implementations of y = (a*b) + (c*d) 

In general, the parallel and serial HW solutions have different area and delay costs. For 
special nodes, these two solutions may have the same area cost, the same delay cost or the 
same delay and area costs. The reader is referred to Abdelhalim and Habib [2007] for more 
details on such special nodes.  
The use of two alternative HW solutions converts the HW/SW optimization problem from a 
binary form to a tri-state form. The effectiveness of the PSO algorithm for handling this 
extended HW/SW partitioning problem is detailed in Section 4.3. 

4.2 Communications Cost Modeling 
The Communications cost term in the context of HW/SW partitioning represents the cost 
incurred due to the data and control passing from one node to another in the graph 
representation of the design. Earlier co-design approaches tend to ignore the effect of 
HW/SW communications. However, many recent embedded systems are communications 
oriented due to the heavy amount of data  to be transferred between system components. 
The communications cost should be considered at the early design stages to provide high 
quality as well as feasible solutions. The communication cost can be ignored if it is between 
two nodes on the same side (i.e., two hardware nodes or two software nodes). However, if 
the two nodes lie on different sides; the communication cost cannot be ignored as it affects 
the partitioning decisions. Therefore, as communications are based on physical channels, the 
nature of the channel determines the communication type (class). In general, the HW/SW 
communications between the can be classified into four classes [Ernest 1997]: 
1. Point-to-point communications  
2. Bus-based communications  
3. Shared memory communications 
4. Network-based communications 
To model the communications cost, a communication class must be selected according to the 
target architecture. In general, the model should include one or more of the following cost 
terms [Luthra et al. 2003]: 
1. Hardware cost: The area needed to implement the HW/SW interface and associated 

data transfer delay on the hardware side. 
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2. Software cost: The delay of the software interface driver on the software side. 
3. Memory size: The size of the dedicated memory and registers for control and data 

transfers as well as shared memory size. 
The terms could be easily modeled within the overall delay, hardware area and memory 
costs of the system, as shown in equation (8). 

4.3 Extended algorithm experiments 
As described in Section 3.3, the input to the algorithm is a graph that consists of a number of 
nodes and number of edges.  Each node (edge) is associated with cost parameters. The used 
cost parameters are: 
Serial hardware implementation cost: which is the cost of implementing the node in 
serialized hardware. The cost includes HW area  as well as the associated latency (in clock 
cycles). 
Parallel hardware implementation cost: which is the cost of implementing the node in 
parallel hardware. The cost includes HW area  as well as the associated latency (in clock 
cycles). 
Software implementation cost: the cost of implementing the node in software (e.g. 
execution clock cycles and the CPU area). 
Communication cost: the cost of the edge if it crosses the boundary between the HW and 
the SW sides (interface area and delay, SW driver delay and shared memory size). 
For experimental purposes, these parameters are randomly generated after considering the 
characteristics of each parameter, i.e. Serial HW area ≤ Parallel HW area, and    
SW delay ≤ Serial HW delay ≤ Parallel HW delay. 
The needed modification is to allow each node in the PSO solution vector to have three 
values: “0” for software, “1” for serial hardware and “2” for parallel hardware. 
The parameters used in the implementation are: No. of particles (Population size) n = 50, 
No. of design size (m) = 100 nodes, No. of communication edges (e) = 200, No. The number 
of re-exited PSO rounds set to a predefined value = 50. All other parameters are taken from 
Section 3.4. The constraints are: Maximum hardware area is 65% of the all-Hardware 
solution area, and the maximum delay is 25% of the all-Software solution delay. 

4.3.1 Results 
Three experiments were performed. The first (second) experiment uses the normal PSO with 
only the serial (parallel) hardware implementation. The third experiment examines the 
proposed tristate formulation where the hardware is represented by two solutions (serial 
and parallel solutions). The results are shown in Table 3. 

 Area 
Cost 

Delay 
Cost 

Comm. 
Cost 

Serial HW 
nodes 

Parallel 
HW nodes

SW 
nodes 

Serial HW 34.9% 30.52% 1.43% 99 N/A 1 
Parallel HW 57.8% 29.16% 32.88% N/A 69 31 

Tri-state formul. 50.64% 23.65% 18.7% 31 55 14 

Table 3. Cost result of different hardware alternatives schemes 

As shown in this table, the serial hardware solution pushes approximately all nodes to 
hardware (99 out of 100) but fails to meet the deadline constraint due to the relatively large 
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delay of the serial HW implementations. On the other hand, the parallel HW solution fails to 
meet the delay constraint due to the relatively large area of parallel HW. Moreover, It has 
large communications cost. Finally, the tri-state formulation meets the constraints and 
results in a relatively low communication cost. 

4.4 Tuning Algorithm. 
As shown in Table 3, the third solution with two limiting HW alternatives has a 23.65% 
delay. The algorithm could be tuned to push the delay to the constrained value (25%) by 
moving some hardware-mapped nodes from the parallel HW solution to the serial HW 
solution. This node switching reduces the hardware area at the expense of increasing the 
delay cost within the acceptable limits, while the communication cost is unaffected because 
all the moves are between HW implementations. 

 
Figure 11. Tuning heuristic for reducing the hardware area. 

The heuristic used to reduce the hardware area is shown Fig. 11. It shares many similarities 
with the greedy approaches presented by Gupta et al. [1992]. 
First, the heuristic calculates the extra delay that the system could tolerate and still achieves 
the deadline constraint (delay margin).  
It then finds all nodes in parallel HW region with delay range less than delay margin and 
selects the node with maximum reduction in HW area cost (hardware range) to be moved to 
the serial hardware region. Such selection is carried out to obtain the maximum hardware 
reduction while still meeting the deadline. 

1) Find all nodes with parallel HW implementation (min_delay_set) 
2) Calculate the Delay_margin = Delay deadline – PSO Achieved delay  
3) Calculate Hardware_range = Node's Max. area – Node's Min. area. 
4) Calculate Delay_range = Node's Max. delay – Node's Min. delay. 
5) Create (dedicated_nodes_list) with nodes in (min_delay_set) sorted in ascending 
order according to Hardware_rang such that Delay_range<Delay_margin  
6) While (dedicated_nodes_list) is not empty 
 7) Move node with the maximum Hardware_range to serial HW region. 
 8) For many nodes with the same Hardware_range, choose the one with 
minimum  Delay_range  
 9) Re-calculate Delay_margin 
 10) Update (dedicated_nodes_list) 
11) End While 
12) Update (min_delay_set) 
13) Calculate Hardware Sensitivity = Hardware range / Delay range 
 
Outputs 

1. HW/SW partition 
2. The remaining delay range in clock cycles. 
3. Remaining parallel hardware nodes and their Hardware Sensitivity 

 
Nodes with high Hardware Sensitivity could be used along with the delay range to 
obtain refined implementations (Time Constrained Scheduling Problem) 
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(delay margin)  is then re-calculated to find the nodes that are movable after the last 
movement.  
After moving all allowable nodes, the remaining parallel HW nodes can not move to the 
serial HW region due to deadline violation. Therefore, the algorithm reports to the designer 
with all the remaining parallel HW nodes, their Hardware Sensitivity (the average 
hardware decrease due to the increase in the latency by one clock cycle), and the remaining 
delay margin. The user can, then, select a parallel hardware node or more and make a 
refined HW implementation with the allowable delay (Time-constrained Scheduling 
problem [De Micheli 1994]). 
The algorithm can be easily modified for the opposite goals, i.e. to account for reducing the 
delay while still meeting the hardware constraint. 
The above algorithm could not start if the PSO terminates with invalid solution. Therefore, 
we implemented a similar algorithm as a pre-tuning phase but with the opposite goal: 
moving nodes form serial HW region to parallel HW region to reduce the delay, hence meet 
the deadline constraint if possible, while minimizing the increase in the hardware area. 

4.4.1 Results after using the Tuning Algorithm  
Two experiments were done: the first one is the tuning of the results shown in Table 3. The 
tuning algorithm starts from where PSO ends.  The Delay Margin was 1.35% (about 72 clock 
cycles). At the end of the algorithm, the Delay margin reaches 1 clock cycles, the area 
decreased to 40.09% and the delay reaches 24.98%. 12 parallel HW nodes were moved to the 
serial HW implementation. The results show that the area decreases by 10.55% for a very 
small delay increase (1.33%).  
The constraints are modified such that the deadline constraint is reduced to 22% and the 
maximum area constraint is reduced to 55% to test the pre-tuning phase. PSO terminates 
with 23.33%delay, 47.68% area, and communications 25.58%. The deadline constraint is 
violated by 1.33% (about 71 clock cycles). The pre-tuning phase moves nodes from serial 
HW region into parallel HW region until satisfying the deadline constraints (delay is 
reduced to 21.95%). It moves 32 nodes and the Area increased to 59.13%. The delay margin 
becomes 2 clock cycles. Then the normal tuning heuristic starts with that delay margin and 
moves two nodes back to the serial HW region. The final area is 59% and the final delay is 
21.99%. Notice that the delay constraint is met while the area constraint becomes violated.  

5. Conclusions 
In this chapter, the recent introduction of the Particle Swarm Optimization technique to 
solve the HW/SW partitioning problem is reviewed, along with its “re-exited PSO” 
modification. The re-exited PSO algorithm is a recently-introduced restarting technique for 
PSO. The Re-exited PSO proved to be highly effective for solving the HW/SW partitioning 
problem.  
Efficient cost function formulation is of a paramount importance for an efficient 
optimization algorithm. Each component in the design must have hardware as well as 
software implementation costs that guide the optimization algorithm. The hardware cost in 
our platform is modeled using two extreme implementations that bound all other schedule-
dependent implementations. Communications cost between hardware and software 
domains are then proposed in contrast to other approaches that completely ignore such 
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term. Finally, a tuning algorithm is proposed to fine tune the results and/or try to meet the 
constraints if PSO provides violating solutions. 
Finally, JPEG encoder system is used as a real-life case study to test the viability of the PSO 
for solving the HW/SW partitioning problems. This case study compares our results with 
other published results from the literature. The comparison focuses on the PSO technique 
only. The results prove that our algorithm provides better or equal results relative to the 
cited results.  
The following conclusions can be made: 
• PSO is effective for solving the HW/SW Partitioning Problem. The PSO yields better 

quality and faster performance relative to the well-known Genetic Algorithm. 
• A newly-proposed “Re-exited PSO” restarting technique is effective in escaping local 

minimum. 
• Formulating the HW/SW partitioning problem using the recently proposed two 

extreme hardware alternatives is effective for solving tightly constrained problems. The 
introduction of two limiting hardware alternatives provides extra degree of freedom for 
the designer without penalizing the designer with excessive computational cost.  

• Greedy-like Tuning algorithms are useful for refining the PSO results. Such algorithms 
moves hardware-mapped nodes between their two extreme implementations to refine 
the solution or even to meet the constraints.  

• A JPEG Encoder system is used as a real-life case study to verify the potential of our 
methodology for partitioning large HW/SW co-design problems. 
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1. Introduction 
Statistical physics is the area of physics which studies the properties of systems composed of 
many microscopic particles (like atoms and molecules). When combined, the interactions 
between these particles produce the macroscopic features of the systems. The systems are 
usually characterized by a very large number of variables and the limited possibilities for 
observing the properties of the components of the system. For these reasons, solving 
problems arisen in Statistical Physics with analytical approaches is usually ineffective and 
sometimes impossible. However, statistical approaches (such as Monte Carlo simulation) 
can provide acceptable approximations for solutions of these problems. Moreover, recent 
studies showed that nature inspired metaheuristics (like Genetic Algorithms, Evolutionary 
Strategies, Particle Swarm Optimization, etc) can also be used to simulate, analyse, and 
optimize such systems, providing fast and accurate results. Apart from physical 
implications, problems from Statistical Physics are also important in fields like biology, 
chemistry, mathematics, communications, economy, sociology, etc. 
We will present two important problems from Statistical Physics and discuss how one can 
use Particle Swarm Optimization (PSO) to tackle them. First, we will discuss how the real-
valued version of PSO can be used to minimize the energy of a system composed of 
repulsive point charges confined on a sphere. This is known as the Thomson problem and it 
is included in Stephen Smale's famous list of 18 unsolved mathematical problems to be 
solved in the 21st century. This problem also arises in biology, chemistry, communications, 
economy, etc. 
Latter on, we will discuss how the binary version of PSO can be used to search ground 
states of Ising spin glasses. Spin glasses are materials that simultaneously present 
ferromagnetic and anti-ferromagnetic interactions among their atoms. A ground state of a 
spin glass is a configuration of the system in which this has the lowest energy possible. 
Besides its importance for Statistical Physics, this problem has applications in neural 
network theory, computer science, biology, etc. 

2. The Basics of Particle Swarm Optimization 
Particle Swarm Optimization (PSO) is a metaheuristic inspired by the behaviour of social 
creatures, which interact between them in order to achieve a common goal. Such behaviour 
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can be noticed in flocks of birds searching for food or schools of fish trying to avoid 
predators (Eberhart & Kennedy, 1995). 
The philosophy of PSO is based on the evolutionary cultural model, which states that in 
social environments individuals have two learning sources: individual learning and cultural 
transmission (Boyd & Richerson, 1988). Individual learning is an important feature in static 
and homogeneous environments, because one individual can learn many things about the 
environment from a single interaction with it. However, if the environment is dynamic or 
heterogeneous, then that individual needs many interactions with the environment before it 
gets to know it. Because a single individual might not get enough chances to interact with 
such environment, cultural transmission (meaning learning from the experiences of others) 
becomes a requisite, too. In fact, individuals that have more chances to succeed in achieving 
their goals are the ones that combine both learning sources, thus increasing their gain in 
knowledge. 
In order to solve any problem with PSO, we need to define a fitness function which will be 
used to measure the quality of possible solutions for that problem. Then, solving the original 
problem is equivalent to optimizing parameters of the fitness function, such that we find 
one of its minimum or maximum values (depending on the fitness function). By using a set 
of possible solutions, PSO will optimize our fitness function, thus solving our original 
problem. In PSO terms, each solution is called a particle and the set of particles is called a 
swarm. Particles gather and share information about the problem in order to increase their 
quality and hopefully become the optimum solution of the problem. Therefore, the driving 
force of PSO is the collective swarm intelligence (Clerc, 2006). 
The fitness function generates a problem landscape in which each possible solution has a 
corresponding fitness value. We can imagine that similar to birds foraging in their 
environment, the PSO particles move in this landscape searching locations with higher 
rewards and exchanging information about these locations with their neighbours. Their 
common goal is to improve the quality of the swarm. During the search process the particles 
change their properties (location, speed, memory, etc) to adapt to their environment. 

3. Particle Swarm Optimization and the Thompson problem 
In 1904, while working on his plum pudding model of the atom, the British physicist Joseph 
John Thomson stated the following problem: what is the minimum energy configuration of 
N  electrons confined on the surface of a sphere? Obviously, each two electrons repel each 

other with a force given by Coulomb's law: 

 2
0

2 1
4 d
qF e
πε

= , (1) 

where 0ε  is the electric constant of vacuum, eq  is the charge on a single electron, and d  is 
the distance between the two electrons. Because of these forces, each electron will try to get 
as far as possible from the others. However, being confined on the surface of the sphere, 
they will settle for a system configuration with minimum potential energy. The potential 
energy of a system with N  electrons is: 
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where we consider the electrons numbered in some random fashion, and ijd  is the distance 
between electrons ith and jth in the system configuration S . Any configuration with 
minimum potential energy is called a “ground state” of the system. 
Over the years, various generalizations for the Thomson problem have also been studied 
from different aspects. The most common generalization involves interactions between 
particles with arbitrary potentials. Bowick studied a system of particles constrained to a 
sphere and interacting by a γ−d  potential, with 20 << γ  (Bowick et al, 2002). Travesset 
studied the interactions of the particles on topologies other than the 2-sphere (Travesset, 
2005). Levin studied the interactions in a system with 1−N  particles confined on the sphere 
and 1 particle fixed in the centre of the sphere (Levin & Arenzon, 2003). In general, finding 
the ground state of a system of N  repulsive point charges constrained to the surface of the 
2-sphere is a long standing problem, which was ranked 7 in Stephen Smale's famous 
list (Smale, 2000) of 18 unsolved mathematical problems to be solved in the 21st century, 
along with other famous problems, like the Navier-Stokes equations, Hilbert's sixteenth 
problem and the P=NP problem. 
Apart from physics, the Thomson problem arises in various forms in many other fields: 
biology (determining the arrangements of the protein subunits which comprise the shells of 
spherical viruses), telecommunications (designing satellite constellations, selecting locations 
for radio relays or access points for wireless communications), structural chemistry (finding 
regular arrangements for proteins S-layers), mathematics, economy, sociology, etc. From an 
optimization point of view, the Thomson problem is of great interest to computer scientists 
also, because it provides an excellent test bed for new optimization algorithms, due to the 
exponential growth of the number of minimum energy configurations and to their 
characteristics. 
The Thomson problem can be solved exactly for small values of N  point charges on the 
surface of a sphere or a torus. However, for large values of 8>N , exact solutions are not 
known. The configurations found so far for such values display a great variety of 
geometrical structures. The best known solutions so far for such systems were identified 
with numerical simulations, using methods based on Monte Carlo simulations, evolutionary 
algorithms, simulated annealing, etc (Carlson et al., 2003; Morris et al., 1996; Perez-Garrido 
et al., 1996; Pang, 1997). PSO for the Thompson problem was first introduced in (Băutu & 
Băutu, 2007). 
We will present in the following how the real-valued version of PSO can be used to tackle 
the Thomson problem. In order to avoid confusion, we will use the term “point charges” to 
refer to physical particles on the sphere (electrons, for example) and “particles” to refer to 
the data structures used by the PSO algorithm. 
As mentioned in the previous section, in order to use a PSO algorithm we need to define a 
function that will measure the quality of solutions encoded by particles. One can think of 
many such functions for the Thompson problem, but a simple and quick solution is to use 
the potential energy of a system. We can save some computation time if we ignore the 
physical constants and use a simplified version of (2) for our fitness function: 
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where N  is the number of point charges in the system, ijd  is the Euclidian distance 
between point charges i and j, encoded by the particle P . If we represent our system 
configuration in 3D space using a Cartesian coordinate system, then we need to handle N3  
real values, for the values on the Ox, Oy and Oz axis of each particle (see Figure 1). We will 
also need to explicitly enforce the sphere surface constraints which require additional 
computation time. 

`  

Figure 1. Point charge represented in 3D Cartesian coordinate system 

The memory requirements can be reduced and the computation overhead for constraint 
enforcing can be avoided, if we scale our system to the unit sphere and represent its 
configuration using a Spherical coordinate system. In this way, the sphere surface constraint 
is implicitly enforced and since r  is constant, the system configuration is encoded with only 

N2  real values, representing the azimuth φ  and elevation θ  angles (see Figure 2). 

 
Figure 2. Point charge represented in 3D Spherical coordinate system 

In this case, the distance between point charges i and j located on the surface of the unit 
sphere is 

 )]cos(sinsincos[cos22 jijijiijd θθφφφφ −+−= , (4) 
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where [ ]ππφφ ,, 21 −∈  is the azimuth angle and [ ]2/,2/, ππθθ −∈ji  is the elevation angle. 

Thus, PSO particles move in the search space [ ] N21,0  and the location [ ] Nx 21,0∈  of a particle 
decodes into a system configuration with: 

 ππφ −= −122 ii x  (5) 

 2/2 ππθ −= ii x  (6) 

With this setup in place, the PSO algorithm begins with a swarm of particles randomly 
scattered around the search space. This generic initialization method could be replaced with 
a problem specific one (spherical initialization, for example). Each particle has a set of 
neighbours with which it will exchange information. An iterative process begins, which 
updates the properties of the particles. On each iteration each particle use the information 
from its own memory and the information gathered from its neighbours to update its 
properties. The equation used for updating the speed is: 

 ( ) ( )112211111 −−−−− −+−+= tttttt xgRxpRvv φφω , (7) 

where tv  is the speed at iteration t , tx  is the location of the particle at iteration t , tp  is the 
best location the particle has found until iteration t , tg  is the best location the neighbours 
of the particle found up to the iteration t . The individual learning and cultural transmission 
factors ( 1φ  and 2φ ) control the importance of the personal and neighbour's experience on 
the search process. Note that although they share the same notation, these are parameters of 
the algorithm and are distinct and not related to the azimuth angles of the point charges. 
Because the importance of individual learning and cultural transmission is unknown, the 
learning factors are weighted by random values )1,0[, 21 ∈RR . Usually the speed is bounded 
by some maxv  parameter to prevent it from increasing too much because of these random 
values. 
With the updated speed vector and the old position of the particle, the new position is 
computed with: 

 tvx tt Δ+= −1tx , (8) 

for 1=Δt  iteration. 
Based on the previous discussion, the PSO algorithm used for the Thomson problem is 
summarized in Figure 3. The algorithm is very simple and requires basic programming 
skills to be implemented in any programming language. It has many parameters that can be 
tuned in order to achieve high performance results. The tuning process of these parameters 
is beyond the purpose of this chapter. For now, let’s consider the following setup: 9.0=ω  
— will allow the algorithm to avoid rapid changes in the trajectories of the particles; 

221 == φφ  — gives equal weight to individual and social learning; iterations = 500 — for 
small and medium size systems, this should be enough for the particles to discover and 
focus on good solutions; NM 2=  — increases the swarm size with the size of the system. 
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Figure 3. PSO algorithm for the Thomson problem 

Performing 10 runs of the algorithm from Figure 3 for systems with different sizes, we 
obtained the results presented in Table 1: 

N Minimum known energy Energy of PSO solution
2 0.500000000 0.500000000
3 1.732050808 1.732050808
4 3.674234614 3.674234614
5 6.474691495 6.474691495
6 9.985281374 9.985281374
7 14.452997414 14.452987365
8 19.675287861 19.675287861
9 25.759986531 25.759986599
10 32.716949460 32.717003657
15 80.670244114 80.685310397
20 150.881568334 150.953443814
25 243.812760299 243.898092955
30 359.603945904 359.901863399
35 498.569872491 499.018395878
40 660.675278835 661.666117852
45 846.188401061 847.129739052
50 1055.182314726 1056.517970873

Table 1. Minimum energies for Thomson problem found in experiments 

From the results in Table 1, one can see that this simple PSO algorithm can provide high 
quality estimates for the ground states of various instances of the Thomson problem. The 
algorithm can be further improved not only in its parameters, but also in its structure (using 
a more advanced initialization method, for example). Obviously, the Particle Swarm 
Optimization algorithm can be applied for generalized forms of Thomson problem and 
other related problems, not only from Statistical Physics, but other domains, too. 

1. Initialize M  random particles 
2. for t = 1 to iterations 
3.  for each particle 
4.   Update tv  according to (7) 
5.   Update tx  according to (8) 
6.   Decode tx  using (5) and (6) 
7.   Evaluate tx  using (3) and (4) 
8.   Update tp  and tg  according to their definition 
9.  next 
10. next 
11. return solution from the particle with smaller fitness
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4. Binary Particle Swarm Optimization and Ising Spin Glasses  
Matter is composed of atoms and each atom carries a spin, meaning the magnetic moment 
of the microscopic magnetic field around the atom generated by the motion of the electrons 
around its nucleus. 
If we heat a metal object higher than the Curie point of its material, the object will loose its 
ferromagnetic properties and become paramagnetic. At that point, the spins of the atoms 
change randomly so erratic that at any time they can point with equal probability to any 
possible direction. In this case, the individual microscopic magnetic fields generated by the 
spins cancel each other out, such that there is no macroscopic magnetic field (Huang, 1987). 
When the temperature is lower than the Curie point, in some metals (iron and nickel, for 
example) the spins of the atoms tend to be polarized in the same direction, producing a 
measurable macroscopic magnetic field. This is called “ferromagnetic” behaviour. By 
contrast, below the Curie point, in spin glasses only some pairs of neighbouring spins prefer 
to be aligned, while the others prefer to be anti-aligned, resulting two types of interactions 
between atoms: ferromagnetic and anti-ferromagnetic. Because of this mix of interactions, 
these systems are called disordered (den Hollander & Toninelli, 2005). 
In the past, condensed matter physics has focused mainly on ordered systems, where 
symmetry and regularity lead to great mathematical simplification and clear physical 
insight. Over the last decades, spin glasses became a thriving area of research in condensed 
matter physics, in order to understand disordered systems. Spin glasses are the most 
complex kind of condensed state encountered so far in solid state physics (De Simone et al., 
1995). Some examples of spin glasses are metals containing random magnetic impurities 
(called disordered magnetic alloys), such as gold with small fractions of iron added (AuFe). 
Apart from their central role in Statistical Physics, where they are the subject of extensive 
theoretical, experimental and computational investigation, spin glasses also represent a 
challenging class of problems for testing optimization algorithms. The problem is interesting 
because of the properties of spin glass systems, such as symmetry or large number of 
plateaus (Pelikan & Goldberg, 2003). 
From an optimization point of view, the main objective is to find the minimum energy for a 
given spin glass system (Hartmann, 2001; Pelikan & Goldberg, 2003; Fischer, 2004; 
Hartmann & Weigt, 2005). System configurations with the lowest energy are called ground 
states and thus the problem of minimizing the energy of spin glass instances can be 
formulated as the problem of finding ground states of these instances (Pelikan et al., 2006). 
The main difficulties when searching for ground states of spin glasses come from the many 
local optima in the energy landscape which are surrounded by high-energy neighbouring 
configurations (Pelikan & Goldberg, 2003). 
The Ising model is a simplified description of ferromagnetism, yet it is extremely important 
because other systems can be mapped exactly or at least approximately to it. Its applications 
range from neural nets and protein folding to flocking birds, beating heart cells and more. It 
was named after the German physicist Ernst Ising who first discussed it in 1925, although it 
was suggested in 1920 by his Ph.D. advisor, Wilhelm Lenz. Ising used it as a mathematical 
model for phase transitions with the goal of explaining how long-range correlations are 
generated by local interactions. 
The Ising model can be formulated for any dimension in graph-theoretic terms. Let us 
consider a spin glass system with N  spins and no external magnetic field. The interaction 
graph ( )EVG ,=  associated with the system has the vertex set { }NvvV ,,1 K= . Each vertex 
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Vi ∈  can be in one of two states { }1,1−∈iS . Edges in this graph represent bonds between 
adjacent atoms in the spin glass system. Each edge Eij ∈  has assigned a coupling constant, 
denoted by { }JJJij ,−∈ ; an edge exists between vertices i and j if the interaction between 
atoms i and j is not zero. In the classic model, this graph is a standard “square” lattice in 
one, two, or three dimensions. Therefore, each atom has two, four, or six nearest neighbours, 
respectively (see Figure 4). However, various papers present research done on larger 
dimensions (Hartmann, 2001). 

 
Figure 4. Two dimensional Ising spin glass system 

 
Figure 5. Ground state of the system from Figure 4 (values inside circles represent the states 
of the spins; dashed lines represent unsatisfied bonds) 

For a system configuration S , the interaction between neighbouring vertices i and j 
contributes an amount of jiij SSJ−  to the total energy of the system, expressed as the 
Hamiltonian: 

 ( ) ∑
∈

−=
Eij

jiij SSJSH . (9) 

The sign of ijJ  gives the nature of the interaction between neighbours i and j. If ijJ  is 
positive, the interaction is ferromagnetic. Having the two neighbours in the same state 
( ji SS = ) decreases the total energy. If ijJ  is negative, the interaction between neighbours i 
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and j is anti-ferromagnetic. The decrease in total energy is obtained if they have opposite 
states. When all coupling constants are positive (or negative), a lowest-energy configuration 
is obtained when all vertices have the same state. This is the case of ferromagnetic materials. 
When the coupling constants are a mix of positive and negative values, as is the case for spin 
glasses, finding the “ground state” is a very difficult problem. A ground state of the system 
from Figure 4 is presented in Figure 5. 
The two-dimensional Ising model of ferromagnetism has been solved exactly by Onsager 
(Onsager, 1944). The most common configurations in the literature are 2D Ising spin glasses 
on a grid with nearest neighbour interactions. In the case of no periodic boundary 
conditions and no exterior magnetic field, the problem reduces to finding a minimum 
weight cut in a planar graph for which polynomial time algorithms exist (Orlova & 
Dorfman, 1972; Goodman & Hedetniemi, 1973; Hadlock, 1975). Barahona showed that 
finding a ground state for the three-value coupling constant ( { }1,0,1−∈ijJ ) on a cubic grid is 
equivalent to finding a maximum set of independent edges in a graph for which each vertex 
has degree 3 (Barahona, 1982). He also showed that computing the minimum value of the 
Hamiltonian of a spin glass with an external magnetic field,  

 ( ) ∑ ∑
∈ ∈

−−=
Eij Vi

ijiij SShSSJSH 0 , (10) 

is equivalent to solving the problem of finding the largest set of disconnected vertices in a 
planar, degree-3 graph. This means that finding ground states for three-dimensional spin 
glasses on the standard square lattice and for planar spin glasses with an external field are 
NP-complete problems. Istrail showed that the essential ingredient for the NP-completeness 
of the Ising model is the non planarity of the graph (Istrail, 2000). 
Particle Swarm Optimization was introduced as a technique for numerical optimization and 
has proved to be very efficient on many real-valued optimization problems. Because finding 
the ground state of a spin glass system in the Ising model is a combinatorial problem, we 
need to apply a modified version of PSO. We will use the binary version of PSO (Kennedy & 
Eberhard, 1997). In this case, the ith component of the position vector of a particle encodes 
the state of the ith spin in the system (0 means down, 1 means up), while the ith component of 
the velocity vector determines the confidence of the particle that the ith spin should be up. 
On each iteration of the search process, each particle updates its velocity vector (meaning its 
confidence that the spins should be up) using (7). After that, the particle's position vector 
(meaning its decision about spins being up or down) it updated using the component-wise 
formula: 

 ( )( )
⎪⎩

⎪
⎨
⎧ −+<=

−

otherwise ,0
exp1 if ,1 1

ti
ti

vRx  (11) 

where )1,0[∈R  is a random value. Once a particle's position is known, its profit can be 
computed by: 

 ( ) ( )( )∑
≤<≤

−−−=
Nji

tjtiijt xxJxF
1

1212 , (12) 
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With such fitness function, lower values indicate better solutions. Obviously, this fitness 
function is inspired by the Hamiltonian given in (9) and can be adapted easily to external 
magnetic field environments using (10). 
Based on the previous discussion, the Binary PSO algorithm used for the Ising spin glass 
problem is presented in Figure 6. A more advanced PSO algorithm for this problem is 
described in (Băutu et al., 2007). It combines the PSO algorithm with a local optimization 
technique which allows the resulting hybrid algorithm to fine tune candidate solutions. 

 
Figure 6. PSO algorithm for the Ising spin glass problem 

In order to test this algorithm, one can use a spin grass system generator, like the Spin Glass 
Server (SGS). SGS can be used to solve exactly 2D and 3D systems with small sizes or to 
generate systems for testing. It is available online at http://www.informatik.uni-koeln.de/
ls_juenger/research/sgs/sgs.html. 

N SGS minimum 
energy per spin 

PSO minimum 
energy per spin 

64 / 3D -1.6875 -1.6875
64 / 3D -1.7500 -1.7500
64 / 3D -1.8750 -1.8750
125 / 3D -1.7040 -1.6720
125 / 3D -1.7680 -1.7360
125 / 3D -1.7360 -1.7040

Table 2. Minimum energies for Ising spin glasses found in experiments 

Table 2 presents the energy per spin values obtained for 3D systems of 4x4x4 and 5x5x5 
spins using (13). They will give you an idea about the performance of the binary PSO on this 
type of problems. The actual values depend on the spin system for which the algorithm is 
used. 

 ( ) ( )
N
xF

xE t
t =  (13) 

The results from table 2 were obtained without any tuning of the PSO parameters: the 
individual and social learning factors are 221 == φφ and the inertia factor is 9.0=ω . The 
number of iterations is twice the number of spins, and the number of particles is three times 

1. Initialize M  random particles 
2. for t = 1 to iterations 
3.  for each particle 
4.   Update tv  according to (7) 
5.   Update tx  according to (11) 
6.   Evaluate tx  using (12) 
7.   Update tp  and tg  according to their definition 
8.  next 
9. next 
10. return solution from the particle with smaller fitness 
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the number of spins. SGS provides the minimum energy for these systems using a branch-
and-cut algorithm (De Simone et al., 1995). 

5. Conclusions 
This chapter presented the basic traits of Particle Swarm Optimization and its applications 
for some well known problems in Statistical Physics. Recent research results presented in 
the literature for these problems prove that PSO can find high quality solutions in 
reasonable times (Băutu et al, 2007; Băutu & Băutu, 2008). However, many questions are still 
open: how do the parameters setups relate to the problems tackled? how can we improve 
the basic PSO to get state of the are results? how can we tackle very large size systems? 
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1. Brief Survey of Particle Swarm Optimization 
With the industrial and scientific developments, many new optimization problems are 
needed to be solved. Several of them are complex multi-modal, high dimensional, non-
differential problems. Therefore, some new optimization techniques have been designed, 
such as genetic algorithm (Holland, 1992), ant colony optimization (Dorigo & Gambardella, 
1997), etc. However, due to the large linkage and correlation among different variables, 
these algorithms are easily trapped to a local optimum and failed to obtain the reasonable 
solution. 
Particle swarm optimization (PSO) (Eberhart & Kennedy, 1995; Kennedy & Eberhart, 1995) 
is a population-based, self-adaptive search optimization method motivated by the 
observation of simplified animal social behaviors such as fish schooling, bird flocking, etc. It 
is becoming very popular due to its simplicity of implementation and ability to quickly 
converge to a reasonably good solution (Shen et al., 2005; Eberhart & Shi, 1998; Li et al., 
2005). 
In a PSO system, multiple candidate solutions coexist and collaborate simultaneously. Each 
solution called a "particle", flies in the problem search space looking for the optimal position 
to land. A particle, as time passes through its quest, adjusts its position according to its own 
"experience" as well as the experience of neighboring particles. Tracking and memorizing 
the best position encountered build particle's experience. For that reason, PSO possesses a 
memory (i.e. every particle remembers the best position it reached during the past) . PSO 
system combines local search method (through self experience) with global search methods 
(through neighboring experience), attempting to balance exploration and exploitation. 
A particle status on the search space is characterized by two factors: its position and 
velocity, which are updated by following equations: 

  (1) 

  (2) 
where  and  represent the velocity and position vectors of particle j at time t, 
respectively.  means the best position vector which particle j had been found, as well as 

 denotes the corresponding best position found by the whole swarm. Cognitive 
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coefficient c1 and social coefficient c2 are constants known as acceleration coefficients, and r1 
and r2 are two separately generated uniformly distributed random numbers in the range [0, 1]. 
To keep the moving stability,  a limited coefficient vmax is introduced to restrict the size of velocity. 

  (3) 
The first part of (1) represents the previous velocity, which provides the necessary 
momentum for particles to roam across the search space. The second part, known as the 
"cognitive" component, represents the personal thinking of each particle. The cognitive 
component encourages the particles to move toward their own best positions found so far. 
The third part is known as the "social" component, which represents the collaborative effect 
of the particles, in finding the global optimal solution. The social component always pulls 
the particles toward the global best particle found so far. 
Since particle swarm optimization is a new swarm intelligent technique, many researchers 
focus their attentions to this new area. One famous improvement is the introduction of the 
inertia weight (Shi & Eberhart, 1998a), similarly with temperature schedule in the simulated 
annealing algorithm. Empirical results showed the linearly decreased setting of inertia 
weight can give a better performance, such as from 1.4 to 0 (Shi & Eberhart, 1998a), and 0.9 
to 0.4 (Shi & Eberhart, 1998b, Shi & Eberhart, 1999). In 1999, Suganthan (Suganthan,1999) 
proposed a time-varying acceleration coefficients automation strategy in which both c1 and 
c2 are linearly decreased during the course of run. Simulation results show the fixed 
acceleration coefficients at 2.0 generate better solutions. Following Suganthan's method, 
Venter (Venter, 2002) found that the small cognitive coefficient and large social coefficient 
could improve the performance significantly. Further, Ratnaweera (Ratnaweera et al., 2004) 
investigated a time-varying acceleration coefficients. In this automation strategy, the 
cognitive coefficient is linearly decreased during the course of run, however, the social 
coefficient is linearly increased inversely. 
Hybrid with Kalman filter, Monson designed a new Kalman filter particle swarm 
optimization algorithm (Monson & Seppi, 2004) . Similarly, Sun proposed a new quantum 
particle swarm optimization (Sun et al., 2004) in 2004. From the convergence point, Cui 
designed a global convergence algorithm — stochastic particle swarm optimization (Cui & 
Zeng, 2004). There are still many other modified methods, such as fast PSO (Cui et al., 
2006a), predicted PSO (Cui et al.,2006b), etc. The details of these algorithms can be found in 
corresponding references. 
The PSO algorithm has been empirically shown to perform well on many optimization 
problems. However, it may easily get trapped in a local optimum for high dimensional 
multi-modal problems. With respect to the PSO model, several papers have been written on 
the subject to deal with premature convergence, such as the addition of a queen particle 
(Mendes et al., 2004), the alternation of the neighborhood topology (Kennedy, 1999), the 
introduction of subpopulation and giving the particles a physical extension (Lovbjerg et al., 
2001), etc. In this paper, an individual parameter selection strategy is designed to improve 
the performance when solving high dimensional multi-modal problems. 
The rest of this chapter is organized as follows: the section 2 analyzes the disadvantages of 
the standard particle swarm optimization parameter selection strategies; the individual 
inertia weight selection strategy is designed in section 3; whereas section 4 provides the 
cognitive parameter selection strategy. In section 5, the individual social parameter selection 
strategies is designed. Finally, conclusion and future research are discussed. 
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2. The Disadvantages of Standard Particle Swarm Optimization 
Partly due to the differences among individuals, swarm collective behaviors are complex 
processes. Fig.l and Fig.2 provide an insight of the special swarm behaviors about birds 
flocking and fish schooling. For a group of birds or fish families, there exist many 
differences. Firstly, in nature, there are many internal differences among birds (or fish), such 
as ages, catching skills, flying experiences, and muscles' stretching, etc. Furthermore, the 
lying positions also provide an important influence on individuals. For example, 
individuals, lying in the side of the swarm, can make several choices differing from center 
others. Both of these differences mentioned above provide a marked contribution to the 
swarm complex behaviors. 

 
Figure 1. Fish's Swimming Process 

 
Figure 2. Birds' Flying Process 
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For standard particle swarm optimization, each particle maintains the same flying (or 
swimming) rules according to (1), (2) and (3). At each iteration, the inertia weight w, 
cognitive learning factor c1 and social learning factor c2 are the same values within the whole 
swarm, thus the differences among particles are omitted. Since the complex swarm 
behaviors can emerge the adaptation, a more precise model, incorporated with the 
differences, can provide a deeper insight of swarm intelligence, and the corresponding 
algorithm may be more effective and efficient. Inspired with this method, we propose a new 
algorithm in which each particle maintains personal controlled parameter selection setting. 

3. Individual Inertia weight Selection Strategy 
Without loss of generality, this paper consider the following problem: 

  (4) 

From the above analysis, the new variant of PSO in this section will incorporate the personal 
differences into inertia weight of each particle (called PSO-IIWSS, in briefly) (Cai et al., 
2008), providing a more precise model simulating the swarm behaviors. However, as a new 
modified PSO, PSO-IIWSS should consider two problems listed as follows: 
1. How to define the characteristic differences of each particle? 
2. How to use the characteristic difference to control inertia weight, so as to affect its 

behaviors? 

3.1 How to define the characteristic differences? 
If the fitness value of particle u is better than which of particle m, the probability that global 
optima falls into u’s neighborhood is larger than that of particle m. In this manner, the 
particle u should pay more attentions to exploit its neighborhood. On the contrary, it may 
tend to explore other region with a larger probability than exploitation. Thus the 
information index is defined as follows: 
The information index - score of particle u at time t is defined as 

  
(5)

 
where xworst(t) and xbest(t) are the worst and best particles' position vectors at time t, respectively. 

3.2 How to use the characteristic differences to guild its behaviors? 
Since the coefficients setting can control the particles' behaviors, the differences may be 
incorporated into the controlled coefficients setting to guide each particle's behavior. The 
allowed controlled coefficients contain inertia weight w, two accelerators c1 and c2. In this 
section, inertia weight w is selected as a controlled parameter to reflect the personal 
characters. Since w is dependent with each particle, we use wu (t) representing the inertia 
weight of particle u at time t. 
Now, let us consider the adaptive adjustment strategy of inertia weight wu(t). The following 
part illustrates three different adaptive adjustment strategies. 
Inspired by the ranking selection mechanism of genetic algorithm (Mich ale wicz, 1992), the 
first adaptive adjustment of inertia weight is provided as follows: 
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The inertia weight wu(t) of particle u at time t is computed by 

  (6) 
where wlow(t) and whigh(t) are the lower and upper bounds of the swarm at time t. 
This adaptive adjustment strategy states the better particles should tend to exploit its 
neighbors, as well as the worse particles prefer to explore other region. This strategy implies 
the determination of inertia weight of each particle, may provide a large selection pressure. 
Compared with ranking selection, fitness uniform selection scheme (FUSS) is a new 
selection strategy measuring the diversity in phenotype space. FUSS works by focusing the 
selection intensity on individuals which have uncommon fitness values rather than on those 
with highest fitness as is usually done, and the more details can be found in (Marcus, 2002). 
Inspired by FUSS, the adaptive adjustment strategy two aims to provide a more chance to 
balance exploration and exploitation capabilities. 
The inertia weight wu(t) of particle u at time t is computed by 

  (7) 
where wlow(t) and whigh(t) are the lower and upper bounds of the swarm at time t. Scorerand(t) 
is defined as follows. 

(8) 
where r is a random number sampling uniformly between f(xbest(t)) and f(xworst(t)). 
Different from ranking selection and FUSS strategies which need to order the whole swarm, 
tournament strategy (Blickle & Thiele, 1995) is another type of selection strategy, it only uses 
several particles to determine one particle's selection probability. Analogized with 
tournament strategy, the adaptive adjustment strategy three is designed with local 
competition, and defined as follows: 
The inertia weight wu(t) of particle u at time t is computed by 

 
(9)

 

where wlow(t) and whigh(t)  are the lower and upper bounds of the swarm at time t. ( )
1r

x t  and 

( )
1r

x t  are two random selected particles uniformly. 

3.3 The Step of PSO-IIWSS 
The step of PSO-IIWSS is listed as follows. 
• Step l. Initializing each coordinate xjk(0) to a value drawn from the uniform random 

distribution on the interval [xmin,xmax], for j = 1,2, ...,s and k = 1,2, ...,n. This distributes the 
initial position of the particles throughout the search space. Where s is the value of the 
swarm, n is the value of dimension. Initializing each vjk(0) to a value drawn from the 
uniform random distribution on the interval [—vmax, vmax], for all j and k. This distributes 
the initial velocity of the particles. 

• Step 2. Computing the fitness of each particle. 
• Step 3. Updating the personal historical best positions for each particle and the swarm; 
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• Step 4. Determining the best and worst particles at time t, then, calculate the score of 
each particle at time t. 

• Step 5. Computing the inertia weight value of each particle according to corresponding 
adaptive adjustment strategy one,two and three (section 3.2, respectively) . 

• Step 6. Updating the velocity and position vectors with equation (1),(2) and (3) in which 
the inertia w is changed with wj(t). 

• Step 7. If the stop criteria is satisfied, output the best solution; otherwise, go step 2. 

3.4 Simulation Results 

3.4.1 Selected Benchmark Functions 
In order to certify the efficiency of the PSO-IIWSS, we select five famous benchmark 
functions to testify the performance, and compare PSO-IIWSS with stan- 
dard PSO (SPSO) and Modified PSO with time- varying accelerator coefficients 
(MPSO_TVAC) (Ratnaweera et al, 2004). Combined with different adaptive adjustment 
strategy of inertia weight one, two and three, the corresponding versions of PSO-IIWSS are 
called PSO-IIWSS1, PSO-IIWSS2, PSO-IIWSS3, respectively. 
Sphere Modal: 

 

where  100.0, and 

 
Schwefel Problem 2.22: 

 

where  10.0, and 

 
Schwefel Problem 2.26: 

 

where  500.0, and 

 
Ackley Function: 
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where 32.0, and 

 

Hartman Family: 

 

where jx ∈  [0.0,1.0], and aij is satisfied with the following matrix. 

3 10 30
0.1 10 35
3 10 30

0.1 10 35

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

pij is satisfied with the following matrix. 

0. 0. 0 0.
0. 0. 0. 0
0. 0 0. 0.

0.0 0. 0.

3687 117 2673
4699 4387 747
1 91 8732 5547
3815 5743 8828

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

ci is satisfied with the following matrix. 

1
1.2
3
3.2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

Sphere Model and Schwefel Problem 2.22 are unimodel functions. Schwefel Problem 2.26 
and Ackley function are multi-model functions with many local minima,as well as Hartman 
Family with only several local minima. 

3.4.2 Parameter Setting 
The coefficients of SPSO,MPSO_TVAC and PSO-IIWSS are set as follows: 
The inertia weight w is decreased linearly from 0.9 to 0.4 with SPSO and MPSO_TVAC, 
while the inertia weight lower bounds of PSO-IIWSS is set 0.4, and the upper bound of PSO-
IIWSS is set linearly from 0.9 to 0.4. Two accelerator coefficients c1 and c2 are both set to 2.0 
with SPSO and PSO-IIWSS, as well as in MPSO_TVAC, c1 decreases from 2.5 to 0.5,while c2 
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increases from 0.5 to 2.5. Total individuals are 100 except Hartman Family with 20, and vmax 

is set to the upper bound of domain.The dimensions of Sphere Model, Schwefel Problem 
2.22,2.26 and Ackley Function are set to 30,while Hartman Family's is 3.Each experiment the 
simulation runs 30 times while each time the largest evolutionary generation is 1000 for 
Sphere Model, Schwefel Problem 2.22, Schwefel Problem 2.26, and Ackley Function, and 
due to small dimensionality, Hartman Family is set to 100. 

3.4.3 Performance Analysis 
Table 1 to 5 are the comparison results of five benchmark functions under the same 
evolution generations respectively.The average mean value and average 
standard deviation of each algorithm are computed with 30 runs and listed as follows. 
From the Tables, PSO-IIWSSI maintains a better performance than SPSO and MPSO_TVAC 
with the average mean value. For unimodel functions, PSO-IIWSS3 shows preferable 
convergence capability than PSO-IIWSS2,while vice versa for the multi-model functions. 
From Figure 1 and 2,PSO-IIWSSI and PSO-IIWSS3 can find the global optima with nearly a 
line track, while PSO-IIWSSI owns the fast search capability during the whole course of 
simulation for figure 3 and 4. PSO-IIWSS2 shows the better search performance with the 
increase of generations. In one word, PSO-IIWSSI owns a better performance within the 
convergence speed for all functions nearly. 

 

Algorithm Average Mean Value Average Standard Deviation 
SPSO 9.9512e-006 1.4809e-005 
MPSO_TVAC 4.5945e-018 1.9379e-017 
PSO-IIWSSI 1.4251e-023 1.8342e-023 
PSO-IIWSS2 1.2429e-012 2.8122e-012 
PSO-IIWSS3 1.3374e-019 6.0570e-019 

Table 1. Simulation Results of Sphere Model 

Algorithm Average Mean Value Average Standard Deviation 
SPSO 7.7829e-005 7.5821e-005 
MPSO_TVAC 3.0710e-007 1.0386e-006 
PSO-IIWSSI 2.4668e-015 2.0972e-015 
PSO-IIWSS2 1.9800e-009 1.5506e-009 
PSO-IIWSS3 3.2359e-012 4.1253e-012 

Table 2. Simulation Results of Schwefel Problem 2.22 

Algorithm Average Mean Value Average Standard Deviation 
SPSO -6.2474e+003 9.2131e+002 
MPSO_TVAC -6.6502e+003 6.0927e+002 
PSO-IIWSSI -7.7455e+003 8.0910e+002 
PSO-IIWSS2 -6.3898e+003 9.2699e+002 
PSO-IIWSS3 -6.1469e+003 9.1679e+002 

Table 3. Simulation Results of Schwefel Problem 2.26 
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Algorithm Average Mean Value Average Standard Deviation 
SPSO 8.8178e-004 6.8799e-004 
MPSO_TVAC 1.8651e-005 1.0176e-004 
PSO-IIWSS1 2.9940e-011 4.7552e-011 
PSO-IIWSS2 3.8672e-007 5.6462e-007 
PSO-IIWSS3 3.3699e-007 5.8155e-007 

Table 4. Simulation Results of Ackley Function 

Algorithm Average Mean Value Average Standard Deviation 
SPSO -3.7507e+000 1.0095e-001 
MPSO_TVAC -3.8437e+000 2.9505e-002 
PSO-IIWSS1 -3.8562e+000 1.0311e-002 
PSO-IIWSS2 -3.8511e+000 1.6755e-002 
PSO-IIWSS3 -3.8130e+000 5.2168e-002 

Table 5. Simulation Results of Hartman Family 

3.5 Individual non-linear inertia weight selection strategy (Cui et al., 2008) 

3.5.1  PSO-IIWSS with Different Score Strategies (PSO-INLIWSS) 
As mentioned above, the linearly decreased score strategy can not reflect the truly complicated search 
process of PSO. To make a deep insight of action for score, three non-linear score strategies are 
designed in this paper. These three strategies are unified to a power function, which is set to the 
following equation: 

  (10) 
where k1 and k2 are two integer numbers. 
Figure 3 shows the trace of linear and three non-linear score strategies, respectively. In 
Figure 1, the value f(xbest(t)) is set 1, as well as f(xworst(t)) is 100. When k1 and k2 are both set to 
1, it is just the score strategy proposed in [?], which is also called strategy one in this paper. 
While k1 > 1 and k2 = 1, this non-linear score strategy is called strategy two here. And 
strategy three corresponds to k1 = 1 and k2 > 1, strategy four corresponds to k1 > k2 > 1. 
Description of three non-linear score strategies are listed as follows: Strategy two: the curve 
k1 = 2 and k2 = 1 in Figure 3 is an example of strategy two. It can be seen this strategy has a 
lower score value than strategy one. However, the increased ratio of score is not a constant 
value. For those particles with small fitness values, the corresponding score values are 
smaller than strategy one, and they pay more attention to exploit the region near the current 
position. However, the particles tends to make a local search is larger than strategy one due 
to the lower score values. Therefore, strategy two enhances the local search capability. 
Strategy three: the curve k1 = 1 and k2 = 2 in Figure 3 is an example of strategy three. As we 
can see, it is a reversed curve compared with strategy two. Therefore, it enhances the global 
search capability. 
Strategy four: the curve k1 = 2 and k2 = 5 in Figure 3 is an example of strategy four. The first 
part of this strategy is similar with strategy two, as well as the later part is similar with 
strategy three. Therefore, it augments both the local and global search capabilities. 



Particle Swarm Optimization 

 

98 

 
Figure 3. Illustration of Score Strategies 

The step of PSO-INLIWSS with different score strategies are listed as follows. 
• Step l. Initializing the position and velocity vectors of the swarm, and de termining the 

historical best positions of each particle and its neighbors; 
• Step 2. Determining the best and worst particles at time t with the following definitions. 

  (11) 
and 

  (12) 
• Step 3. Calculate the score of each particle at time t with formula (10) using different 

strategies. 
• Step 4.  Calculating the PSO-INLIWSS inertia weight according to formula (6); 
• Step 5. Updating the velocity and position vectors according to formula (1), (2) and (3); 
• Step 6. Determining the current personal memory (historical best position); 
• Step 7. Determining the historical best position of the swarm; 
• Step 8. If the stop criteria is satisfied, output the best solution; otherwise, go step 2. 

3.5.2 Simulation Results 
To certify the efficiency of the proposed non-linear score strategy, we select five famous 
benchmark functions to test the performance, and compared with standard PSO (SPSO), 
modified PSO with time- varying accelerator coefficients (MPSO-TVAC) (Ratnaweera et al., 
2004), and comprehensive learning particle swarm optimization (CLPSO) (Liang et al., 
2006). Since we adopt four different score strategies, the proposed methods are called PSO-
INLIWSS1 (with strategy one, in other words, the original linearly PSO-IIWSS1), PSO-
INLIWSS2 (with strategy two), PSO-INLIWSS3 (with strategy three) and PSO-INLIWSS4 
(with strategy four), respectively. The details of the experimental environment and results 
are explained as follows. 
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In this paper, five typical unconstraint numerical benchmark functions are used to test. They 
are: Rosenbrock, Schwefel Problem 2.26, Ackley and two Penalized functions. 
Rosenbrock Function: 

 

where  30.0, and 

 
Schwefel Problem 2.26: 

 

where  500.0, and 

 
Ackley Function: 

 

where 32.0, and 

 
Penalized Function l: 

 

where  50.0, and 
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Penalized Function 2: 

 

where  50.0, and 

 
Generally, Rosenbrock is viewed as a unimodal function, however, in recent literatures, 
several numerical experiments (Shang & Qiu, 2006) have been made to show Rosenbrock is 
a multi-modal function with only two local optima when dimensionality between 4 to 30. 
Schwefel problem 2.26, Ackley, and two penalized functions are multi-model functions with 
many local minima. 
The coefficients of SPSO, MPSO-TVAC, and PSO-INLIWSS are set as follows: inertia weight 
w is decreased linearly from 0.9 to 0.4 with SPSO and MPSO-TVAC, while the inertia weight 
lower bounds of all version of PSO-INLIWSS are both set to 0.4, and the upper bounds of 
PSO-INLIWSS are both set linearly decreased from 0.9 to 0.4. Two accelerator coefficients c1 
and c2 are set to 2.0 with SPSO and PSO-INLIWSS, as well as in MPSO-TVAC, c1 decreases 
from 2.5 to 0.5, while c2 increases from 0.5 to 2.5. Total individuals are 100, and the velocity 
threshold vmax is set to the upper bound of the domain. The dimensionality is 30. In each 
experiment, the simulation run 30 times, while each time the largest iteration is 50 x 
dimension. 

Algorithm Mean Value Std Value 
SPSO 5.6170e+001 4.3584e+001
MPSO-TVAC 3.3589e+001 4.1940e+001
CLPSO 5.1948e+001 2.7775e+001
PSO-INLIWSS1 2.3597e+001 2.3238e+001
PSO-INLIWSS2 3.4147e+001 2.9811e+001
PSO-INLIWSS3 4.0342e+001 3.2390e+001
PSO-INLIWSS4 3.1455e+001 2.4259e+001

Table 6. The Comparison Results for Rosenbrock 

Algorithm Mean Value Std Value 
SPSO -6.2762e+003 1.1354e+003
MPSO-TVAC -6.7672e+003 5.7050e+002
CLPSO -1.0843e+004 3.6105e+002
PSO-INLIWSS1 -7.7885e+003 1.1526e+003
PSO-INLIWSS2 -7.2919e+003 1.1476e+003
PSO-INLIWSS3 -9.0079e+003 7.1024e+002
PSO-INLIWSS4 -9.0064e+003 9.6881e+002

Table 7. The Comparison Results for Schwefel Problem 2.26 
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For Rosenbrock (see Table 6), because there is an additional local optimum near (-1, 0, 0,...,0), 
the performance of the MPSO-TVAC, PSO-INLIWSS1 and PSO-INLIWSS4 are better than 
others. We also perform several other unimodel and multi-modal functions with only few 
local optima, the PSO-INLIWSS1 are always the best one within these seven algorithms. 
For Schwefel problem 2.26 (Table 7) and Ackley (Table 8), the performance of PSO-
INLIWSS3 and PDPSO4 are nearly the same. Both of them are better than others. 
However, for two penalized functions (Table 9 and 10), the performance of PSO-INLIWSS3 
is not the same as the previous two, although PSO-INLIWSS4 is still stable and better than 
others. As we known, both of these two penalized functions has strong linkage among 
dimensions. This implies PSO-INLIWSS4 is more suit for multi-modal problems. 
Based on the above analysis, we can draw the following two conclusions: 
(l) PSO-INLIWSSl (the original version of PSO-IIWSS1) is suit for unimodel and multi-
modal functions with a few local optima; 
(2) PSO-INLIWSS4 is the most stable and effective among three score strategies. It is fit for 
multi-modal functions with many local optima especially for linkages among dimensions; 

Algorithm Mean Value Std Value
SPSO 5.8161e-006 4.6415e-006
MPSO-TVAC 7.5381e-007 3.3711e-006
CLPSO 5.6159e-006 4.9649e-006
PSO-INLIWSS1 4.2810e-014 4.3890e-014
PSO-INLIWSS2 1.1696e-011 1.2619e-011
PSO-INLIWSS3 2.2559e-014 8.7745e-015
PSO-INLIWSS4 2.1493e-014 7.8195e-015

Table 8. The Comparison Results for Ackley 

Algorithm Mean Value Std Value 
SPSO 6.7461e-002 2.3159e-001
MPSO-TVAC 1.8891e-017 6.9756e-017
CLPSO 1.0418e-002 3.1898e-002
PSO-INLIWSS1 1.6477e-025 4.7735e-025
PSO-INLIWSS2 6.2234e-026 1.6641e-025
PSO-INLIWSS3 2.4194e-024 7.6487e-024
PSO-INLIWSS4 2.2684e-027 4.4964e-027

Table 9. The Comparison Results for Penalized Functionl 

Algorithm Mean Value Std Value 
SPSO 5.4943e-004 2.4568e-003
MPSO-TVAC 9.3610e-027 4.1753e-026
CLPSO 1.1098e-007 2.6748e-007
PSO-INLIWSS1 4.8692e-027 1.3533e-026
PSO-INLIWSS2 2.8092e-028 5.6078e-028
PSO-INLIWSS3 9.0765e-027 2.5940e-026
PSO-INLIWSS4 8.2794e-028 1.6562e-027

Table 10. The Comparison Results for Penalized Function2 
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4. Individual Cognitive Selection Strategy 
Because each particle maintains two types of performance at time t: the fitness value 

 of historical best position found by particle j and that of current position 
, respectively. Similarly, two different rewards of environment are also designed 

associated with  and . For convenience, the reward based upon 
 is called the self-learning strategy one, and the other one is called the self-learning 

strategy two. The details of these two strategies are explained as follows. 

4.1 Self-learning Strategy One 
Let us suppose  is the historical best position vector of 
the swarm at time t, where n and  denote the dimensionality and the historical best 
position found by particle j until time t. 
The expectation limitation position of particle j of standard version of PSO is 

  
(13)

 
if c1 and  are constant values. Thus, a large c1 makes the  moving 
towards , and exploits near  with more probability, and vice versa. Combined the 
better   implies the more capability of which global optima falls into, the cognitive 
coefficient is set as follows. 

   (14) 
where clow, and chigh are two predefined lower and upper bounds to control this coefficient. 
Reward1j(t) is defined 

  
(15)

 

where fworst and fbest denote the worst and best values among . 

4.2 Self-learning Strategy Two 
Let us suppose  is the population at time t, where n, 

 denote the dimensionality and the position of particle j at time t. 
Different from strategy one, if the performance  is better than  (j and k are 
arbitrary chosen from the population), the probability of global optimal fallen near  is 
larger than , thus, particle j should exploit near its current position with a larger 
probability than particle k. It means c1,j (t) should be less than c1,k (t) to provide little affection 
of historical best position , and the adjustment is defined as follows 

  (16) 
where Reward2j(t) is defined as 
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(17)

 

where fworst and fbest denote the worst and best values among . 

4.3 Mutation Strategy 
To avoid premature convergence, a mutation strategy is introduced to enhance the ability 
escaping from the local optima. 
This mutation strategy is designed as follows. At each time, particle j is uniformly random 
selected within the whole swarm, as well as the dimensionality k is also uniformly random 
selected, then, the vjk(t) is changed as follows. 

  (18) 
where r1 and r2 are two random numbers generated with uniform distribution within 0 and 1. 

4.4 The Steps of PSO-ILCSS 
For convenience, we call the individual Linear Cognitive Selection Strategy(Cai X.J. et 
al.,2007;Cai X.J. et al.,2008) as ILCSS, and the corresponding variant is called PSO-ILCSS. 
The detailed steps of PSO-ILCSS are listed as follows. 
• Step l. Initializing each coordinate xjk (0) and vjk (0) sampling within [xmin, xmax], and  

[0, vmax], respectively, determining the historical best position by each particle and the 
swarm. 

• Step 2. Computing the fitness of each particle. 
• Step 3. For each dimension k of particle j, the personal historical best position pjk (t) is 

updated as follows. 

  
(19)

 
• Step 4. For each dimension k of particle j, the global best position pgk (t) is updated as 

follows. 

  
(20)

 
• Step 5. Selecting the self-learning strategy:if strategy one is selected, computing the 

cognitive coefficient c1,j (t) of each particle according to formula (14) and (15); otherwise, 
computing cognitive coefficient c1,j (t) with formula (16) and (17). 

• Step 6. Updating the velocity and position vectors with equations (l)-(3). 
• Step 7. Making mutation operator described in section 4.3. 
• Step 8. If the criteria is satisfied, output the best solution; otherwise, goto step 2. 

4.5 Simulation Results 
Five famous benchmark functions are used to test the proposed algorithm's efficiency. They 
are Schwefel Problem 2.22,2.26, Ackley, and two different Penalized Functions, the global 
optima is 0 except Schwefel Problem 2.26 is -12569.5, while Schwefel Problem 2.22 is 
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unimodel function. Schwefel Problem 2.26,Ackley function and two Penalized Functions are 
multi-model functions with many local minima. 
In order to certify the efficiency, four different versions are used to compare: PSO-ILCSS 
with self-learning strategy one (PSO-ILCSSI), PSO-ILCSS with self-learning strategy two 
(PSO-ILCSS2),standard PSO (SPSO) and Modified PSO with time-varying accelerator 
coefficients (MPSO-TVAC) (Ratnaweera et al., 2004). 
The coefficients of SPSO,MPSO-TVAC,PSO-ILCSS1 and PSO-ILCSS2 are set as follows: the 
inertia weight w is decreased linearly from 0.9 to 0.4. Two accelerator coefficients c1 and c2 
are both set to 2.0 with SPSO, and in MPSO-TVAC, ci decreased from 2.5 to 0.5,while c2 
increased from 0.5 to 2.5. In PSO-ILCSSI and PSO-ILCSS2, the lower bounds clow of c1 set to 
1.0, and the upper bound chigh set to linearly decreased from 2.0 to 1.0, while c2 is set to 2.0. 
Total individual is 100, and the dimensionality is 30, and vmax is set to the upper bound of 
domain. In each experiment,the simulation run 30 times, while each time the largest 
evolutionary generation is 1000. 
Table 2 is the comparison results of five benchmark functions under the same evolution 
generations. The average mean value and average standard deviation of each algorithm are 
computed with 30 runs and listed as follows. 

Function Algorithm Average Mean Value Average Standard Deviation 
SPSO 6.6044e-005 4.7092e-005 

MPSO-TVAC 3.0710e-007 1.0386e-006 
PSO-ILCSS1 2.1542e-007 3.2436e-007 Fl 

PSO-ILCSS2 9.0189e-008 1.3398e-007 
SPSO -6.2474e+003 9.2131e+002 

MPSO-TVAC -6.6502e+003 6.0927e+002 
PSO-ILCSS1 -8.1386e+003 6.2219e+002 F2 

PSO-ILCSS2 -8.0653e+003 7.2042e+002 
SPSO 1.9864e-003 6.0721e-003 

MPSO-TVAC 1.8651e-005 1.0176e-004 
PSO-ILCSS1 3.8530e-008 3.8205e-008 F3 

PSO-ILCSS2 1.3833e-008 1.0414e-008 
SPSO 4.3043e-002 6.6204e-002 

MPSO-TVAC 1.7278e-002 3.9295e-002 
PSO-ILCSS1 9.1694e-012 3.4561e-011 F4 

PSO-ILCSS2 9.7771e-014 4.9192e-013 
SPSO 4.3662e-003 6.3953e-003 

MPSO-TVAC 3.6624e-004 2.0060e-003 
PSO-ILCSS1 9.4223e-013 3.9129e-012 F5 

PSO-ILCSS2 4.6303e-015 1.0950e-014 

Table 11. The Comparison Results of Benchmark Function 

From the Table 2, PSO-ILCSSI and PSO-ILCSS2 both maintain better performances than 
SPSO and MPSO-TVAC no matter the average mean value or standard deviation. The 
dynamic performances of PSO-ILCSSI and PSO-ILCSS2 are near the same with SPSO and 
MPSO-TVAC in the first stage, although PSO-ILCSSI and PSO-ILCSS2 maintains quick 



Individual Parameter Selection Strategy for Particle Swarm Optimization 

 

105 

global search capability in the last period. In one words, the performances of PSO-ILCSSI 
and PSO-ILCSS2 surpasses slightly than which of MPSO-TVAC and SPSO a little for 
unimodel functions, while for the multi-model functions, PSO-ILCSSI and PSO-ILCSS2 
show preferable results. 

5. Individual Social Selection Strategy 
5.1 Individual Linear Social Selection Strategy (ILSSS) 
Similarly with cognitive parameter, a dispersed control manner (Cai et al., 2008) is 
introduced, in which each particle selects its social coefficient value to decide the search 
direction:  or . 
Since the literatures only consider the extreme value , however, they neglect the differences 
between  and . These settings lose some information maybe useful to find the global optima or 
escape from a local optima. Thus, we design a new index by introducing the performance differences, 
and the definition is provided as follows: 

  
(21)

 
where fworst(t) and fbest(t) are the worst and best fitness values of the swarm at time t, 
respectively. Occasionally, the swarm converges onto one point, that means fworst(t) = fbest(t). 
In this case, the value Gradeu (t) of arbitrary particle u is set to 1. Gradeu (t) is an information 
index to represent the differences of particle u at time t, according to its fitness value of the 
current position. The better the particle is, the larger Gradeu (t) is, and vice versa. 
As we known, if the fitness value of particle u is better than which of particle m, the 
probability that global optima falls into m’s neighborhood is larger than that of particle m. In 
this manner, the particle u should pay more attentions to exploit its neighborhood. On the 
contrary, it may tend to explore other region with a larger probability than exploitation. 
Thus, for the best solution, it should make complete local search around its historical best 
position, as well as for the worst solution, it should make global search around . Then, the 
dispersed social coefficient of particle j at time t is set as follows: 

  (22) 

where cup and clow, are two predefined numbers, and c2,j (t) represents the social coefficient of 
particle j at time t. 

5.2 Individual Non-linear Social Selection Strategy(INLSSS) 
As mentioned before, although the individual linear social parameter selection strategy 
improves the performance significantly, however, its linear manner can not meet the 
complex optimization tasks. Therefore, in this section, we introduce four different kinds of 
non-linear manner, and investigate the affection for the algorithm's performance. 
Because there are fruitful results about inertia weight, therefore, an intuitive and simple 
method is to introduce some effective non-linear manner of inertia weight into the study of 
social parameter automation. Inspired by the previous literatures (Chen et al., 2006; Jiang & 
Etorre, 2005), four different kinds of nonlinear manner are designed. 
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The first non-linear social automation strategy is called parabola opening downwards 
strategy : 

  (23) 
The second non-linear social automation strategy is called parabola opening upwards 
strategy: 

  

(24)

 
The third non-linear social automation strategy is called exponential curve strategy: 

  
(25)

 
The fourth non-linear social automation strategy is called negative-exponential strategy: 

  (26) 

5.3 The Steps of PSO-INLSSS 
The detail steps of PSO-INLSSS are listed as follows: 
• Step l. Initializing each coordinate k

jx  and k
jv  sampling within [xmin, xmax] and  

[—vmax,vmax], respectively. 
• Step 2. Computing the fitness value of each particle. 
• Step 3. For k'th dimensional value of j'th particle, the personal historical best position  

is updated as follows. 

  
(27)

 

• Step 4. For k'th dimensional value of j'th particle, the global best position  is updated 
as follows. 

  
(28)

 
• Step 5. Computing the social coefficient c2,j value of each particle according to formula 

(23)- (26). 
• Step 6. Updating the velocity and position vectors with equation (l)-(3) in which social 

coefficient c2 is changed with c2,j. 
• Step 7. Making mutation operator described in section 4.3. 
• Step 8. If the criteria is satisfied, output the best solution; otherwise, goto step 2. 
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5.4  Simulation Results 
To testify the performance of these four proposed non-linear social parameter automation 
strategies, three famous benchmark functions are chosen to test the performance, and 
compared with standard PSO (SPSO), modified PSO with time- varying accelerator 
coefficients (MPSO-TVAC) (Ratnaweera et al., 2004) and individual social selection strategy 
(PSO-ILSSS). Since we adopt four different non-linear strategies, the proposed methods are 
called PSO-INLSSS-1 (with strategy one), PSO-INLSSS-2 (with strategy two), PSO-INLSSS-3 
(with strategy three) and PSO-INLSSS-4 (with strategy four), respectively. The details of the 
experimental environment and results are explained as follows. 

5.4.1  Benchmarks 
In this paper, three typical unconstraint numerical benchmark functions are used to test. 
Rastrigin Function: 

 

where  5.12, and 

 
Ackley Function: 

 

where  32.0, and 
 

Penalized Function: 

 

where  50.0, and 
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5.4.2 Parameter Settings 
The coefficients of SPSO, MPSO-TVAC, PSO-ILSSS and PSO-INLSSS are set as follows: 
The inertia weight w is decreased linearly from 0.9 to 0.4 within SPSO, MPSO-TVAC, PSO-
ILSSS and PSO-INLSSS. Accelerator coefficients c1 and c2 are set to 2.0 within SPSO, as well 
as in MPSO-TVAC, ci decreases from 2.5 to 0.5, while c2 increases from 0.5 to 2.5. For PSO-
ILSSS and PSO-INLSSS, cognitive parameter c1 is fixed to 2.0, while social parameter c2 is 
decreased, whereas the lower bounds of c2 is set to 1.0, and the upper bounds is set from 2.0 
decreased to 1.0. Total individuals are 100, and the velocity threshold vmax is set to the upper 
bound of the domain. The dimensionality is 30 and 50. In each experiment, the simulation 
run 30 times, while each time the largest iteration is 50 x dimension. 

5.4.3 Performance Analysis 
The comparison results of these three famous benchmarks are listed as Table 12-14, in which 
Dim. represents the dimension, Alg. represents the corresponding algorithm, Mean denotes 
the average mean value, while STD denotes the standard variance. 
For Rastrigin Function (Table 12), the performances of all non-linear PSO-INLSSS algorithms 
are worse than PSO-ILSSS when dimension is 30, although they are better than SPSO and 
MPSO-TVAC. However, with the increased dimensionality, the performance of non-linear 
modified variant PSO-INLSSS surpasses that of PSO-ILSSS, for example, the best 
performance is achieved by PSO-INLSSS-3. This phenomenon implies that non-linear 
strategies can exactly affect the performance. 
For Ackley Function (Table 13) and Penalized Function (Table 14), the performance of PSO-
INLSSS-3 always wins. Based on the above analysis, we can draw the following two 
conclusions: 
PSO-INLSSS-3 is the most stable and effective among four non-linear strategies. It is 
especially suit for multi-modal functions with many local optima especially. 

 
 

Dim. Alg. Mean STD 
SPSO 1.7961e+001 4.2276e+000 

MPSO-TVAC 1.5471e+001 4.2023e+000 
PSO-ILSSS 6.4012e+000 5.0712e+000 

PSO-INLSSS-1 6.8676e+000 3.1269e+000 
PSO-INLSSS-2 8.2583e+000 2.3475e+000 
PSO-INLSSS-3 8.8688e+000 1.7600e+000 

30 

PSO-INLSSS-4 1.0755e+001 4.2686e+000 
SPSO 3.9958e+001 7.9258e+000 

MPSO-TVAC 3.8007e+001 7.0472e+000 
PSO-ILSSS 1.5380e+001 5.5827e+000 

PSO-INLSSS-1 1.4329e+001 4.7199e+000 
PSO-INLSSS-2 1.5623e+001 4.4020e+000 
PSO-INLSSS-3 1.3740e+001 4.3426e+000 

50 

PSO-INLSSS-4 2.1975e+001 5.6844e+000 

Table 12. Comparison Results for Rastrigin Function 
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6. Conclusion and Future Research 
This chapter proposes a new model incorporated with the characteristic differences for each 
particle, and the individual selection strategy for inertia weight, cognitive learning factor 
and social learning factor are discussed, respectively. Simulation results show the individual 
selection strategy maintains a fast search speed and robust. Further research should be made 
on individual structure for particle swarm optimization. 

 

Dim. Alg. Mean STD 
SPSO 5.8161e-006 4.6415e-006 

MPSO-TVAC 7.5381e-007 3.3711e-006 
PSO-ILSSS 4.7853e-011 9.1554e-011 

PSO-INLSSS-1 1.8094e-011 1.8533e-011 
PSO-INLSSS-2 1.1870e-011 2.0876e-011 
PSO-INLSSS-3 5.2100e-013 5.5185e-013 

30 

PSO-INLSSS-4 3.2118e-010 2.2272e-010 
SPSO 1.7008e-004 1.2781e-004 

MPSO-TVAC 4.4132e-002 1.9651e-001 
PSO-ILSSS 1.5870e-008 1.7852e-008 

PSO-INLSSS-1 2.3084e-008 3.6903e-008 
PSO-INLSSS-2 1.1767e-008 1.3027e-008 
PSO-INLSSS-3 4.7619e-010 1.4337e-009 

50 

PSO-INLSSS-4 3.4499e-008 4.7674e-008 

Table 13. Comparison Results for Ackley Function 
 

Dim. Alg. Mean STD 
SPSO 5.4943e-004 2.45683e-003 

MPSO-TVAC 9.3610e-027 4.1753e-026 
PSO-ILSSS 5.1601e-023 1.7430e-022 

PSO-INLSSS-1 6.0108e-020 1.5299e-019 
PSO-INLSSS-2 4.5940e-021 6.2276e-021 
PSO-INLSSS-3 9.7927e-024 1.6162e-023 

30 

PSO-INLSSS-4 1.0051e-016 1.9198e-016 
SPSO 6.4279e-003 1.0769e-002 

MPSO-TVAC 4.9270e-002 2.0248e-001 
PSO-ILSSS 1.6229e-017 3.9301e-017 

PSO-INLSSS-1 6.2574e-015 1.3106e-014 
PSO-INLSSS-2 1.6869e-014 3.3596e-014 
PSO-INLSSS-3 6.2959e-018 5.6981e-018 

50 

PSO-INLSSS-4 8.0886e-013 3.7972e-013 

Table 14. Comparison Results for Penalized Function 
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1. Introduction      
 Optimization problems are frequently encountered in many engineering, economic or 
scientific fields that engineers or researchers are seeking to minimize cost or time, or to 
maximize profit, quality or efficiency, of a specific problem. For example, economic dispatch 
of power generation, optimal allocation of resources for manufacture, design optimal plant 
to maximize production, and so many which are unable to enumerate completely. In 
addition, many optimization problems are very complex and hard to solve by conventional 
gradient-based techniques, particularly the objective function and constraint are not in 
closed forms. Thus, the development of a good optimization strategy or algorithm is of great 
value. 
In the past decade, particle swarm optimization (PSO) algorithm [Eberhart & Kennedy 1995, 
Kennedy and Eberhart 1995] attracts many sights around the world due to its powerful 
searching ability and simplicity. PSO simulates the swarm behavior of birds flocking and 
fish schooling that swarms work in a collaborative manner to search for foods as efficient 
and quick as possible. There are three different types of PSO which are frequently 
encountered in literature. They are constriction type PSO, constant inertia weight PSO and 
linearly decreasing inertia weight PSO. Each of them has been successfully applied to many 
optimization problems. 
While empirical studies have proven PSO’s usefulness as an optimization algorithm, it does 
not always fit all problems. Sometimes, it may also get stuck on local optimal. In order to 
improve the performance, many variants of PSO have been proposed. Some of the proposed 
algorithms adopted new operations and some of the modifications hybridized with other 
algorithm. Although they are claimed better than original PSO algorithm, most of them will 
introduce extra mathematical or logical operations, which, in turn, making algorithm more 
complicate and spending more computing time. Especially, they, in general, did not present 
any theoretical models to describe its behavior and support such modifications. 
Many researchers have devoted to study how PSO works. They intended to discover the 
implicit properties of PSO and its weakness and strength via theoretical analysis. The first 
attempt to analysis PSO is made by Kenndey [Kennedy, 1998]. Meanwhile, Ozcan and 
Mohan showed that a particle in a simple one-dimensional PSO system follows a path 
defined by a sinusoidal wave with random amplitude and frequency. However, the effects 
of inertia weight are not addressed in that paper [Ozcan & Mohan, 1999]. In order to analyze 
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the dynamics of PSO, Yasuda proposed a generalized reduced model of PSO accounting for 
the inertia weight. The stability analysis is carried out on the basis of both the eigenvalue 
analysis and numerical simulation [Yasuda et al., 2003]. Trelea has carried out a convergence 
analysis of PSO and then derived a graphical parameter selection guideline to facilitate 
choosing parameters [Trelea, 2003]. 
A formal analysis of the PSO is carried out by Clerc and Kennedy [Clerc & Kennedy, 2002]. 
By treating the random coefficients as constants, the analysis started from converting the 
standard stochastic PSO to a deterministic dynamical system. The resulting system was a 
second-order linear dynamic system whose stability depended on the system’s eigenvalues. 
The parameter space that guarantees stability is also identified. A similar analysis based on 
deterministic model of the PSO was also carried out in identifying regions in the parameter 
space that guarantee stability [van den Berg, 2002]. Recently, stochastic convergence analysis 
of the standard PSO is reported in [Jian, 2007], where a parameter selection guide is also 
provided to ensure the convergence. 
Similar to genetic algorithm or evolutionary algorithm,  PSO is also a population-based 
optimization technique. PSO searches for optimal solution via collaborating with 
individuals within a swarm of population. Each individual, called particle, is made of two 
parts, the position and velocity, and proceeds according to two major operations, velocity 
and position updating rules. Position and velocity represent the candidate solution and step 
size, a particle will advance in the next iteration, respectively. For an n-dimensional problem 
and a swarm of m particles, the i-th particle’s position and velocity, in general, are denoted 
as xi=[xi1, xi2, …, xin]T and vi=[vi1, vi2, …, vin]T, for i=1, 2, …, m, respectively, where m is the 
number of particles, and superscript T stands for the transpose operator. Considering on the 
inertia weight  PSO, the operations of position and velocity are expressed as: 

 (t))x(prnd(1)c(t))x(prnd(1)c(t)vω1)(tv idid2idgd1idid −⋅⋅+−⋅⋅+⋅=+  (1) 

 1)(tv(t)x1)(tx ididid ++=+  (2) 

where ω is the inertia weight; c1 and c2 are two positive constants called acceleration 
constants; rnd(1) is a uniform random number in (0,1); d is the index of dimension; pg and pi 
are the best position ever found by all particles and the best position a particle ever found so 
far, respectively;  t is the iteration count. Hereafter, pg and pi will be called the global best 
and personal best particle of the swarm, respectively, in this chapter. 
Personal best oriented particle swarm optimizer (PPSO), also a varient of particle swarm 
optimization, is a newly developed optimization solver [Chen & Yeh, 2006a ]. PPSO uses the 
same velocity updating rule as PSO. However, the position updating rule is replaced by (3). 

 1)(tvp1)(tx ididid ++=+   (3) 

The modification came from the observation that since pid is the best particle ever found so 
far, it may locate around the vinicity of the optimal solution. Fotunately, previous studies 
showed that PPSO performs well both in testing on a suite of benchmark functions  and 
applying to economic dispatch  problems of the power system and others [Chen & Yeh, 
2006a, 2006b, 2007, 2008]. However, all the results were obtained from emperical studies. 
The main drawback of PPSO may lie in a fragile theory basis at first galance. No theoretical 
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analysis has been found in literature, although it not only can help reveal the behavior of 
particles but also the convergent property of the proposed approach. 
This chapter presents a therotical analysis of PPSO. Based on the analysis, the implicit 
behavior of PPSO will be revealed. Meanwhile, it also provide a guideline for parameters 
selection. It is well-known that the particle’s trajectory of PSO is characterized by a second-
order difference equation. However, it will be clear later that a first order difference 
equation is sufficient to characterize the particle’s behavior of PPSO. A simple mathematical 
model can help one easily grasp the features of PPSO and convergent tendency. 

2. Analysis of PPSO 
This section intends to construct the mathematical model of PPSO and, based on the 
developed model, study the property of PPSO. The analysis is started from a simplified 
deterministic model, a single particle and one dimension case, keeping all the parameters  
constants. After that, assuming some parameters be uniformly distributed random numbers, 
a stochastic model is then built to simulate the nature of PPSO in the next section.  

2.1 Simple PPSO: one particle and one dimension case 
Each particle in PPSO represents a candidate solution of a specific problem. In other words, 
a particle is a position in a multidimensional search space in which each particle attempts to 
explore for an optimal solution with respect to a fitness function or objective function. In this 
section, a simple PPSO is first derived on which the following analysis is based.  
The canonical form of PPSO is represented as . 

 ( ) ( )(t)xpφ(t)xpφ(t)vω1)(tv idid2idgd1idid −⋅+−⋅+⋅=+  (4) 

 ididid p1)(tv1)(tx ++=+   (5) 

where ϕ1 = c1⋅rnd(1) and ϕ2 = c2⋅rnd(1) are two random numbers drawn uniformly from (0, 
c1) and (0, c2), respectively.  
Since (4) and (5) operate on each dimension exclusively, for notation simplicity, one can 
omit the subscript i and d of xid and vid, and retain subscript g and i of pg and pi to 
emphasize the difference between them. The analysis given below considers only one 
particle and one dimensional case. However, the results can easily be extended to 
multidimensional case without losing generality. 
Eqations (4) and (5) can now be rewritten as: 

 ( ) ( )x(t)pφx(t)pφv(t)ω1)v(t i2g1 −⋅+−⋅+⋅=+  (6) 

 ip1)v(t1)x(t ++=+   (7) 

Substituting (6) into (7), one has: 

 ( ) ( ) ii2g1 px(t)pφx(t)pφv(t)ω1)x(t +−⋅+−⋅+⋅=+  (8) 

Since 

 ipv(t)x(t) +=   (9) 
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It has 

 ipx(t)v(t) −=   (10) 

and 

 ( ) ( ) ( ) ii2g1i px(t)pφx(t)pφpx(t)ω1)x(t +−⋅+−⋅+−⋅=+  (11) 

Rearranging (11), it becomes 

 i2g1 pω)φ(1pφφ)x(t)(ω1)x(t ⋅−++⋅=−−+  (12) 

where ϕ = ϕ1 + ϕ2. Obviously, a first-order linear difference equation is sufficient to 
characterize the dynamic behaviors of the simple PPSO.  

2.2 Deterministic model of PPSO 
Now assume that both pi and pg are constants. Also assume that ϕ1  and ϕ2  are two 
constants. It turns out that the PPSO becomes a deterministic model described by a first-
order linear difference equation with constant coefficients. If the right-hand side of (12) is 
nonzero, it is a nonhomogeneous linear difference equation. The total solution of a 
nonhomogeneous linear difference equation with constant coefficients is the sum of two 
parts, the homogeneous solution, which satisfies the difference equation when the right-
hand side of the equation is zero, and the particular solution, which satisfies the difference 
equation with a nonzero function F(t) on the right-hand side. 
The homogeneous solution of a difference equation with constant coefficient is of the form 
Aλt, where λ is called the characteristic root of the difference equation and A is a constant to 
be determined by the boundary (initial) condition.  
The homogeneous solution and particlar solution of (12) can be obtained readily 

 t
h φ)A(ω(t)x −=   (13) 

and  

 ω)φ]/(1pω)φ(1p[φ(t)x i2g1p −+⋅−++⋅=  (14) 

 
Here, subscript h and p are used to denote the homogeneous solution and particular 
solution. The total solution of (12) become  

 w
t pφ)A(ωx(t) +−=   (15) 

where 

 ω)φ]/(1pω)φ(1p[φp i2g1w −+⋅−++⋅=   (16) 

is called the weighted mean of pg and pi. Given the initial condition x(0)=x0, the dynamic 
property of a particle is completely characterized by 

 w
t

w0 pφ))(ωp(xx(t) +−−=   (17) 
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where x0 is the initial vale of x(t) and A = (x0 - pw). Equation (12) and (17) represent the 
position or trajectory that a particle may explore in implicit and explicit form. 

2.2.1 Convergence property of the deterministic PPSO 
Apparently, if (ω - φ) satisfies the following condition 

 1φ)(ω <−   (18) 

or 

 1φ)(ω1 <−<−   (19) 

Then 

 ( ) wt
px(t)lim =

∞→
  (20) 

The limit does exist whenever pw is an arbitrary point in the search space, i.e., pw is finite. It 
is obvious that if 0 < ω < 1, it leads to (1 + ϕ - ω) > 0 since ϕ = ϕ1 + ϕ2 > 0, and the weighted 
mean pw is finite. 
Hereafter, finite pw and 0 < ω < 1 are assumed, unless stated explicitly. The feasible region in 
which x(t) is strictly converges for 0<ω<1 and -1<ϕ< 2 is plotted in Fig.1, where the gray 
area is the feasible region if stability is concerned, and the dark line on the center 
corresponds to ω = ϕ. 

 
Figure 1. The gray region is the feasible region which particle strictly converges for 0 < ω < 1 
and -1< ϕ < 2. The centered dark-line on the gray area corresponds to ω = ϕ 

2.2.2 Step size 
The span the particle advances in the next step is calculated using the successive positions at 
t and (t+1), 
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 w
t

w0 pφ))(ωp(xx(t) +−−=   (21) 

and 

 w
1t

w0 pφ))(ωp(x1)x(t +−−=+ +
  (22) 

Define the step size as 

 t
w0 φ))(ωp1)(xφ(ω

x(t)1)x(tΔx(t)

−−−−=

−+≡
  (23) 

Since 

 x(t))(pφ))(ωp(x w
t

w0 −−=−−   (24) 

It has 

 dx1)φ(ωΔx(t) ⋅−−−=  (25) 

where  

 x(t))(pdx w −≡   (26) 

is the distance between the current position x(t) and the weighted mean, pw. Equation (26) 
tells that the step size is a multiple, defined by –(ω - ϕ - 1), of the distance between x(t) and 
pw. If –(ω - ϕ - 1) is positive, x(t) moves in aligning with the direction from current position 
to pw and, if –(ω - ϕ - 1) is negative, x(t) moves on the opposite side. The former make 
particles moving close to pw and the latter make particles get far way from pw. 
Now, define a step size control factor, δ, as: 

 1)φ(ωδ −−−≡   (27) 

Then 

 dxδΔx(t) ⋅=   (28) 

Obviously, how long a particle will advance in next turn is controlled by the step size 
control factor δ. A large δ makes a particle to move far away from current position and a 
small value of δ makes a particle moving to nearby area.  
Meanwhile, it is interesting to note that if 0 < δ < 2, (27) becomes to 

 21)φ(ω0 <−−−<   (29) 

or 

 1φ)(ω1 <−<−  (30) 

This agrees with (19). In other words, if the step size control factor satisfies 0 < δ < 2, the 
deterministic PPSO converges to pw. Otherwise, it diverges. 
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Clearly, under condition 0 < δ < 2, the deterministic PPSO is stable, otherwise, it is unstable. 
Since δ is a function of ω and ϕ, the choices of ω and ϕ affect the magnitude of the step size 
control factor, or, in other words, affect the stability of PPSO. 
Returning to (30), there are two cases are especially worthy to pay attention: 
(a) 0< (ω - ϕ) < 1 

This case corresponds to 

 1δ011)φ(ω0 <<⇒<−−−<  (31) 

In such situation, x(t+1) moves to the region to the left of pw whenever pw is greater than 
x(t), or the region to the right of pw whenever pw is less then x(t). 
(b) -1 < (ω - ϕ) < 0 

This case corresponds to 

 2δ121)φ(ω1 <<⇒<−−−<  (32) 

This means that x(t+1) advances to the region to the right of pw whenever pw is less than x(t), 
or the region to the left of pw whenever pw is greater then x(t). 
These two cases are illustrated in Figs.2 and 3. It is apparent that the step size control factor 
affects how far the particle moves. Since the step size is proportional to δ, a large δ 
corresponds to advancing in a large step and small δ corresponds to small step. Moreover, a 
positive δ makes x(t) move along the direction from x(t) to pw ,while a negative δ causes it 
move along the opposite direction. By controlling δ, or equivalently (ω - ϕ), particles 
movement will be totally grasped. It is expected that if δ is uniformly changed in (0, 2), then 
x(t) will vibrate around the center position, pw, the weighted midpoint of pg and pi. This is a 
very important property of PPSO. Similar phenomenon has been observed [Kennedy, 2003] 
and verified theoretically in PSO [Clerc & Kennedy, 2002].  

2.2.3 Parameters selection 
Equation (27) defines the step size control factor. It provides clues for determining 
parameters. First, confine the step size control factor within (δmin, δmax), where δmin and δmax 
are the lower and upper limits of the step size control factor, respectively, it turns out that 

 maxmin δ1)φ(ωδ <−−−<  (33) 

After proper rearrangement, (33) becomes 

 1)ω(δφ1)ω(δ maxmin −+<<−+  (34) 

According to (34), once the lower and upper bounds of the step size control factor are 
specified, the range of ϕ depends on ω. The most important is that a stable PPSO requires, 
based on (29), δmin = 0 and δmax =2. Substituting these two values into into (34), it has 

 ω1φ1ω +<<−  (35) 

Equation (35) says that, if ϕ uniformly varies from (ω - 1) to (ω + 1), x(t) will explore the 
region from (pw - dx) to (pw + dx). It also implies that it is possible to use a negative value of 
ϕ while PPSO is still stable. This fact has been shown in Fig.1. 
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Figure 2. The next position, x(t+1), a particle will move to for 0 < δ < 1, (a) pw > x(t) and (b) 
pw < x(t) 

 
Figure 3. The next position, x(t+1), a particle will move to for 1 < δ < 2, (a) pw > x(t) and (b) 
pw < x(t) 

Since ϕ1 and ϕ2 are both positive numbers, so is ϕ. Fig.4  shows the case that ϕ is positive 
and is restricted to 0 < ϕ < 2. 
If ω is assigned, from (27), one also has 

 ϕmin +1 - ω < δ < ϕmax +1 - ω (36) 
where ϕmin and ϕmax are the lower and upper limits of ϕ. Thus, one can use (36) to predict 
the range the particle attempts to explore for a specific range of ϕ, if ω is given. From (36), 
one can also readily verify that ϕmin = ω - 1 and ϕmax = ω + 1 result in δ = 0 and 2, 
respectively, agreeing with (29). 
A graph of step size control factor versus φ with ω as parameter is plotted in Fig.5 for 0 < ϕ < 
2 and 0 < ω < 1. The gray area corresponds to convergent condition since 0 < δ < 2. One can 
use this graph to evaluate whether the selected parameters result in convergence or not. 

 
Figure 4. The feasible region for 0 < ω < 1 and 0 < ϕ < 2 
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Figure 5. A plot of step size control factor δ versus ϕ with ω as parameter 

2.2.4 Stability 
The stability criterion imposed upon the deterministic PPSO is directly obtained from (18), 
i.e, |(ω - ϕ)| < 1. However, based on (29), an implication of stability means that the step size 
control factor needs to meet the requirement 0 < δ < 2. Hence, stability of the deterministic 
PPSO can be described by one of the following rules: 

(a) | (ω - ϕ)| < 1 
or 

(b) 0 < -( ω - ϕ - 1) < 2 

2.2.5 Equilibrium point 
According to the above analysis, one can conclude that, for a stable deterministic PPSO, each 
particle moves in discrete time along the trajectory defined by (12) or (17), with specific step 
size, and finally settles down at an equilibrium point pw. The equilibrium point is a function 
of ϕ1 and ϕ2. Referring to (16), one can readily verify that if ϕ1 > (1 + ϕ2 - ω), the equilibrium 
point pw biases to pg, and biases to pi if ϕ1 ≤ (1 + ϕ2 - ω). However, the equilibrium point 
found in PSO is the midpoint of pg and pi since ϕ1 = ϕ2 is usually used in PSO.  

3.Stochastic PPSO 
Instead of constants, now, restore both ϕ1 and ϕ2 to be uniform random numbers in (0, c1) 
and (0, c2), respectively. The model of (12) and (17) are still applied except that ϕ1 and ϕ2 are 
now two uniform random numbers. Analysis of the dynamic behavior of this stochastic 
PPSO will be given by extending the analysis provided in the previous section, with the 
replacement of expectation value for ϕ1 and ϕ2 as well as x(t) from the probabilistic point of 
view. In the following analysis, the terms mean value, or simply mean, and expectation 
value will be used alternatively, in a looser mathematical standard, in the context. 

3.1 Convergent property 
Considering the explicit representation, Eq.(17), of the trajectory of a particle, since ϕ1 and ϕ2 
are both uniform random numbers, the averaged dynamic behavior of a particle can be 
observed by its expectation value, i.e. 
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( ) ( )

( )( )

t
0 w w

t
0 w w

E x(t) E (x p )(ω φ) p

x E(p ) ω E(φ) E(p )

= − − +

= − − +
 (37) 

where E(x(t)), E(pw), and E(ϕ) are the expectation value of x(t), pw and ϕ, respectively. Here, 
ϕ1 and ϕ2 are assumed to be two exclusive uniform random numbers; and E(ϕ) = E(ϕ1) + 
E(ϕ2). Apparently, if the condition 

 1 < ω - E(ϕ)) < 1 (38) 

is true, then  

 ( ) )E(px(t)Elim wt
=

∞→
 (39) 

According to (39), the trajectory of each particle converges to a random weighted mean, 
E(pw), of pg and pi, where 

 

( )

ω)E(φ)E(φ1
pω))E(φ(1p)E(φ

ω)φ]/(1pω)φ(1p[φE)E(p

21

i2g1

i2g1w

−++
⋅−++⋅

=

−+⋅−++⋅=
 (40) 

Since 
 1ω0ifω)E(φ)E(φ1 21 <<>++  (41) 

E(pw) is finite for 0 < ω < 1, 0 < E(ϕ1) and 0 < E(ϕ2) as well as finite pi and pg. 
Owing to ϕ1 and ϕ2 are both uniform random numbers in (0, c1) and (0, c2), respectively, it 
has E(ϕ1) = 0.5c1, E(ϕ2) = 0.5c2 and E(ϕ) = E(ϕ1 + ϕ2) = 0.5(c1 + c2). Thus, (40) becomes 

 

ω)c0.5(c1
pω)0.5c(1p0.5c

ω)E(φ)E(φ1
pω))E(φ(1p)E(φ

)E(p

21

i2g1

21

i2g1
w

−++
⋅−++⋅

=

−++
⋅−++⋅

=
 (42) 

Obviously, for a stochastic model of PPSO, the random weighted mean pw is different from 
that obtained by deterministic model of PSO and PPSO. Meanwhile, for  0 < ω < 1, E(pw) 
bias to pi. This means that particle will cluster to pi instead of pg.   

3.2 Step size 
Similar to deterministic PPSO, the step size of the stochastic PPSO can be computed by 

( )E Δx(t) = E(x(t+1))-E(x(t))  
 = - (ω - E(ϕ) - 1)(E(pw) - E(x(t))) (43) 

 = - (ω - 0.5(c1 + c2) - 1)E(dx) 
where  

 E(x(t)))E(pE(dx) w −=  (44) 
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For a stochastic PPSO, the mean (expectant) step size a particle will move in next turn is 
computed from (43), which is a multiple of the mean distance between the random weighted 
mean E(pw) and mean current position E(x(t)). Similar to deterministic PPSO, the mean step 
size control factor is defined as 

 E(δ) = - (ω - E(ϕ) - 1) (45) 

The step size and step size control factor are no longer static values but stochastic ones. 
Furthermore, for 0 < E(δ) < 2, from (45), it also has  

 -1 < -(ω - E(ϕ) ) < 1 (46) 

Actually, (46) is the same as (38). Rearranging (46), one has 

 ω1)E(φ1ω +<<−  (47) 

Equations (46) and (47) are similar to (30) and (35), respectively, except that the constant ϕ 
(=ϕ1 + ϕ2) is replaced by sum of the expectation values of two random numbers. As 
concluded in the previous section, a stable stochastic PPSO equivalently means that the 
mean step size control factor of each particle’s movement must be within the range of 0 < 
E(δ) < 2. In other words, if E(ϕ) lies between (ω -1) and (1 + ω), the system is stable. 

3.3 Parameter selection for stochastic PPSO 
This subsection discusses how to choose proper parameters for PPSO. 

3.3.1 Inertia weight 
Recall that E(ϕ) is a positive number since ϕ is the sum of two uniformly random numbers 
varying between (0, c1) and (0, c2), where c1 and c2 are two positive numbers. Now, consider 
the step size control factor governed by (45) for ω chosen from the following ranges: 
(a) 1 < ω, it has 

 E(δ) < E(ϕ) (48) 
(b) 0 < ω < 1, it has  

 ( )φE1)E(δ)E(φ +<<  (49) 

(c) -1 < ω < 0, it has  

 1 + E(ϕ) < E(δ) < 2 + E(ϕ) (50) 
(d) ω < -1, it has  

 2 + E(ϕ) < E(δ) (51) 
If E(ϕ) is assigned, Eqs.(48)-(51) specify the average possible value of step size control factor 
for different choosing ranges of inertia weight ω. For example, if E(ϕ) =1.5, E(δ) are 1.25,  
1.75, 2.75 and 3.75 for ω = 1.25, 0.75, -0.25 and -1.25, respectively. Clearly, it is improper to 
have a minus value of ω since it will make particle violate the stability rule, i.e., the 
trajectory of particle diverges.  
To have a better vision of parameter selection for ω > 1 and 0 < ω < 1,  it is better to explain 
with figure as illustrated in Figs.6 and 7 where the dotted lines represent the domain a 
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particle may visit in next turn for the cases ω = 1.25 and 0.75 under the condition of E(ϕ) 
=1.5. The cross sign in the midpoint of two ellipses is the center of the search range. Here, 
only the case that E(pw) located to the right of E(x(t)) is shown. However, similar aspects can 
be observed for E(pw) located to the left of E(x(t)).  
Since E(ϕ) =1.5, the uniform random number ϕ varies from 0 to 3. The lower and upper step 
size control factors are -0.25 and 2.75, respectively, for ω = 1.25. These values are calculated 
using Eq.(27) . It is seen then in Fig.6 that the search area extends from -0.25E(dx) to 
2.75E(dx). Although the upper value of E(δ) is greater than the upper limit of the step size 
control factor, the expectation value of the step size control factor is 1.25, which obeys the 
stability rule given in Eq.(38). From Fig.6, one can also find that if ω is greater than unity, 
particle is possible to search the region to the left of E(x(t)). Meanwhile, the greater  ω is, the 
more the search area shift to left of E(x(t)), which will reduce diversity of particle because 
particles move to the vinicity of E(x(t)).  Now, refer to Fig.7, for ω = 0.75 and E(ϕ) =1.5,the 
searach domain are in 0.25E(dx) and 3.25E(dx) with  mean of 1.75E(dx). This parameter 
setting also obeys the stability criterion. It seems both cases of parameter choice is proper. 
However, refer to Eq.(37), the trajectory of a particle is mainly governed by the term (ω - 
E(ϕ))t. If (ω - E(ϕ)) is too small, E(x(t)) will vanish quickly and particle may get stuck on local 
optimum. In other words, the value of (ω - E(ϕ)) represents an index for evaluation of the 
prematurity of particles. Therefore, it is better to have 0 < ω < 1, and empirical studies have 
shown that it is proper to choice of inertia weight in 0.7 < ω < 0.8. 

 
Figure 6. The area the particle will explore for ω = 1.25 and E(ϕ) = 1.5 

 
Figure 7. The area the particle will explore for ω = 0.75 and E(ϕ) = 1.5 

3.3.2 Acceleration coefficient  
Recall that c1 and c2 are referred to acceleration coefficients, and ϕ is the sum of two uniform 
random numbers in (0, c1) and (0, c2). The lower and upper limits of ϕ are then 0 and (c1+c2), 
respectively. To determine c1 and c2, it has to consider from three aspects: prematurity, 
population diversity and particle stability.  
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If ϕ varies from 0 to (c1+c2) uniformly, from Eq.(27), the lower bound of the step size control 
factor is determined by the choice of ω, i.e., 

 1ωδmin +−=  (52) 

while the upper bound is set by ω, c1 and c2, which is 

 1)c(cωδ 21max +++−=  (53) 

For simplicity, it usually has c1=c2=c, Eq.(53) becomes 

 1c2ωδmax ++−=  (54) 

Accounting for stability, in terms of step size control factor, staibility criterion is descibed as 

 ( ) 2δE0 <<  (55) 

Approximate the expectation value E(δ) by the average value of δmin and δmax, it has 

 ( ) 1c-ωδE ++=  (56) 

Based on (56), one can determine the acceleration coefficients once ω and E(δ) is assigned. 
For example, let ω = 0.75 and E(δ) = 1.75  (stisfies Eq.(55)), solve Eq.(56) for c. It is obtained  
c=1.5. The acceleration coefficients are then set to c1=c2=1.5.  The lower and upper bounds of 
the step size control factor computed by Eq.(52) and Eq.(54) are 0.25 and 3.25, respectively. 
The range the particle will search is shown in Fig.7 for this example. It is seen that the search 
domain stretchs over from 0.25E(dx) to 3.25E(dx), where E(dx) = E(pw) – E(x(t)) is the 
distance between expectation values of the random weighted mean, pw, of pg and pi and 
current particle position x(t).  
Of course, this is not the unique parameters setting for PPSO. Frequently, it is required to 
compare the performances between PSO and PPSO. In such situation, the common used 
parameters for PSO (ω=0.729, c1=c2=1.494) fit to PPSO since E(ϕ) = 1.494, and E(δ) = 1.765 
which satisfies Eq.(55).  

3.4 Equilibrium point 
Both PPSO and PSO define the particles as potential solutions to a problem in a multi-
dimensional space with a memory of its ever found best solution and the best solution 
among all particles. PPSO generates a sequence of x(t) iteratively, and if x(t) is a stable 
sequence, it has 

 )E(px(t)lim wt
=

∞→
 (57) 

where the random weighted mean E(pw) defined in (42) is the equilibrium point of the 
sequence. As an optimization solver, it is expected that E(pw) is the optimum solution. It is 
seen from (57) that if pg = pi = p, E(pw) = p. This means that particle settles down at the 
global best ever found, i.e., PPSO is expected to constantly update the personal best and 
global best solutions ever found, and finally converges to E(pw)= pg = pi, the optimum 
solution or near optimum solution of the problem at hand.  
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Note that the random weighted mean of PSO is defined as [Kennedy, 1999 and van den 
Bergs, 2003] 

 
21

i2g1
w cc

pcpc
p

+
⋅+⋅

=  (58) 

Oviuously, the particles of PSO and PPSO will converge to different equilibrium points. 
Therefore,  in additon to the equilibrium points,  the trajectories of PSO and PPSO are also 
different since trajectories of PPSO and PSO are characterised by a first-order and second-
order difference equations [Trelea, 2003, Yasuda et al., 2003, van den Bergh, 2003], 
respectively. These are the distinctive features of PSO and PPSO. 

4. Example Trajectories 
To see the properties between PSO and PPSO, the trajectories the particle traversed are 
investigated by a primitive PSO and PPSO model, where pg and pi are set as two arbitrarily 
constants. To keep thing simple and have a better observation, trajectories of one dimension 
are considered here. Both the trajectories are generated with same initial condition, i.e., same 
initial values for position and velocity. Meanwhile, both PSO and PPSO use the same value 
for the parameters, ω, c1 and c2 that they are set as ω=0.729 and c1=c2=1.494. Each of the 
trajectories is constructed by 10000 points and, for fair comparison, each points is generated 
using the same random numbers for both PSO and PPSO at each time step.  
The pseudo-code for generating the trajectories is shown in Fig.8, where x(t) and y(t) are the 
positions of PSO and PPSO at time step t;  vx(t) and vy(t) represent the velocity of PSO and 
PPSO, respectively; x(0) and y(0) is the initial positions, vx(0) and vy(0) are the initial 
velocities of PSO and PPSO, respectively.  

1 2 g i

1 1 2 2

1 g 2 i

1 g

/* pseudo code for evaluation PSO and PPSO */
Set ω, c , c , p and p ;
Initialize x(0), y(0), vx(0) and vy(0);
For t 1 to 10000 {

c rnd(1); c rnd();
vx(t) ω vx(t 1) (p x(t 1)) (p x(t 1));
vy(t) ω vy(t 1) (p y

−

=
ϕ = ⋅ ϕ = ⋅

= ⋅ − + ϕ ⋅ − − + ϕ ⋅ − −
= ⋅ − + ϕ ⋅ − 2 i

i

(t 1)) (p y(t 1));
x(t) vx(t) x(t 1);
y(t) vy(t) p ;

}
/* End */

− + ϕ ⋅ − −
= + −
= +

 

Figure 8. Pseudo-code for evaluating the trajectories of PSO and PPSO 

Figure 9 and 10 depicted examples of the trajectories of PSO and PPSO. These plots are 
obtained with pg, pi, x(0), y(0) vx(0) and vy(0) that are arbitrarily set to -50, 10, 0, 0, 20 and 
20, respectively. The gray lines in the centre of the figures represent the mean values of x(t) 
and y(t). They are denoted as μx and μy for x(t) and y(t), respectively. It is seen obviously 
that both the trajectories of PSO and PPSO randomly vibrate, or oscillate around the mean 
values within a limited ranges. The mean values are obtained as μx = -20.009, and μy = -
15.288.  These two values very close to the theoretical random weighted mean of pg and pi, 
defined in (58) and (42) for PSO and PPSO, which are calculated to be -20 and  -15.394. 
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Furthermore, the minimum and maximum values of x(t) are -697.131 and 706.212, while the 
minimum and  maximum values of y(t) are -713.624 and 676.268. 

 
Figure 9. Sample trajectory of x(t) for PSO with pg=-50, pi=10, x(0)=0 and vx(0)=20 

 
Figure 10. Sample trajectory of y(t) for PPSO with pg=-50, pi=10, y(0)=0 and vy(0)=20 

Recall that PSO has bell-shaped distribution of the trajectory centred approximately at pw, 
i.e., the weighted mean which equals to the midpoint of pg and pi [Kennedy, 2003]. This 
feature also has been observed in PPSO. Refer to Figs.(11) and (12), the histogram plots of  
the distribution of x(t) and y(t) are illustrated.  In these figures, the distributions of the 
trajectories are drawn in grey lines and the vertical dash-line denoted the mean value of the 
trajectory. The horizontal and vertical axes represent the values of the trajectory and the 
occurrences a particle ever explored. The plots of the horizontal axis extend from (μx - 3σx) to 
(μx + 3σx ) and (μy - 3σy) to (μy + 3σy ) for PSO and PPSO, respectively, where σx and σy are 
the standard deviations of x(t) and y(t). Obviously, the distribution of the trajectory of the 
PPSO is also a bell-shaped centred at the random weighted mean.  For a comparison, the 
normal distribution with mean μx and standard deviation σx for PSO and mean μy and 
standard deviation σy for PPSO are drawn in thick solid lines. Clearly, although PSO and 
PPSO works based on different mathematical models, they have similar dynamic behaviour. 
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Figure 11. The histogram plot of x(t) for PSO with pg=-50, pi=10, x(0)=0 and vx(0)=20 

 
Figure 12. The histogram plot of y(t) for PPSO with pg=-50, pi=10, y(0)=0 and vy(0)=20 

 
Figure 13. Sample trajectory of x(t) for PSO with pg = 0, pi = 100, x(0) = 10 and vx(0) = -2 

 
Figure 14. Sample trajectory of y(t) for PPSO with pg = 0, pi = 100, y(0) = 10 and vy(0) = -2 
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Another samples of trajectory for different setting of pg and pi as well as initial condition are 
show in Figs.13 and 14 where pg, pi, x(0), y(0) vx(0) and vy(0) are arbitrarily chosen as 0, 100, 
10, 10, -2 and -2, respectively. With pg = 0 and pi = 100, the random weighted mean, pw, of 
PSO and PPSO are 50 and 57.677. Meanwhile, the mean values, μx and μy, are 50.588 and 
57.609 for PSO and PPSO. The minimum and maximum values are -3.249×103 and 3.550×103 
for x(t) and -1.639×103 and 2.941×103 for y(t). Apparently, both the trajectories also oscillate 
around the random weighted mean within a specific domain, which are verified further in 
the histogram plots shown in Figs.(15) and (16). 

 
Figure 15. The histogram plot of x(t) for PSO with pg = 0, pi = 100, x(0) = 10 and vx(0) = -2 

 
Figure 16. The histogram plot of y(t) for PPSO with pg = 0, pi = 100, y(0) = 10 and vy(0)= -2 

5. Conclusion 
This chapter intends to provide a theoretical analysis of PPSO to clarify the characteristics of 
PPSO. The analysis is started from a simplified deterministic model, a single particle and 
one dimension case, keeping all the parameters constants. After that, assuming the 
acceleration coefficients as uniformly distributed random numbers, a stochastic model is 
then built to describe the nature of the PPSO. With the assumption, it is shown that a first-
order difference equation is sufficient to describe the dynamic behaviour of the particles. 
Based on the models, the convergence property is studied and the guidance for parameters 
selection is provided.  
Trajectories comparison between PSO and PPSO are also presented. It is found that, similar 
to PSO, the particles of PPSO also stochastically explore for optimal solution within a region 
centered approximately equals to a random weighted mean of the best positions found by 
an individual (personal best) and its neighbours (global best). Like PSO, bell-shaped 
distribution of the particle’s trajectory is also observed in PPSO. However, the centres of the 
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distribution of PSO and PPSO are different so that leading to different equilibrium points 
and, hence, different results and performances.  
The results derived in this chapter justify the possibility of PPSO to be an optimization 
algorithm. Simulation results have been shown that PPSO performs in general better than 
PSO on a suite of benchmark functions. However, it does not imply that PPSO is a local or 
global search algorithm even the condition of stability is met. Further research is thus 
required to improve the search capability. 
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1. Introduction 
Recently, a new evolutionary computation technique, known as particle swarm 
optimization (PSO), has become a candidate for many optimization applications due to its 
high-performance and flexibility. The PSO technique was developed based on the social 
behavior of flocking birds and schooling fish when searching for food (Kennedy & Eberhart, 
1995). The PSO technique simulates the behavior of individuals in a group to maximize the 
species survival. Each particle “flies” in a direction that is based on its experience and that of 
the whole group. Individual particles move stochastically toward the position affected by 
the present velocity, previous best performance, and the best previous performance of the 
group. The PSO approach is simple in concept and easily implemented with few coding 
lines, meaning that many can take advantage of it. Compared with other evolutionary 
algorithms, the main advantages of PSO are its robustness in controlling parameters and its 
high computational efficiency (Kennedy & Eberhart, 2001). The PSO technique has been 
successfully applied in areas such as distribution state estimation (Naka et al., 2003), reactive 
power dispatch (Zhao et al., 2005), and electromagnetic devices design (Ho et al., 2006). In 
the previous effort, a PSO approach was developed to solve the capacitor allocation and 
dispatching problem (Kuo et al., 2005). 
This chapter introduces a PSO approach for solving the power dispatch with pumped hydro 
(PDWPH) problem. The PDWPH has been reckoned as a difficult task within the operation 
planning of a power system. It aims to minimize total fuel costs for a power system while 
satisfying hydro and thermal constraints (Wood & Wollenberg, 1996). The optimal solution 
to a PDWPH problem can be obtained via exhaustive enumeration of all pumped hydro and 
thermal unit combinations at each time period. However, due to the computational burden, 
the exhaustive enumeration approach is infeasible in real applications. Conventional 
methods (El-Hawary & Ravindranath, 1992; Jeng et al., 1996; Allan & Roman, 1991; Al-
Agtash, 2001) for solving such a non-linear, mix-integer, combinatorial optimization 
problem are generally based on decomposition methods that involve a hydro and a thermal 
sub-problem. These two sub-problems are usually coordinated by LaGrange multipliers. 
The optimal generation schedules for pumped hydro and thermal units are then 
sequentially obtained via repetitive hydro-thermal iterations. A well-recognized difficulty is 
that solutions to these two sub-problems can oscillate between maximum and minimum 
generations with slight changes of multipliers (Guan et al., 1994; Chen, 1989). Consequently, 
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solution cost frequently gets stuck at a local optimum rather than at the global optimum. 
However, obtaining an optimal solution is of priority concern to an electric utility. Even 
small percentage reduction in production costs typically leads to considerable savings. 
Obviously, a comprehensive and efficient algorithm for solving the PDWPH problem is still 
in demand. In the previous efforts, a dynamic programming (DP) approach (Chen, 1989) 
and a genetic algorithm (GA) technique (Chen & Chang, 1999) have been adopted to solve 
the PDWPH problem. Although the GA has been successfully applied to solve the PDWPH 
problem, recent studies have identified some deficiencies in GA performance. This 
decreased efficiency is apparent in applications in which parameters being optimized are 
highly correlated (Eberhart & Shi, 1998; Boeringer & Werner, 2004). Moreover, premature 
convergence of the GA reduces its performance and search capability (Angeline, 1998; 
Juang, 2004). 
This work presents new solution algorithms based on a PSO technique for solving the 
PDWPH problem. The proposed approach combines a binary version of the PSO technique 
with a mutation operation. Kennedy and Eberhart first introduced the concept of binary 
PSO and demonstrated that a binary PSO was successfully applied to solve a discrete binary 
problem (Kennedy & Eberhart, 1997). In this work, since all Taipower’s pumped hydro units 
are designed for constant power pumping, novel binary encoding/decoding techniques are 
judiciously devised to model the discrete characteristic in pumping mode as well as the 
continuous characteristic in generating mode. Moreover, since the basic PSO approach 
converges fast during the initial period and slows down in the subsequent period and 
sometimes lands in a local optimum, this work employs a mutation operation that speeds 
up convergence and escapes local optimums. Representative test results based on the actual 
Taipower system are presented and analyzed, illustrating the capability of the proposed 
PSO approach in practical applications. 

2. Modeling and Formulation 
2.1 List of symbols 

iDR  Down ramp rate limits of thermal unit i. 

)P(F t
si

t
i  Production costs for t

siP . 
t
jI   Natural inflow into the upper reservoir of pumped hydro plant j in hour t. 

hN  Number of pumped hydro units. 

sN  Number of thermal units. 
t
hjP  Power generation (positive) or pumping (negative) of pumped hydro plant j in 

hour t. 
t
LP   System load demand in hour t. 
t
siP   Power generation of thermal unit i in hour t. 
t
jQ  Water discharge of pumped hydro plant j in hour t. 

t
p,jQ  Water pumping of pumped hydro plant j in hour t. 
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)P(R t
hj

t
hj  Spinning reserve contribution of pumped hydro plant j for t

hjP . 

t
reqR  System’s spinning reserve requirements in hour t. 

)P(R t
si

t
si  Spinning reserve contribution of thermal unit i for t

siP . 
t
jS  Water spillage of pumped hydro plant j in hour t. 

T  Number of scheduling hours. 
iUR  Up ramp rate limits of thermal unit i. 

t
jV  Water volume of the upper reservoirs of plant j at the end of hour t. 

t
l,jV  Water volume of the lower reservoirs of plant j at the end of hour t. 

k
iv  Velocity of particle i at iteration k. 
k
ix  Position (coordinate) of particle i at iteration k. 

2.2 Modeling a pumped hydro plant 
A pumped hydro plant, which consists of an upper and a lower reservoir, is designed to 
save fuel costs by generating during peak load hours with water in the upper reservoir, 
which is pumped up from the lower reservoir to the upper reservoir during light load hours 
(Fig. 1). 

G

P

 
Figure 1. Pumped hydro plant 

In generating mode, the equivalent-plant model can be derived using an off-line 
mathematical procedure that maximizes total plant generation output under different water 
discharge rates (Wood & Wollenberg, 1996). The generation output of an equivalent 
pumped hydro plant is a function of water discharged through turbines and the content (or 
the net head) of the upper reservoir. The general form is expressed as 

 )V  ,Q(fP 1t
j

t
j

t
hj

−=  (1) 

The quadratic discharge-generation function, considering the net head effect, utilized in this 
work as a good approximation of pumped hydro plant generation characteristics is given as 

 1t
j

t
j

1t
j

t
j

1t
j

t
hj QQP

2 −−− ++= γβα  (2) 
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where coefficients 1t
j
−α , 1t

j
−β , and 1t

j
−γ  depend on the content of the upper reservoir at 

the end of hour t-1. In this work, the read-in data includes five groups of α β γ, ,   coefficients 
that are associated with different storage volume, from minimum to maximum, for the 
upper reservoir (first quadrant in Fig. 2). Then, the corresponding coefficients for any 
reservoir volume are calculated using a linear interpolation (Chen, 1989) between the two 
closest volume. 
In pumping mode, since all Taipower’s pumped hydro units are designed for constant 
power pumping, the characteristic function of a pumped hydro plant is a discrete 
distribution (third quadrant in Fig. 2). 

Discharge (cubic meter per second)

Output (MW)

Pmax

Vmin

Vmax

Input (MW)

Pumping (cubic meter per second)

 
Figure 2.  Typical input-output characteristic for a pumped hydro plant 

2.3 Objective function and constraints 
The pumped hydro scheduling attempts seeking the optimal generation schedules for both 
pumped hydro and thermal units while satisfying various hydro and thermal constraints. 
With division of the total scheduling time into a set of short time intervals, say, one hour as 
one time interval, the pumped hydro scheduling can be mathematically formulated as a 
constrained nonlinear optimization problem as follows: 

 Problem:  ∑∑
= =

T

1t

N

1i

t
si

t
i

s
)P(F  Minimize  (3) 

Subject to the following constraints: 
System power balance 

 0PPP t
L

N

1j

t
hj

N

1i

t
si

hs
=−+ ∑∑

==
 (4) 

Water dynamic balance 

 
t
j

t
p,j

t
j

t
j

1t
j

t
j SQQIVV −+−+= −  (5) 



Particle Swarm Optimization for Power Dispatch with Pumped Hydro 

 

135 

 
t
j

t
p,j

t
j

1t
l,j

t
l,j SQQVV +−+= −  (6) 

Thermal generation and ramp rate limits 

 )URP ,P(MinP)DRP ,P(Max i
1t

sisi
t
sii

1t
sisi +≤≤− −−  (7) 

Water discharge limits 

 j
t
jj QQQ ≤≤  (8) 

Water pumping limits 

 p,j
t

p,jp,j QQQ ≤≤  (9) 

Reservoir limits 

 j
t
jj VVV ≤≤  (10) 

 l,j
t
l,jl,j VVV ≤≤  (11) 

System’s spinning reserve requirements 

 ∑∑
==

≥+
hs N

1j

t
req

t
hj

t
hj

N

1i

t
si

t
si R)P(R)P(R  (12) 

3. Refined PSO Solution Methodology 
3.1 Basic PSO technique 
Consider an optimization problem of D variables. A swarm of N particles is initialized in 
which each particle is assigned a random position in the D-dimensional hyperspace such 
that each particle’s position corresponds to a candidate solution for the optimization 
problem. Let x denote a particle’s position (coordinate) and v denote the particle’s flight 
velocity over a solution space. Each individual x in the swarm is scored using a scoring 
function that obtains a score (fitness value) representing how good it solves the problem. 
The best previous position of a particle is Pbest. The index of the best particle among all 
particles in the swarm is Gbest. Each particle records its own personal best position (Pbest), 
and knows the best positions found by all particles in the swarm (Gbest). Then, all particles 
that fly over the D-dimensional solution space are subject to updated rules for new 
positions, until the global optimal position is found. Velocity and position of a particle are 
updated by the following stochastic and deterministic update rules: 

 
)xGbest() (Randc                   

)xPbest() (Randcwvv
k
i

k
2

k
i

k
i1

k
i

1k
i

−×+

−×+=+
 (13) 

 1k
i

k
i

1k
i vxx ++ +=  (14) 

where w is an inertia weight, c1 and c2 are acceleration constants, and Rand( ) is a random 
number between 0 and 1. 
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Equation (13) indicates that the velocity of a particle is modified according to three 

components. The first component is its previous velocity, k
iv , scaled by an inertia, w. This 

component is often known as “habitual behavior.” The second component is a linear 

attraction toward its previous best position, k
iPbest , scaled by the product of an acceleration 

constant, c1, and a random number. Note that a different random number is assigned for 
each dimension. This component is often known as “memory” or “self-knowledge.” The 

third component is a linear attraction toward the global best position, kGbest , scaled by the 
product of an acceleration constant, c2, and a random number. This component is often 
known as “team work” or “social knowledge.” Fig. 3 illustrates a search mechanism of a 
PSO technique using the velocity update rule (13) and the position update rule (14). 

k
ix

1+k
ix

kGbest
1+k

iv

k
iv

k
jx

k
jv

1+k
jx

1+k
jv

k
jPbest

k
iPbest

 
Figure 3.  Searching mechanism of a PSO 

Acceleration constants c1 and c2 represent the weights of the stochastic acceleration terms 
that push a particle toward Pbest and Gbest, respectively. Small values allow a particle to 
roam far from target regions. Conversely, large values result in the abrupt movement of 
particles toward target regions. In this work, constants c1 and c2 are both set at 2.0, following 
the typical practice in (Eberhart & Shi, 2001). Suitable correction of inertia w in (13) provides 
a balance between global and local explorations, thereby reducing the number of iterations 
when finding a sufficiently optimal solution. An inertia correction function called “inertia 
weight approach (IWA)” (Kennedy & Eberhart, 2001) is utilized in this work. During the 
IWA, the inertia weight w is modified according to the following equation: 

 Itr
Itr

ww
ww

max

minmax
max ×

−
−=  (15) 

where maxw  and minw  are the initial and final inertia weights, maxItr  is the maximum 
number of iteration, and Itr  is the current number of iteration. 
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3.2 Binary encoding 
For exposition ease, consider a pumped hydro plant with four units. Fig. 4 presents a 
particle string that translates the encoded parameter-water discharges of each plant into 
their binary representations. 

Hour   1     2   .....   24   
 1 0 0 0 1 0 0 0 1 1 ..... 1 0 0 1 0

Figure 4.  Particle string for a pumped hydro plant with four units 

Using a plant’s water discharge instead of the plant’s generation output, the encoded 
parameter is more beneficial when dealing with difficult water balance constraints. Each 
particle string contains 24 sub-strings that represent the solution for hourly 
discharge/pumping schedules of the pumped hydro plant during a 24-hour period. Each 
sub-string is assigned the same number of five bits. The first bit is used to identify whether 
the plant is in generating or pumping mode. The remaining four bits are used to represent a 

normalized water discharge, t
jq , in generating mode, or the number of pumping units in 

pumping mode. In generating mode, the resolution equals 1/24 of the discharge difference 
from minimum to maximum. 

3.3 Decoding of particle string 
A particle within a binary PSO approach is evaluated through decoding the encoded 
particle string and computing the string’s scoring function using the decoded parameter. 
The following steps summarize the detailed decoding procedure. 
Step 1. Decode the first bit to determine whether the plant is in generating or pumping 

mode: 
Hour t 

b1 b2 b3 b4 b5 
b2=b3=b4=b5=“0” => “idle mode” 
b1=“0” => “pumping mode” 
b1=“1” => “generating mode” 

Step 2. If in idle mode, t
hjP =0, go to Step 10; if in pumping mode, go to Step 3; if in 

generating mode, go to Step 6. 
Step 3. Decode the remaining four bits of the sub-string to calculate the number of pumping 

units, t
pN , and the total volume of pumped water, t

p,jQ : 

Hour t 
0 b2 b3 b4 b5 

 { }1 ,0b              )b(N i
5

2i
i

t
p ∈= ∑

=
 (16) 

 t
psp,j

t
p,j NQQ ×=  (17) 

where sp,jQ  is the constant volume for pumping per unit.  



Particle Swarm Optimization 

 

138 

Step 4. Calculate the upper boundary of pumped water: 

 )]VV(  ,Q[MinQ l,j
1t

l,jp,j
t

p,j −= −  (18) 

If the total volume of pumped water exceed the upper boundary, then decrease the 
number of pumping units until the upper boundary is satisfied. 

Step 5. Calculate the MW power for pumping: 

 ( )t
psp,j

t
hj NPP ×−=  (19) 

where sp,jP  is the constant power for pumping per unit. Then go to step 10. 

Step 6. Decode the remaining four bits of the sub-string to obtain a normalized discharge, 
t
jq , in decimal values: 

Hour t 
1 b2 b3 b4 b5 
 × × × × 
 2-1 2-2 2-3 2-4 

 ( )( ) { }1 ,0b            2bq i
5

2i

1i
i

t
j ∈×= ∑

=

−−  (20) 

Step 7. Calculate the upper boundary of discharge: 

 )]VV(  ,Q[MinQ 1t
l,jl,jj

t
j

−−=  (21) 

Step 8. Translate the normalized value, t
jq , to the actual value, t

jQ : 

 ⎟
⎠
⎞⎜

⎝
⎛ −+= j

t
j

t
jj

t
j QQqQQ  (22) 

Step 9. Calculate the generation output, t
hjP , using (2). 

Step 10. Calculate the remaining thermal loads, t
rmP : 

   PPP t
hj

t
L

t
rm −=  (23) 

Step 11. Continue with computations of the 10 steps from hour 1 to hour 24. 
Step 12. Perform the unit commitment (UC) for the remaining thermal load profile, and 

return the corresponding thermal cost. In this work, a UC package based on the 
neural network (Chen & Chen, 2006) is used to perform the UC task taking into 
account fuel costs, start-up costs, ramp rate limits, and minimal uptime/downtime 
constraints. 

Step 13. Translate the corresponding thermal cost into the score of the i-th particle using a 
scoring function (details are found in the next Section).  

Step 14. Repeat these 13 steps for each particle from the first to last particle. 
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3.4 Scoring function 
The scoring function adopted is based on the corresponding thermal production cost. To 
emphasize the “best” particles and speed up convergence of the evolutionary process, the 
scoring function is normalized into a range of 0–1. The scoring function for the i-th particle 
in the swarm is defined as 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

=
1

)Gbest(cost
)i(costk1

1)i(SCORE

i

 (24) 

where SCORE(i) is the score (fitness value) of the i-th particle; cost(i) is the corresponding 
thermal cost of the i-th particle; cost(Gbest) is the cost of the highest ranking particle string, 
namely, the current best particle; and, ki is a scaling constant (ki =100 in this study). 

3.5 Mutation operation 
The basic PSO approach typically converges rapidly during the initial search period and 
then slows. Then, checking the positions of particles showed that the particles were very 
tightly clustered around a local optimum, and the particle velocities were almost zero. This 
phenomenon resulted in a slow convergence and trapped the whole swarm at a local 
optimum. Mutation operation is capable of overcoming this shortcoming. Mutation 
operation is an occasional (with a small probability) random alternation of the Gbest string, 
as shown in Fig. 5. This work integrates a PSO technique with a mutation operation 
providing background variation and occasionally introduces beneficial materials into the 
swarm to speed up convergence and escape local optimums. 

Gbest: 1 1 1 1 1 0 0 ..... 0 1 0
  ↓          

New Particle: 1 1 0 1 1 0 0 ..... 0 1 0

Figure 5.  Mutation operation 

The solution methodology for solving the pumped hydro scheduling problem using the 
proposed approach is outlined in the general flow chart (Fig. 6). 

4. Test Results 
The proposed approach was implemented on a MATLAB software and executed on a 
Pentium IV 3.0GHz personal computer. Then, the proposed approach was tested for a 
portion of the Taipower system, which consists of 34 thermal units and the Ming-Hu 
pumped hydro plant with four units. In addition to the typical constraints listed in Section 2, 
the Taipower system has three additional features that increase problem difficulty. 
a. The Taipower system is an isolated system. Thus it is self-sufficient at all times. The 

300MW system’s spinning reserve requirement must be satisfied each hour. 
b. Thermal units, due to their ramp rate limits, have difficulty handling large load 

fluctuations, especially at noon lunch break. 
c. The lower reservoir of Ming-Hu pumped hydro plant has only a small storage volume. 
Table 1 presents detailed data for the Ming-Hu pumped hydro plant. The thermal system 
consists of 34 thermal units: six large coal-fired units, eight small coal-fired units, seven oil-
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fired units, ten gas turbine units, and three combined cycle units. For data on the 
characteristics of the 34-unit thermal system, please refer to (Chen & Chang, 1995). 

 

Read in data and define constraints.

 1. Initialize swarm:
(a) Randomize each particle into a binary string.
(b) Randomize velocity of each particle.

 3. Update velocity of  particle using (13).

Repeat for each particle.

Gbest is the optimal solution.

 2. Evaluate  particles:
(a) Decode each particle to obtain a MW schedule of P/S units.
      (detail in Section 3.3)
(b) Do thermal unit commitment for the remaining thermal 
      loads to obtain a production cost.
(c) Score each particle using (24).
(d) Initialize each Pbest to equal the current  position of each
      particle.
(e) Gbest equals the best one among all Pbest.

 4. Update position of  particle using (14).

 5. Decode and score the new particle position.

 6. Update Pbest if  the new position is better than that of Pbest.

Repeat for each iteration.

 8. Mutation operation:
     Perform mutation if Gbest remains unchanged within the
     latest 50 iterations.

 7. Update Gbest if  the new position is better than that of Gbest.

 
Figure 6.  General flow chart of the proposed approach 
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   Lower Reservoir  
Installed 
Capacity

Maximal
Discharge

(m3/s) 

Maximal 
Pumping 

(m3/s) 

Maximal
Storage
(103 m3)

Minimal
Storage
(103 m3)

 
Efficiency

250MW×4 380 249 9,756 1,478 ≈ 0.74 

Table 1. Characteristics of the Ming-Hu pumped hydro plant 

The proposed approach was tested on a summer weekday whose load profile (Fig. 7) was 
obtained by subtracting expected generation output of other hydro plants and nuclear units 
from the actual system load profile. Fig. 8 and 9 present schematics of test results. Fig. 8 
shows the total generation/pumping schedules created by the proposed approach. Fig. 9 
shows the remaining thermal load profiles. The optimal schedules for pumped hydro units 
and thermal units are obtained within 3 minutes, satisfying Taipower’s time requirement. 
To investigate further how the proposed approach and existing methods differ in 
performance, this work adopts a DP method (Chen, 1989) and a GA method (Chen & 
Chang, 1999) as the benchmark for comparison. Table 2 summarizes the test results obtained 
using these three methods. 

Load Factor=0.82

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10 12 14 16 18 20 22 24
HOUR

M
W

 
Figure 7.  Summer weekday load profile 

Several interesting and important observations are derived from this study and are 
summarized as follows: 
a. The generation/pumping profile generally follows the load fluctuation, a finding that is 

consistent with economic expectations. The Ming-Hu pumped hydro plant generates 
3,893 MWh power during peak load hours and pumps up 5,250 MWh power during 
light load hours, resulting in a cost saving of NT$5.91 million in one day, where cost 
saving = (cost without pumped hydro) - (cost with pumped hydro). 

b. The pumped hydro units are the primary source of system spinning reserve due to their fast 
response characteristics. The system’s spinning reserve requirement accounts for the fact 
that pumped hydro units do not generate power at their maximum during peak load hours. 

c. Variation of water storage in the small lower reservoir is always retained within the 
maximum and minimum boundaries. The final volume returns to the same as the initial 
volume. 

d.  The load factor is improved from 0.82 to 0.88 due to the contribution of the four 
pumped hydro units. 
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e. Notably, both cost saving and execution time for the proposed approach are superior to 
either a DP or a GA method. 

 

Total Generation: 3,893 (MW*Hr)
Total Pumping: 5,250 (MW*Hr)
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Figure 8.  Hourly generation/pumping schedules 
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Figure 9. Contrast of two remaining thermal load profiles 

 
 

Method 

 
Load 
Factor 

Cost 
Saving 

(103 NT$) 

Execution 
Time 

(second) 
DP 0.87 5,641 336 
GA 0.87 5,738 164 

RPSO 0.88 5,906 127 

Table 2. Performance comparison with existing methods 
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5. Conclusion 
This work presents a novel methodology based on a refined PSO approach for solving the 
power dispatch with pumped hydro problem. An advantage of the proposed technique is 
the flexibility of PSO for modeling various constraints. The difficult water dynamic balance 
constraints are embedded and satisfied throughout the proposed encoding/decoding 
algorithms. The effect of net head, constant power pumping characteristic, thermal ramp 
rate limits, minimal uptime/downtime constraints, and system’s spinning reserve 
requirements are all considered in this work to make the scheduling more practical. 
Numerical results for an actual utility system indicate that the proposed approach has 
highly attractive properties, a highly optimal solution and robust convergence behavior for 
practical applications. 
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1. Introduction    
If the values of a function, f(x), are known for a finite set of x values in a given interval, then 
a polynomial which takes on the same values at these x values offers a particularly simple 
analytic approximation to f(x) throughout the interval. This approximating technique is 
called polynomial interpolation. Its effectiveness depends on the smoothness of the function 
being sampled (if the function is unknown, some hypothetical smoothness must be chosen), 
on the number and choice of points at which the function is sampled.  
In practice interpolating polynomials with degrees greater than about 10 are rarely used. 
One of the major problems with polynomials of high degree is that they tend to oscillate 
wildly. This is clear if they have many roots in the interpolation interval. For example, a 
degree 10 polynomial with 10 real roots must cross the x-axis 10 times. Thus, it would not be 
suitable for interpolating a monotone decreasing or increasing function on such an interval.  
In this chapter we explore the advantage of using the Particle Swarm Optimization (PSO) 
interpolation nodes. Our goal is to show that the PSO nodes can approximate functions with 
much less error than Chebyshev nodes.  
This chapter is organized as follows. In Section 2, we shall present the interpolation 
polynomial in the Lagrange form. Section 3 examines the Runge's phenomenon; which 
illustrates the error that can occur when constructing a polynomial interpolant of high 
degree. Section 4 gives an overview of modern heuristic optimization techniques, including 
fundamentals of computational intelligence for PSO. We calculate in Subsection 4.2 the best 
interpolating points generated by PSO algorithm. We make in section 5, a comparison of 
interpolation methods. The comments and conclusion are made in Section 6. 

2. Introduction to the Lagrange interpolation 
If x0, x1, ....xn are distinct real numbers, then for arbitrary values y0, y1, ....yn, there is a unique 
polynomial pn of degree at most n such that pn(xi) = yi (0 i n≤ ≤ )  ( David Kincaid & 
Ward Cheney, 2002). 
The Lagrange form looks as follows: 
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If we examine the error formula for polynomial interpolation over an interval [a, b] we see 
that as we change the interpolation points, we change also the locations c where the   
derivative is evaluated; thus that part in the error also changes, and that change is a "black 
hole" to us: we never know what the correct value of c is, but only that c is somewhere in the 
interval [a, b]. Since we wish to use the interpolating polynomial to approximate the 
Equation (4) cannot be used, of course, to calculate the exact value of the error f – Pn, since c, 
as a function of x is, in general, not known.  (An exception occurs when the (n + 1)st 
derivative off is constant). And so we are likely to reduce the error by selecting interpolation 

points      x0, x1,...,xn so as to minimize the maximum value of product ( )n xφ  

The most natural idea is to choose them regularly distribute in [a, b]. 

3. Introduction to the Runge phenomenon and to Chebyshev approximations 
3.1 Runge phenomenon  

If xk are chosen to be the points ( )k
b ax a k k n

n
 0,...,

−
= + =   (means that 

are equally spaced at a distance 2n + 1 apart), then the interpolating polynomial pn(x) need 
not to converge uniformly on [a, b] as n → ∞  for the function f(x). 
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This phenomenon is known as the Runge phenomenon (RP) and it can be illustrated with 
the Runge's "bell" function on the interval [-5, 5] (Fig.1). 

-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.5

0

0.5

1

1.5

2
f(x) = 1/(1+x2)

fexact 

P10,equidistant 

 
Figure 1. solid blue line: present Runge’s “bell” function. dots red line: present the 
polynomial approximation based on equally 11 spaced nodes 

3.2 Chebyshev Nodes 
The standard remedy against the RP is Chebyshev -type clustering of nodes towards the end 
of the interval (Fig.3).  

 
Figure 2. Chebyshev Point Distribution. 

To do this, conceptually, we would like to take many points near the endpoints of the 
interval and few near the middle.  The point distribution that minimizes the maximum 

value of product ( )n xφ  is called the Chebyshev distribution, as shown in (Fig. 2). In the 

Chebyshev distribution, we proceed as follows: 
1. Draw the semicircle on [a, b]. 
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2. To sample n + 1 points, place n equidistant partitions on the arc. 
3. Project each partition onto the x-axis: for j =0, 1… n 

 j
a b b ax j

n
cos

2 2
π⎛ ⎞+ − ⎟⎜ ⎟= + ⎜ ⎟⎜ ⎟⎜⎝ ⎠

 for j=0,1…n     (6) 

The nodes xi that will be used in our approximation are: 
Chebyshev nodes  

-5.0000 
-4.2900 
-4.0251 
-2.6500 
-1.4000 
0.0000 
1.4000 
2.6500 
4.0451 
4.2900 
5.0000 
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f(x) = 1/(1+x2)
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Figure 3. solid blue line: present Runge’s “bell” function. dots red line: present the 
polynomial approximation based on 11 Chebyshev nodes 

In this study, we have made some numerical computations using the particle swarm 
optimization to investigate the best interpolating points and we are showing that PSO nodes 
provide smaller approximation error than Chebyshev nodes. 

4. Particle swarm optimization 
4.1 Overview and strategy of particle swarm optimization 

Recently, a new stochastic algorithm has appeared, namely ‘particle swarm optimization’ 
PSO. The term ‘particle’ means any natural agent that describes the `swarm' behavior. The 
PSO model is a particle simulation concept, and was first proposed by Eberhart and 
Kennedy (Eberhart,  R.C. et al. 1995). Based upon a mathematical description of the social 
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behavior of swarms, it has been shown that this algorithm can be efficiently generated to 
find good solutions to a certain number of complicated situations such as, for instance, the 
static optimization problems, the topological optimization and others (Parsopoulos, K.E. et 
al., 2001a); (Parsopoulos, K.E.et al. 2001b); (Fourie, P.C. et al., 2000); ( Fourie, P.C. et al., 
2001). Since then, several variants of the PSO have been developed (Eberhart,R.C. et al 1996); 
(Kennedy, J. et al., 1998); (Kennedy, J. et al., 2001); ( Shi, Y.H. et al. 2001); ( Shi, Y. et al. 1998a. 
); (Shi, Y.H. et al., 1998b); (Clerc, M. 1999 ). It has been shown that the question of 
convergence of the PSO algorithm is implicitly guaranteed if the parameters are adequately 
selected (Eberhart, R.C. et al.1998); (Cristian, T.I. 2003). Several kinds of problems solving 
start with computer simulations in order to find and analyze the solutions which do not 
exist analytically or specifically have been proven to be theoretically intractable. 
The particle swarm treatment supposes a population of individuals designed as real valued 
vectors - particles, and some iterative sequences of their domain of adaptation must be 
established. It is assumed that these individuals have a social behavior, which implies that 
the ability of social conditions, for instance, the interaction with the neighborhood, is an 
important process in successfully finding good solutions to a given problem. 
The strategy of the PSO algorithm is summarized as follows: We assume that each agent 
(particle) i can be represented in a N dimension space by its current position 

( )i i i iNx x x x1 2, ,...,=  and its corresponding velocity.      Also a memory of its 

personal (previous) best position is represented by, ( )i i iNp p p p1 2, ,...,=  called 

(pbest), the subscript i range from 1 to s, where s indicates the size of the swarm. 
Commonly, each particle localizes its best value so far (pbest) and its position and 
consequently identifies its best value in the group (swarm), called also (sbest) among the set 
of values (pbest).  
The velocity and position are updated as 

 [ ] [ ]k
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where are the position and the velocity vector of particle i respectively at iteration k + 1, c1  

et c2  are acceleration coefficients for each term exclusively situated in the range of 2--4, 

i jw is the inertia weight with its value that ranges from 0.9 to 1.2, whereas r1 , r2 are 

uniform random numbers between zero and one. For more details, the double subscript in 
the relations (7) and (8) means that the first subscript is for the particle i and the second one 

is for the dimension j. The role of a suitable choice of the inertia weight i jw  is important in 

the success of the PSO. In the general case, it can be initially set equal to its maximum value, 
and progressively we decrease it if the better solution is not reached. Too often, in the 

relation (7), ijw  is replaced by i jw / σ , where σ  denotes the constriction factor that 
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controls the velocity of the particles. This algorithm is successively accomplished with the 
following steps (Zerarka, A. et al., 2006): 

1. Set the values of the dimension space N and the size s of the swarm (s can be taken 
randomly). 

2. Initialize the iteration number k (in the general case is set equal to zero). 
3. Evaluate for each agent, the velocity vector using its memory and equation (7), 

where pbest and sbest can be modified.  
4. Each agent must be updated by applying its velocity vector and its previous 

position using equation [8]. 
5. Repeat the above step (3, 4 and 5) until a convergence criterion is reached. 

The practical part of using PSO procedure will be examined in the following section, where 
we‘ll interpolate Runge’s “bell”, with two manners; using Chebyshev interpolation 
approach and PSO approach, all while doing a comparison. 

4.2 PSO distribution 
So the problem is the choice of the points of interpolation so that quantity 

( )n xφ deviates from zero on [a, b] the least possible. 

Particle Swarm Optimization was used to find the global minimum of the maximum value 

of product ( )n xφ  , where very x is represented as a particle in the swarm.  

The PSO parameter values that were used are given in Table 1.   

Parameter Setting 
Population size 20 
Number of iterations 500 
C1 and C2 0.5 
Inertial Weight 1.2 to 0.4 
Desired Accuracy 10-5 

Table 1. Particle Swarm Parameter Setting used in the present study 

The best interpolating points x generated by PSO algorithm for polynomial of degree 5 and 
10 respectively for example are: 

Chebyshev Points generated 
with PSO 

-5.0000 -5.0000 
-3.9355 -4.0451 
-2.9041 -1.5451 
0.9000 1.5451 
3.9355 4.0451 
5.0000 5.0000 

Table 2 Polynomial of degree 5 
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Chebyshev Points generated with PSO 
-5.0000 -5.0000 
-4.2900 -4.7553 
-4.0251 -4.0451 
-2.6500 -2.9389 
-1.4000 -1.5451 
0.0000 -0.0000 
1.4000 1.5451 
2.6500 2.9389 
4.0451 4.0451 
4.2900 4.7553 
5.0000 5.0000 

Table 3. Polynomial of degree 10 

5. Comparison of interpolation methods 
How big an effect can the selection of points have? Fig. 4 and Fig. 5 shows Runge's "bell" 
function interpolated over [-5, 5] using equidistant points, points selected from the 
Chebyshev distribution, and a new method called PSO. The polynomial interpolation using 
Chebyshev points does a much better job than the interpolation using equidistant points, 
but neither does as well as the PSO method. 
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Figure 4. Comparison of interpolation polynomials for equidistant and Chebyshev sample 
points 
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Comparing Fig. 4, we see that the maximum deviation of the Chebyshev polynomial from 
the true function is considerably less than that of Lagrange polynomial with equidistant 
nodes. It can also be seen that increasing the number of the Chebyshev nodes—or, 
equivalently, increasing the degree of Chebyshev polynomial—makes a substantial 
contribution towards reducing the approximation error. 
Comparing Fig. 5, we see that the maximum deviation of the PSO polynomial from the true 
function is considerably less than that of Chebyshev polynomial nodes. It can also be seen 
that increasing the number of the PSO nodes—or, equivalently, increasing the degree of PSO 
polynomial—makes a substantial contribution towards reducing the approximation error. 

-5 0 5
0

0.2

0.4

0.6

0.8

1
f(x) = 1/(1+x2)

P5, PSO

P5, Chebyshev

exact

-5 0 5

0.2

0.4

0.6

0.8

1
f(x) = 1/(1+x2)

P10, PSO

P10, Chebyshev

exact

-5 0 5

0.1

0.2

0.3

0.4

0.5

0.6

Error Plot

ab
so

lu
te

 e
rro

r

-5 0 5
0

0.05

0.1

Error Plot

ab
so

lu
te

 e
rro

r

 
Figure 5. Comparison of interpolation polynomials for PSO and Chebyshev sample points  

In this study we take as measure of the error of approximation the greatest vertical distance 
between the graph of the function and that of the interpolating polynomial over the entire 
interval under consideration (Fig. 4 and Fig. 5). 
The calculation of error gives 

Degree Error points 
equidistant 

Error points 
Chebychev 

Error points 
PSO 

5 0.4327 0.6386 0.5025 
10 1.9156 0.1320 0.1076 
15 2.0990 0.0993 0.0704 
20 58.5855 0.0177 0.0131 

Table 2. The error 
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6. Conclusion 
The particle swarm optimization is used to investigate the best interpolating points. Some 
good results are obtained by using the specific PSO approach. It is now known that the PSO 
scheme is powerful, and easier to apply specially for this type of problems. Also, the PSO 
method can be used directly and in a straightforward manner. The performance of the 
scheme shows that the method is reliable and effective. 
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1. Introduction      
Multiprocessor task scheduling is a generalized form of classical machine scheduling where 
a task is processed by more than one processor. It is a challenging problem encountered in 
wide range of applications and it is vastly studied in the scheduling literature (see for 
instance (Chan & Lee, 1999 and Drozdowski, 1996) for a comprehensive introduction on this 
topic). However, Drozdowski (1996) shows that multiprocessor task scheduling is difficult 
to solve even in its simplest form. Hence, many heuristic algorithms are presented in 
literature to tackle multiprocessor task scheduling problem. Jin et al. (2008) present a 
performance study of such algorithms. However, most of these studies primarily concerned 
with a single stage setting of the processor environment. There are many practical problems 
where multiprocessor environment is a flow-shop that is it is made of multiple stages and 
tasks have to go through one stage to another. 
Flow-shop scheduling problem is also vastly studied in scheduling context though most of 
these studies concerned with single processor at each stage (see for instance Linn & Zhang, 
1999, Dauzère-Pérès & Paulli, 1997). With the advances made in technology, in many 
practical applications, we encounter parallel processors at each stage instead of single 
processors such as parallel computing, power system simulations, operating system design 
for parallel computers, traffic control in restricted areas, manufacturing and many others 
(see for instance (Krawczyk & Kubale, 1985, Lee & Cai, 1999, Ercan & Fung, 2000, Caraffa et. 
al.,2001)). This particular problem is defined as hybrid flow-show with multiprocessor tasks 
in scheduling terminology and minimizing the schedule length (makespan) is the typical 
scheduling problem addressed. However, Brucker & Kramer (1995) show that 
multiprocessor flow-shop problem to minimize makespan is also NP-hard. Gupta (1988) 
showed that hybrid flow-shop even with two stages is NP-hard. Furthermore, the 
complexity of the problem increases with the increasing number of stages. 
Multiprocessor task scheduling in a hybrid flow-shop environment has recently gained the 
attention of the research community. To the best of our knowledge, one of the earliest 
papers that deal with this problem in the scheduling literature is by Oğuz and Ercan, 1997. 
However, due to the complexity of the problem, in the early studies (such as (Lee & Cai, 
1999, Oğuz et. al., 2003)) researchers targeted two layer flow-shops with multiprocessors. 
Simple list based heuristics as well as meta-heuristics were introduced for the solution 
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(Oğuz et al.,2003, Jdrzęjowicz & Jdrzęjowicz,2003, Oğuz et al.,2004). Apparently, a broader 
form of the problem will have arbitrary number of stages in the flow-shop environment. 
This is also studied recently and typically metaheuristic algorithms applied to minimize the 
makespan such as population learning algorithm (Jdrzęjowicz & Jdrzęjowicz, 2003), tabu 
search (Oğuz et al.,2004), genetic algorithm (Oğuz & Ercan,2005) and ant colony system 
(Ying & Lin,2006). Minimizing the makespan is not the only scheduling problem tackled; 
recently Shiau et al. (2008) focused on minimizing the weighted completion time in 
proportional flow shops.    
These metaheuristic algorithms produce impressive results though they are sophisticated 
and require laborious programming effort. However, of late particle swarm optimization 
(PSO) is gaining popularity within the research community due to its simplicity. The 
algorithm is applied to various scheduling problems with notable performance. For 
instance, Sivanandam et al. (2007) applied PSO to typical task allocation problem in 
multiprocessor scheduling. Chiang et al. (2006) and Tu et al. (2006) demonstrate application 
of PSO to well known job shop scheduling problem.    
PSO, introduced by Kennedy & Eberhart (1995), is another evolutionary algorithm which 
mimics the behaviour of flying birds and their communication mechanism to solve 
optimization problems. It is based on a constructive cooperation between particles instead of 
survival of the fittest approach used in other evolutionary methods. PSO has many 
advantages therefore it is worth to study its performance for the scheduling problem 
presented here. The algorithm is simple, fast and very easy to code. It is not computationally 
intensive in terms of memory requirements and time. Furthermore, it has a few parameters 
to tune.     
This chapter will present the hybrid flow-shop with multiprocessor tasks scheduling 
problem and particle swarm optimization algorithm proposed for the solution in details. It 
will also introduce other well known heuristics which are reported in literature for the 
solution of this problem. Finally, a performance comparison of these algorithms will be 
given. 

2. Problem definition 
The problem considered in this paper is formulated as follows: There is a set J of n 
independent and simultaneously available jobs where each job is made of Multi-Processor 
Tasks (MPT) to be processed in a multi-stage flow-shop environment, where stage j consists 
of mj identical parallel processors (j=1,2,...,k). Each MPTi ∈ J should be processed on pi,j  
identical processors simultaneously at stage j without interruption for a period of ti,j 
(i=1,2,...,n and j=1,2,...,k). Hence, each MPTi ∈ J is characterized by its processing time, ti,j, 
and its processor requirement, pi,j. The scheduling problem is basically finding a sequence of 
jobs that can be processed on the system in the shortest possible time. The following 
assumptions are made when modeling the problem: 
• All the processors are continuously available from time 0 onwards. 
• Each processor can handle no more than one task at a time. 
• The processing time and the number of processors required at each stage are known in 

advance. 
• Set-up times and inter-processor communication time are all included in the processing 

time and it is independent of the job sequence.  
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3. Algorithms  
3.1 The basic PSO algorithm  
PSO is initialized with a population of random solutions which is similar in all the 
evolutionary algorithms. Each individual solution flies in the problem space with a velocity 
which is adjusted depending on the experiences of the individual and the population. As 
mentioned earlier, PSO and its hybrids are gaining popularity in solving scheduling 
problems. A few of these works tackle the flow shop problem (Liu et al.,2005) though 
application to hybrid flow-shops with multiprocessor tasks is relatively new (Ercan & Fung, 
2007, Tseng & Liao, 2008).  
In this study, we first employed the global model of the PSO (Ercan & Fung, 2007). In the 
basic PSO algorithm, particle velocity and position are calculated as follows: 

 Vid=W Vid + C1R1(Pid-Xid)+C2R2(Pgd-Xid) (1) 

 Xid=Xid+Vid (2) 

In the above equations, Vid  is the velocity of particle i and it represents the distance traveled 
from the current position. W is inertia weight. Xid represents particle position. Pid is the local 
best solution (also called as “pbest”) and Pgd is global best solution (also called as 
“qutgbest”). C1 and C2 are acceleration constants which drive particles towards local and 
global best positions. R1 and R2 are two random numbers within the range of [0, 1]. This is 
the basic form of the PSO algorithm which follows the following steps:  

Algorithm 1: The basic PSO         
Initialize swarm with random positions and velocities;  
begin 
repeat 
    For each particle evaluate the fitness i.e. makespan of the schedule;  
    if current fitness of particle is better than Pid then set Pid to current value; 
    if Pid is better than global best then set Pgd to current particle fitness value; 
    Change the velocity and position of the particle; 
until termination = True 
end. 

The initial swarm and particle velocity are generated randomly. A key issue is to establish a 
suitable way to encode a shedule (or solution) to PSO particle. We employed the method 
shown by Xia et al.(2006). Each particle consists of a sequence of job numbers representing 
the n number of jobs on a machine with k number of stages where each stage has  mj   
identical processors (j=1,2,...,k). The fitness of a particle is then measured with the maximum 
completion time of all jobs. In our earlier work (Oğuz & Ercan,2005), a list scheduling 
algorithm is developed to map a given job sequence to the machine environment and to 
compute the maximum completion time (makespan). A particle with the  lowest completion 
time is a good solution.  
Figure 1 shows an example to scheduling done by the list scheduling algorithm. In this 
example, number of jobs is  n= 5 and a machine is made of two stages k=2 where each stage 
contains four identical processors. Table 1 depicts the list of jobs and their processing times 
and processor requirements at each stage for this example.   
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Job # Stage  1 (j=1) Stage 2 (j=2) 
i pi,1   ti,1 pi,2   ti,2 
1 1 1 2 2 
2 3 3 4 2 
3 3 3 3 2 
4 2 1 2 1 
5 1 1 1 1 

Table 1. Example jobs and their processing time and processor requirements at each stage 

For the schedule shown in Figure 1, it is assumed that a job sequence is given as S1 
={2,3,1,4,5}. At stage 1, jobs are iteratively allocated to processors from the list starting from 
time 0 onwards. As job 2 is the first in the list, it is scheduled at time 0. It is important to note 
that although there are enough available processors to schedule job 1 at time 0 this will 
violate the precedence relationship established in the list. Therefore, job 1 is scheduled to 
time instance 3 together with job 3 and this does not violate the precedence relationship 
given in S1 . Once all the jobs are scheduled at first stage, a new list is produced for the 
succeeding stage based on the completion of jobs at previous stage and the precedence 
relationships given in S1. In the new list for stage 2, S2 ={2,1,3,4,5} , job 1 is scheduled before 
job 3 since it is available earlier than job 3. At time instance 7, jobs 3, 4 and 5 are all available 
to be processed. Job 3 is scheduled first since its completion time is earlier at stage 1. 
Although, there is enough processor to schedule job 5 at time 8 this will again violate the 
order given in list S1 , hence it is scheduled together with job 4.  In this particular example, 
jobs 4 and 5 will be the last to be mapped to stage 2 and the over all completion time of tasks 
will be 10 units.    
The parameters of PSO are set based on our empirical study as well as referring to the 
experiences of other researchers. The acceleration constants C1  and C2 are set to 2.0 and 
initial population of swarm is set to 100.  Inertia weight, W, determines the search behavior 
of the algorithm. Large values for W  facilitate searching new locations whereas small values 
provide a finer search in the current area. A balance can be established between global and 
local exploration by decreasing the inertia weight during the execution of the algorithm. 
This way PSO tends to have more global search ability at the beginning and more local 
search ability towards the end of the execution. In our PSO algorithm, an exponential 
function is used to set the inertia weight and it is defined as: 

 max)( x
x

endstartend eWWWW
α−

−+=  (3) 

where, Wstart  is the starting, Wend is the ending inertia values. Wstart  are Wend are  set as 1.5 
and 0.3 respectively. In addition, x shows the current iteration number and xmax  shows the 
maximum iteration number which is set to 10000.  An integer constant α  is used to 
manipulate the gradient of the exponentially decreasing W  value and it is set to 4. 
In this application, Xid  and Vid are used to generate and modify solutions therefore they are 
rounded off to the nearest integer and limited to a maximum value of n which is the 
maximum number of jobs. That is position coordinates are translated into job sequence in 
our algorithm and a move in search space is obtained by modifying the job sequence. 
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Figure 1. The schedule of job sequence [2, 3, 1, 4, 5] after being allocated to processors of the 
multilayer system using the list scheduling algorithm. Idle periods of the processors are 
labeled as idle 

3.2 Hybrid PSO algorithms 
Although, PSO is very robust and has a well global exploration capability, it has the 
tendency of being trapped in local minima and slow convergence. In order to improve its 
performance, many researchers experimented with hybrid PSO algorithms. Poli et al. (2007) 
give a review on the varations and the hybrids of particle swarm optimisation. Similarly, in 
scheduling problems, performance of PSO can be improved further by employing hybrid 
techniques. For instance, Xia & Wu (2006) applied PSO-simulated annealing (SA) hybrid to 
job shop scheduling problem and test its performance with benchmark problems. Authors 
conclude that PSO-SA hybrid delivered equal solution quality as compared to other 
metaheuristic algorithms though PSO-SA offered easier modeling, simplicity and ease of 
implementation. These findings motivated us to apply PSO and its hybrids to this particular 
scheduling problem and study its performance.     
The basic idea of the hybrid algorithms presented here is simply based on runnign PSO 
algorithm first and then improving the result by employing a simulated annealing (SA) or 
tabu search (TS) heuristics. SA and TS introduce a probability to avoid becoming trapped in 
a local minimum. In addition, by introducing a neighborhood formation and tuning the 
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parameters, it is also possible to enhance the search process. The initial findings of this study 
are briefly presented in (Ercan,2008). The following pseudo codes show the hybrid 
algorithms: 

Algorithm 2: Hybrid PSO with SA         
Initialize swarm with random positions and velocities;  
    begin 
    initialize PSO and SA; 
       while (termination !=true) 
       do{ 
        generate swarm; 
        compute and find best Pgd;   
        }   
    set particle that gives best Pgd as initial solution to SA; 
        while (Tcurrent>Temp_end) 
         do{ 
         generate neighborhood;      
         evaluate and update best solution and temperature;  
         }     
    end. 

 
Algorithm 3: Hybrid PSO with TS         
Initialize swarm with random positions and velocities;  
    begin 
    initialize PSO and TS;     
        while (termination !=true) 
        do{ 
        generate swarm;    
        compute and find best Pgd; 
        }     
    set particle that gives best Pgd as initial solution to TS;  
        while (termination!=true) 
         do{ 
         generate sub set of neighborhoods;  
         evaluate and update the best solution;    
         update the tabu list;     
         } 
     end. 

The initial temperature for PSO-SA hybrid is estimated after 50 randomly permuted 
neighborhood solutions of the initial solution. A ratio of average increase in the cost to 
acceptance ratio is used as initial temperature. Temperature is decreased using a simple 
cooling strategy Tcurrent = λTcurrent -1 . The best value for lambda is experimentally found and 
set as 0.998. The end temperature is set to 0.01.  
A neighbor of the current solution is obtained in various ways.  

• Interchange neighborhood: Two randomly chosen jobs from the job list are 
exchanged.  
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• Simple switch neighborhood: It is a special case of interchange neighborhood 
where a randomly chosen job is exchanged with its predecessor. 

• Shift neighborhood: A randomly selected job is removed from one position in the 
priority list and put it into another randomly chosen position.  

It is experimentally found that interchange method performs the best amongst all three. The 
interchange strategy is also found to be the most effective one for generating the sub-
neighborhoods for TS.  
In the tabu list, a fixed number of last visited solutions are kept. Two methods for updating 
the tabu list are experimented; elimination of the farthest solution stored in the list, and 
removing the worst performing solution from the list. In PSO-TS hybrid removing the worst 
performing solution from the list method is used as it gave a slightly better result.  

4. GA algorithm 
Genetic algorithms, introduced by Holland (1975), have been widely applied to many 
scheduling problems in literature (see for instance job-shop environment (Della et al.,1995) 
and (Dorndorf & Pesch,1995), flow-shop environment (Murata et al., 1996)). Genetic 
algorithms are also employed in hybrid flow-shops with multiprocessor environment (Oğuz 
& Ercan, 2005). In this work, authors proposed a new crossover operator, NXO, to be used in 
the genetic algorithm and compare its performance with well-known PMX crossover. They 
employed two selection criteria in NXO to minimize the idle time of the processors. Firstly, 
NXO basically aims to keep the best characteristics of the parents in terms of the 
neighbouring jobs. That is if two jobs are adjacent to each other in both parents with good 
fitness values, then NXO tries to keep this structure in the offspring. If there is no such 
structure, then next criteria is employed in which NXO tries to choose the next job that will 
fit well in terms of the processor allocations. The results show that the genetic algorithm 
performs better in terms of the percentage deviation of the solution from the lower bound 
value when new crossover operator is used along with the insertion mutation. Some of the 
results from this study are included in this paper for comparison.  

5. Other heuristic methods 
The ant colony system (Dorigo, 1997) is another popular algorithm which is widely used in 
optimisation problems. Recently, Ying & Lin (2006) applied ant colony system (ACS) to 
hybrid flow-shops with multiprocessors tasks. Authors determine the jobs-permutation at 
the first stage, by ACS approach. Other stages are scheduled using an ordered list which is 
obtained by referring to completion times of jobs at the previous stage. Authors also apply 
the same procedure to the inverse problem to obtain the backward schedules. After that 
they employ a local search approach to improve the best schedule obtained in current 
iteration. Their computational results show that ACS has better performance compared to 
TS or GA though their algorithm is not any simpler than that of TS or GA.   
Recently, Tseng & Liao (2008) tackled the problem by using particle swarm optimization. 
Their algorithm differs in terms of encoding scheme to construct a particle, the velocity 
equation and local search mechanism when compared to the basic PSO and the hybrid PSO 
algorithms presented here. Based on their published experimental results, PSO algorithm 
developed by Tseng & Liao (2008) performs well in this scheduling problem. Lately, Ying 
(2008) applied iterated greedy (IG) heuristic in search of a simpler and more efficient 
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solution. The IG heuristic also shows a notable performance as it’s tailored to this particular 
problem. 

6. Experimental results 
The performance of all the meta-heuristics described above is tested using intensive 
computational experiments. Similarly, performance of the basic PSO and the hybrid PSO 
algorithms, in minimizing the overall completion time of all jobs, is also tested using the 
same computational experiments. The effects of various parameters such as number of jobs 
and processor configurations on the performance of the algorithm are also investigated. The 
results are presented in terms of Average Percentage Deviation (APD) of the solution from 
the lower bound which is expressed as:  

 100max ×
−

=
LB

LBC
APD  (3) 

Here, Cmax indicates the completion time of the jobs and LB indicates the lower bound 
calculated for the problem instance. The lower bounds used in this performance study were 
developed by Oğuz et al. (2004) and it is given with the following formula: 
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In the above formula, M and J represent the set of stages and set of jobs consecutively. We 
used the benchmark data available at Oğuz’s personal web-site 
(http://home.ku.edu.tr/~coguz/). Data set contains instances for two types of processor 
configurations:  

(i) Random processor: In this problem set, the number of processors in each 
stage is randomly selected from a set of {1,..., 5}  

(ii) Fixed processor: In this case identical number of processors assigned at 
each stage which is fixed to 5 processors.  

For both configurations, a set of 10 problem instances is randomly produced for various 
number of jobs (n=5, 10, 20, 50, 100) and various number of stages (k=2, 5, 8). For each n and 
k value, the average APD is taken over 10 problem instances.  
Table 2 and 3 presents the APD results obtained for the basic PSO and the hybrid PSO 
algorithms. Furthermore, we compare the results with genetic algorithm developed by Oğuz 
and Ercan (2005), tabu search by Oğuz et al. (2004), ant colony system developed by Ying 
and Lin (2006), iterated greedy algorithm (IG) by Ying (2008) and PSO developed by Tseng 
& Liao (2008). The performance of GA (Oğuz and Ercan,2005) is closely related to the control 
parameters and the cross over and mutation techniques used. Therefore, in Tables 2 and 3, 
we include the best results obtained from four different versions of GA reported. The 
performance comparison given in below tables is fair enough as most of the authors were 
employing the same problem set. Furthermore, all the algorithms use the same LB. However 
there are two exceptions. For the GA, authors use an improved version of the LB than the 
one given in equation 4. In addition, the PSO developed by Tseng & Liao (2008) is tested 
with different set of problems and with the same LB as in GA. However, these problems 
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also have the same characteristic in terms of number of stage, generation methods for 
processor and processing time requirements, etc. 
From the presented results in Table 2 and 3, it can be observed that TS delivers reasonably 
good results only in two stage case; whereas GA demonstrates a competitive performance 
for small to medium size problems. For large number of jobs (such as n=50, 100) and large 
number of stages (k=8), GA did not outperform ACS, IG or PSO. When we compare ACS 
with TS and GA, we can observe that it outperforms TS and GA in most of the cases. For 
instance, it outperforms GA in 8 out of 12 problems in random processor case (Table 2). 
Among those, the performance improvement was more than %50 in six cases. On the other 
hand, IG gives a better result when compared to ACS in all most all the cases. The IG 
heuristic shows notable performance improvement for large problems (n=50 and n=100). 
For example, in n=100 and k=8 case, IG result is %71 better as compared to GA, %95 
compared to TS and %7 compared to ACS.  
The basic PSO algorithm presented here approximates to GA and ACS results though it did not 
show a significant performance improvement. PSO outperformed GA 4 in 12 problems for 
random processors and 1 in 12 problems for fixed processors. The best performance 
improvement was 54%. On the other hand, PSO-SA hybrid outperformed GA 7 and ACS 3 in 12 
problems.  In most of the cases, PSO-SA and PSO-TS outperformed the basic PSO algorithm. 
Amongst the two hybrids experimented here, PSO-SA gave the best results. The best result 
obtained with PSO-SA was in 50-jobs, 5-stages case, where the improvement was about 59% 
when compared to GA but this was still not better than ACS or IG. However, PSO developed by 
Tseng & Liao (2008) gives much more competitive results. Although thier results are for 
different set of problems, it can be seen that their algorithm performance improves when the 
problem size increases. Authors compared their algorithm with GA and ACS using the same set 
of data and reported that their PSO algorithm supersedes them, in particular for large problems. 
From the results, it can also be observed that when the number of processors are fixed, that 
is mj =5, the scheduling problem becomes more difficult to solve and APD results are 
relatively higher. This is evident in the given results of different metaheuristic algorithms as 
well as the basic PSO and the hybrid PSO algorithms presented here. In the fixed processor 
case, PSO-SA, which is the best performing algorithm among the three PSO algorithms, 
outperformed GA in 3 out of 12 problems and the best improvement achieved was %34. The 
performance of ACS is better for large problems though IG is dominant in most of the 
problems. For the fixed problem case, PSO algorithm developed by (Tseng & Liao, 2008) did 
not show an exceptional performance when compared to GA or ACS for smaller problems 
though for large problems (that is n=50 and 100) their PSO algorithm outperforms all. 
The execution time of the algorithms is another indicator of the performance though it may not 
be a fair comparison as different processors and compilers used for each reported algorithm in 
literature. For instance, the basic PSO and the hybrid PSO algorithms presented here are 
implemented using Java language and run on a PC with 2GHz Intel Pentium processor (with 
1024 MB memory). GA (Oğuz & Ercan, 2005) implemented with C++ and run on a PC with 
2GHz Pentium 4 processor (with 256 MB memory), IG (Ying, 2008) with visual C#.net and PC 
with 1.5GHz CPU and ACS (Ying & Lin, 2006) with Visual C++ and PC with 1.5 GHz Pentium 
4 CPU. However, for the sake of completeness we execute GA, the basic PSO and the hybrid 
PSO on the same computing platform using one easy (k=2, n=10) and one difficult problem 
(k=8, n=100) for the same termination criterion of 10000 iterations for all the algorithms. 
Results are reported in Table 4, which illustrates the speed performance of PSO. It can be seen 
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that PSO is approximately 48% to 35% faster than reported GA CPU timings. The fast 
execution time of PSO is also reported by Tseng and Liao (2008). However, in our case hybrid 
algorithms were as costly as GA due to computations in SA and TS steps.  

k n TS 
(Oğuz 
et al. 
2004) 

GA 
(Oğuz 

& 
Ercan, 
2005) 

ACS 
(Ying 
& Lin, 
2006) 

IG 
(Ying, 
2008) 

Basic 
PSO 

PSO-
SA 

PSO-
TS 

PSO* 
(Tseng 

& 
Liao, 
2008) 

 10 3.0 1.60 1.60 1.49 2.7 1.7 2.1 2.8* 
2 20 2.88 0.80 1.92 1.87 2.88 1.12 1.92 5.40 
 50 2.23 0.69 2.37 2.21 2.38 2.4 2.4 2.30 
 100 9.07 0.35 0.91 0.89 1.82 0.82 1.1 1.62 
          
 10 29.42 11.89 9.51 8.73 10.33 9.78 10.4 10.45 
5 20 24.40 5.54 3.07 2.97 8.6 3.19 4.53 6.04 
 50 10.51 5.11 1.51 1.49 3.31 2.06 2.98 1.44 
 100 11.81 3.06 1.05 1.03 2.11 1.05 1.77 2.80 
          
 10 46.53 16.14 16.50 13.91 18.23 16.14 17.5 19.01 
8 20 42.47 7.98 6.77 5.83 12.03 6.69 7.03 5.76 
 50 21.04 6.03 2.59 2.47 5.98 3.0 4.19 2.91 
 100 21.50 4.12 1.33 1.23 8.78 2.11 5.22 1.53 

Table 2. APD of the algorithms for 10 random instances. Random processors case (mj ~[1,5]) 
(*) Different problem set 

k n TS 
(Oğuz 
et al. 
2004) 

GA 
(Oğuz 

& 
Ercan, 
2005) 

ACS 
(Ying & 

Lin, 
2006) 

IG 
(Ying, 
2008) 

Basic 
PSO 

PSO-
SA 

PSO-
TS 

PSO* 
(Tseng 
& Liao, 
2008) 

 10 10.82 6.13 12.62 8.85 13.8 10.11 12.8 12.75* 
2 20 7.25 7.10 10.73 6.93 10.75 9.59 10.73 6.05 
 50 5.80 3.34 8.17 5.66 10.32 7.02 8.82 5.69 
 100 5.19 2.87 5.66 5.04 7.43 3.21 6.43 6.56 
          
 10 45.14 11.32 26.09 23.49 29.6 11.32 22.2 19.58 
5 20 35.13 10.78 15.11 12.64 19.4 10.77 16.5 12.33 
 50 28.64 14.91 13.11 11.29 14.17 13.24 13.86 12.47 
 100 26.49 11.02 12.45 10.53 12.45 12.45 12.45 11.49 
          
 10 77.21 25.98 25.14 22.17 30.81 25.83 25.83 33.92 
8 20 62.99 24.13 25.18 22.79 26.74 24.34 25.02 24.98 
 50 54.25 21.87 22.23 20.71 27.01 23.07 25.11 19.41 
 100 36.05 19.46 13.90 12.85 20.39 14.43 17.9 15.93 

Table 3. APD of the algorithms for 10 random instances. Fixed processor case (mj =5) 
(*) Different problem set 
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k n GA 
 

PSO PSO-SA PSO-TS 

2 10 12.14 6.3 13.5 12.94 
8 100 2109.9 1388.67 4029.1 3816.3 

Table 4. Average CPU time (in seconds) of GA, TS and PSO. Processors setting is mj=5 
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Figure 2. Convergence of TS, GA and PSO algorithms for a machine vision system 

Lastly, we run the basic PSO and the hybrid PSO algorithms together with genetic algorithm 
and tabu search algorithm for the data obtained from a machine-vision system. The system 
is a multiprocessor architecture designed mainly for machine vision applications. The 
system comprise of two stages where each stage holds four identical DSP processors from 
Analog Devices. Data gathered from this system are for 8, 10, 12 and 18 jobs. The number of 
job is determined by the number of objects to be detected in a given image. The execution 
time and the processor requirements of parallel algorithms for each job are recorded in 
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order to use them as test problems in our scheduling algorithms. By utilizing this data, 
which can be obtained from the author, the convergence characteristic of the algorithms is 
analyzed. As it can be seen from Figure 2, all the algorithms converge very rapidly. 
However, PSO algorithms converge faster than TS and GA. In addition, PSO-SA finds a 
slightly better solution for 12 job problem. All the algorithms find a reasonably good 
solution within 1000 iterations. Hence, for practical application of the scheduling algorithms 
a small value for termination criteria can be selected. 

7. Conclusion 
In this chapter, a scheduling problem, defined as hybrid flow-shops with multiprocessor 
tasks, is presented together with various meta-heuristic algorithms reported for the solution 
in literature. As the solution to this scheduling problem has merits in practise, endeavour to 
find a good solution is worthy. The basic PSO and the hybrid PSO algorithms are employed 
to solve this scheduling problem, as PSO proven to be a simple and effective algorithm 
applied in various engineering problems. In this particular scheduling problem, a job is 
made up of interrelated multiprocessor tasks and each multiprocessor task is modelled with 
its processing requirement and processing time. The objective was to find a schedule in 
which completion time of all the tasks will be minimal. We observe that basic PSO has a 
competitive performance as compared to GA and ACS algorithms and superior 
performance when compared to TS. Considering the simplicity of the basic PSO algorithm, 
the performance achieved is in fact impressive. When experimented with the hybrids of 
PSO, it is observed that PSO-SA combination gave the best results. Hybrid methods 
improved the performance of PSO significantly though this is achieved at the expense of 
increased complexity. When compared to other published results on this problem, it can be 
concluded that IG algorithm (Ying, 2008) and PSO given by (Tseng & Liao, 2008) are the best 
performing algorithms on this problem so far. In terms of effort to develop an algorithm, 
execution time of algorithm and simplicity to tune it, PSO tops all the other metaheuristics.  
As in many practical scheduling problems, it is likely to have precedence constraints among 
the jobs hence in future study hybrid flow-shops with precedence constraints will be 
investigated. In addition, PSO may be applied to other scheduling problems and its 
performance can be exploited in other engineering problems. 
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1. Introduction  
The importance of the analogue part in integrated electronic systems cannot be 
overstressed. Despite its eminence, and unlike the digital design, the analogue design has 
not so far been automated to a great extent, mainly due to its towering complexity 
(Dastidar et al., 2005). Analogue sizing is a very complicated, iterative and boring process 
whose automation is attracting great attention (Medeiro et al., 1994). The analogue design 
and sizing process remains characterized by a mixture of experience and intuition of 
skilled designers (Tlelo-Cuautle & Duarte-Villaseñor, 2008). As a matter of fact, optimal 
design of analogue components is over and over again a bottleneck in the design flow.  
Optimizing the sizes of the analogue components automatically is an important issue 
towards ability of rapidly designing true high performance circuits (Toumazou & Lidgey, 
1993;  Conn et al., 1996). 
Common approaches are generally either fixed topology ones or/and statistical-based 
techniques. They generally start with finding a “good” DC quiescent point, which is 
provided by the skilled analogue designer. After that a simulation-based tuning 
procedure takes place. However these statistic-based approaches are time consuming and 
do not guarantee the convergence towards the global optimum solution (Talbi, 2002).  
Some mathematical heuristics were also used, such as Local Search (Aarts & Lenstra, 
2003), Simulated Annealing (Kirkpatrick et al., 1983; Siarry(a) et al., 1997), Tabu Search 
(Glover, 1989; Glover, 1990), Genetic Algorithms (Grimbleby, 2000; Dréo et al., 2006), etc. 
However these techniques do not offer general solution strategies that can be applied to 
problem formulations where different types of variables, objectives and constraint 
functions are used. In addition, their efficiency is also highly dependent on the algorithm 
parameters, the dimension of the solution space, the convexity of the solution space, and 
the number of variables.  
Actually, most of the circuit design optimization problems simultaneously require 
different types of variables, objective and constraint functions in their formulation. Hence, 
the abovementioned optimization procedures are generally not adequate or not flexible 
enough.  
In order to overcome these drawbacks, a new set of nature inspired heuristic optimization 
algorithms were proposed. The thought process behind these algorithms is inspired from 
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the collective behaviour of decentralized, self-organized systems. It is known as Swarm 
Intelligence (SI) (Bonabeau et al. 1999). SI systems are typically made up of a population 
of simple agents (or ‘’particles’’) interacting locally with each other and with their 
environment. These particles obey to very simple rules, and although there is no 
centralized control structure dictating how each particle should behave, local interactions 
between them lead to the emergence of complex global behaviour. Most famous such SIs 
are Ant Colony Optimization (ACO) (Dorigo et al., 1999), Stochastic Diffusion Search 
(SDS) (Bishop, 1989) and Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 1995; 
Clerc, 2006). 
PSO, in its current form, has been in existence for almost a decade, which is a relatively 
short period when compared to some of the well known natural computing paradigms, 
such as evolutionary computation. PSO has gained widespread demand amongst 
researchers and has been shown to offer good performance in an assortment of 
application domains (Banks et al., 2007). 
In this chapter, we focus on the use of PSO technique for the optimal design of analogue 
circuits. The practical applicability and suitability of PSO to optimize performances of 
such multi-objective problems are highlighted. An example of optimizing performances of 
a second generation MOS current conveyor (CCII) is presented. The used PSO algorithm 
is detailed and Spice simulation results, performed using the 'optimal' sizing of transistors 
forming the CCII and bias current, are presented. Reached performances are discussed 
and compared to others presented in some published works, but obtained using classical 
approaches.  

2. The Sizing Problem 
The process of designing an analogue circuit mainly consists of the following steps 
(Medeiro et al., 1994) : 
• the topology choice: a suitable schematic has to be selected, 
• the sizing task: the chosen schematic must be dimensioned to comply with the 

required specifications, 
• The generation of the layout. 
Among these major steps, we focus on the second one, i.e. the optimal sizing of analogue 
circuits.  
Actually, analogue sizing is a constructive procedure that aims at mapping the circuit 
specifications (objectives and constraints on performances) into the design parameter 
values. In other words, the performance metrics of the circuit, such as gain, noise figure, 
input impedance, occupied area, etc. have to be formulated in terms of the design 
variables (Tulunay & Balkir, 2004). 
In a generic circuit, the optimization problem consists of finding optimal values of the 
design parameters. These variables form a vector { }N

T xxxX ,,, 21=
r

 belonging to an N-
dimensional design space. This set includes transistor geometric dimensions and passive 
component values, if any. Hence, performances and objectives involved in the design 
objectives are expressed as functions of X. 
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These performances may belong to the set of constraints ( )(Xg
rr

) and/or to the set of 

objectives ( )(Xf
rr

). Thus, a general optimization problem can be formulated as follows: 

 minimize : )(Xfi

r
, ],1[ ki ∈  

 such that: : 0)( ≤Xg j

r
, ],1[ lj ∈  

( ) 0≤Xhm

r
, ],1[ pm∈  

],1[, Nixxx UiiLi ∈≤≤  

                                                        (1) 

k, l and p denote the numbers of objectives, inequality constraints  and equality constraints, 
respectively.  Lxr  and  Uxr  are lower and upper boundaries vectors of the parameters. 
The goal of optimization is usually to minimize an objective function; the problem for 
maximizing  )(xf

r
 can be transformed into minimizing )(xf

r
− . This goal is reached when 

the variables are located in the set of optimal solutions. 
For instance, a basic two-stage operational amplifier has around 10 parameters, which 
include the widths and lengths of all transistors values which have to be set. The goal is to 
achieve around 10 specifications, such as gain, bandwidth, noise, offset, settling time, slew 
rate, consumed power, occupied area, CMRR (common-mode rejection ratio) and PSRR 
(power supply rejection ratio). Besides, a set of DC equations and constraints, such as 
transistors’ saturation conditions, have to be satisfied (Gray & Meyer, 1982). 
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Figure 1. Pictorial view of a design optimization approach 

The pictorial flow diagram depicted in Fig. 1 summarizes main steps of the sizing approach. 
As it was introduced in section 1, there exist many papers and books dealing with 
mathematic optimization methods and studying in particular their convergence properties 
(see for example (Talbi, 2002; Dréo et al., 2006; Siarry(b) et al., 2007)). 
These optimizing methods can be classified into two categories: deterministic methods and 
stochastic methods, known as heuristics.  
Deterministic methods, such as Simplex (Nelder & Mead, 1965), Branch and Bound (Doig, 
1960), Goal Programming (Scniederjans, 1995), Dynamic Programming (Bellman, 2003)… 
are effective only for small size problems. They are not efficient when dealing with NP-hard 
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and multi-criteria problems. In addition, it has been proven that these optimization 
techniques impose several limitations due to their inherent solution mechanisms and their 
tight dependence on the algorithm parameters. Besides they rely on the type of objective, the 
type of constraint functions, the number of variables and the size and the structure of the 
solution space. Moreover they do not offer general solution strategies. 
Most of the optimization problems require different types of variables, objective and 
constraint functions simultaneously in their formulation. Therefore, classic optimization 
procedures are generally not adequate.  
Heuristics are necessary to solve big size problems and/or with many criteria (Basseur et al., 
2006). They can be ‘easily’ modified and adapted to suit specific problem requirements. 
Even though they don’t guarantee to find in an exact way the optimal solution(s), they give 
‘good’ approximation of it (them) within an acceptable computing time (Chan & Tiwari, 
2007). Heuristics can be divided into two classes: on the one hand, there are algorithms 
which are specific to a given problem and, on the other hand, there are generic algorithms, 
i.e. metaheuristics. Metaheuristics are classified into two categories: local search techniques, 
such as Simulated Annealing, Tabu Search … and global search ones, like Evolutionary 
techniques, Swarm Intelligence techniques … 
ACO and PSO are swarm intelligence techniques. They are inspired from nature and were 
proposed by researchers to overcome drawbacks of the aforementioned methods. In the 
following, we focus on the use of PSO technique for the optimal design of analogue circuits. 

3. Overview of Particle Swarm Optimization 
The particle swarm optimization was formulated by (Kennedy & Eberhart, 1995). The 
cogitated process behind the PSO algorithm was inspired by the optimal swarm behaviour 
of animals such, as birds, fishes and bees. 
PSO technique encompasses three main features: 
• It is a SI technique; it mimics some animal’s problem solution abilities,   
• It is based on a simple concept. Hence, the algorithm is neither time consumer nor 

memory absorber, 
• It was originally developed for continuous nonlinear optimization problems. As a 

matter of fact, it can be easily expanded to discrete problems. 
PSO is a stochastic global optimization method. Like in Genetic Algorithms (GA), PSO 
exploits a population of potential candidate solutions to investigate the feasible search 
space. However, in contrast to GA, in PSO no operators inspired by natural evolution are 
applied to extract a new generation of feasible solutions. As a substitute of mutation, PSO 
relies on the exchange of information between individuals (particles) of the population 
(swarm). 
During the search for the promising regions of the landscape, and in order to tune its 
trajectory, each particle adjusts its velocity and its position according to its own experience, 
as well as the experience of the members of its social neighbourhood. Actually, each particle 
remembers its best position, and is informed of the best position reached by the swarm, in 
the global version of the algorithm, or by the particle’s neighbourhood, in the local version 
of the algorithm. Thus, during the search process, a global sharing of information takes 
place and each particle’s experience is thus enriched thanks to its discoveries and those of all 
the other particles. Fig. 2 illustrates this principle. 
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Figure 2. Principle of the movement of a particle 

In an N-dimensional search space, the position and the velocity of the ith particle can be 
represented as ],,,[ ,2,1, Niiii xxxX K=  and ],,,[ ,2,1, Niiii vvvV K=  respectively. Each 

particle has its own best location ],,,[ ,2,1, Niiii pppP K= , which corresponds to the best 

location reached by the ith particle at time t. The global best location is 
named ],,,[ 21 Ngggg K= , which represents the best location reached by the entire 
swarm. From time t to time t+1, each velocity is updated using the following equation: 

  
44 844 76444 8444 7648476 InfluenceSocial

jii

InfluencePersonal

jiji

inertia

jiji tvgrctvprctvwtv ))(())(()()1( ,22,,11,, −+−+=+  (2) 

where w is a constant known as inertia factor, it controls the impact of the previous velocity 
on the current one, so it ensures the diversity of the swarm, which is the main means to 
avoid the stagnation of particles at local optima. c1 and c2 are constants called acceleration 
coefficients; c1 controls the attitude of the particle of searching around its best location and c2 
controls the influence of the swarm on the particle’s behaviour. r1 and r2 are two 
independent random numbers uniformly distributed in [0,1]. 
The computation of the position at time t+1 is derived from expression (2) using: 

  , , ,( 1) ( ) ( 1)i j i j i jx t x t v t+ = + +  (3) 

It is important to put the stress on the fact that the PSO algorithm can be used for both 
mono-objective and multi-objective optimization problems.  
The driving idea behind the multi-objective version of PSO algorithm (MO-PSO) consists of 
the use of an archive, in which each particle deposits its ‘flight’ experience at each running 
cycle. The aim of the archive is to store all the non-dominated solutions found during the 
optimization process. At the end of the execution, all the positions stored in the archive give 
us an approximation of the theoretical Pareto Front. Fig. 3 illustrates the flowchart of the 
MO-PSO algorithm. Two points are to be highlighted: the first one is that in order to avoid 
excessive growing of the storing memory, its size is fixed according to a crowding rule 
(Cooren et al., 2007). The second point is that computed optimal solutions’ inaccuracy 
crawls in due to the inaccuracy of the formulated equations. 
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Figure 3. Flowchart of a MO-PSO 

In the following section we give an application example dealing with optimizing 
performances of an analogue circuit, i.e. optimizing the sizing of a MOS inverted current 
conveyor in order to maximize/minimize performance functions, while satisfying imposed 
and inherent constraints. The problem consists of generating the trade off surface (Pareto 
front1) linking two conflicting performances of the CCII, namely the high cut-off current 
frequency and the parasitic X-port input resistance. 

                                                                 
1 Definition of Pareto optimality is given in Appendix. 
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4. An Application Example  
The problem consists of optimizing performances of a second generation current conveyor 
(CCII) (Sedra & Smith, 1970) regarding to its main influencing performances. The aim 
consists of maximizing the conveyor high current cut-off frequency and minimizing its 
parasitic X-port resistance (Cooren et al., 2007). 
In the VLSI realm, circuits are classified according to their operation modes: voltage mode 
circuits or current mode circuits. Voltage mode circuits suffer from low bandwidths arising 
due to the stray and circuit capacitances and are not suitable for high frequency applications 
(Rajput & Jamuar, 2007). 
In contrary, current mode circuits enable the design of circuits that can operate over wide 
dynamic ranges. Among the set of current mode circuits, the current conveyor (CC) (Smith 
& Sedra, 1968; Sedra & Smith, 1970) is the most popular one. 
The Current Conveyor (CC) is a three (or more) terminal active block. Its conventional 
representation is shown in Fig. 4a. Fig. 4b shows the equivalent nullator/norator 
representation (Schmid, 2000) which reproduces the ideal behaviour of the CC. Fig. 4.c 
shows a CCII with its parasitic components (Ferry et al. 2002). 
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Figure 4. (a) General representation of current conveyor, (b) the nullor equivalency: ideal 
CC, (c) parasitic components: real CC 

Relations between voltage and current terminals are given by the following matrix relation 
(Toumazou & Lidgey, 1993): 
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For the above matrix representation, α specifies the kind of the conveyor. Indeed, for α =1, 
the circuit is considered as a first generation current conveyor (CCI). Whereas when α =0, it 
is called a second generation current conveyor (CCII). β characterizes the current transfer 
from X to Z ports. For β =+1, the circuit is classified as a positive transfer conveyor. It is 
considered as a negative transfer one when β =-1. γ =±1: When γ =-1 the CC is said an 
inverted CC, and a direct CC, otherwise. 
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Accordingly, the CCII ensures two functionalities between its terminals: 
• A Current follower/Current mirror between terminals X and Z. 
• A Voltage follower/Voltage mirror between terminals X and Y. 
In order to get ideal transfers, CCII are commonly characterized by low impedance on 
terminal X and high impedance on terminals Y and Z. 
In this application we deal with optimizing performances of an inverted positive second 
generation current conveyor (CCII+) (Sedra & Smith, 1970; Cooren et al., 2007) regarding to 
its main influencing performances. The aim consists of determining the optimal Pareto 
circuit’s variables, i.e. widths and lengths of each MOS transistor, and the bias current I0, 
that maximizes the conveyor high current cut-off frequency and minimizes its parasitic X-
port resistance (RX) (Bensalem et al., 2006; Fakhfakh et al. 2007). Fig. 5 illustrates the CCII+’s 
MOS transistor level schema. 
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ZXY

VSS

VDD

 
Figure 5. The second generation CMOS current conveyor 
Constraints: 
• Transistor saturation conditions: all the CCII transistors must operate in the saturation 

mode. Saturation constraints of each MOSFET were determined. For instance, 
expression (5) gives constraints on M2 and M8 transistors: 

 
NNN

TP
DD

PPP LWK
IVV

LWK
I 00

2
−−≤  (5) 

where I0 is the bias current, W(N,P)/L(N,P) is the aspect ratio of the corresponding MOS 
transistor. K(N,P) and VTP are technology parameters. VDD is the DC voltage power 
supply. 

Objective functions: 
In order to present simplified expressions of the objective functions, all NMOS transistors 
were supposed to have the same size. Ditto for the PMOS transistors. 
• RX: the value of the X-port input parasitic resistance has to be minimized, 
• fchi: the high current cut-off frequency has to be maximized. 
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Symbolic expressions of the objective functions are not given due to their large number of 
terms. 
PSO algorithm was programmed using C++ software. Table 1 gives the algorithm 
parameters. 
Fig. 6 shows Pareto fronts (RX vs. fci) and optimal variables (WP vs. WN) corresponding to 
the bias current I0=50µA (6.a, 6.b), 100µA (6.c, 6.d), 150µA (6.e, 6.f), 200µA (6.g, 6.h), 250µA 
(6.i, 6.j) and 300µA (6.k, 6.l). Where values of LN, LP, WN and WP are given in µm, I0 is in µA, 
RX in ohms and fci(min, Max) in GHz. 
In Fig. 6 clearly appears the high interest of the Pareto front. Indeed, amongst the set of the 
non-dominated solutions, the designer can choose, always with respect to imposed 
specifications, its best solution since he can add some other criterion choice, such as Y-port 
and/or Z-port impedance values, high voltage cut-off frequency, etc. 

Fig. 7 shows Spice simulation results performed for both points corresponding to the edge of 
the Pareto front, for I0=100µA, where RXmin=493 ohms, RXMax=787 ohms, fcimin=0.165 GHz and 
fciMax=1.696 GHz.  
 

Swarm size Number of iterations w  c1 c2 
20 1000 0.4 1 1 

Table 1. The PSO algorithm parameters 

Technology CMOS AMS 0.35 µm 
Power voltage supply VSS=-2.5V, VDD=2.5V 

Table 2. SPICE simulation conditions 

WN LN WP LP WN LN WP LP 
I0 

RXmin fcimin RXMax fciMax 
17.21 0.90 28.40 0.50 4.74 0.87 8.40 0.53 

50 
714 0.027 1376 0.866 

20.07 0.57 30.00 0.35 7.28 0.55 12.60 0.35 
100 

382 0.059 633 1.802 
17.65 0.6 28.53 0.35 10.67 0.59 17.77 0.36 

150 
336 0.078 435 1.721 

17.51 0.53 29.55 0.35 12.43 0.53 20.32 0.35 
200 

285 0.090 338 2.017 
18.60 0.54 30.00 0.35 15.78 0.55 24.92 0.35 

250 
249 0.097 272 1.940 

19.17 0.55 29.81 0.35 17.96 0.54 29.16 0.35 
300 

224 0.107 230 2.042 

Table 3. Pareto trade-off surfaces’ boundaries corresponding to some selected results 
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Figure 6. Pareto fronts and the corresponding variables for various bias currents 

Frequency

10Hz 100Hz 1.0KHz 10KHz 100KHz 1.0MHz 10MHz 100MHz 1.0GHz 10GHz
V(V4q:+)/-I(V4q)

0

1.0KR
X

Frequency

10Hz 100Hz 1.0KHz 10KHz 100KHz 1.0MHz 10MHz 100MHz 1.0GHz 10GHz
V(V4q:+)/-I(V4q)

0

1.0KR
X

 
(a) (b) 

Frequency

100Hz 1.0KHz 10KHz 100KHz 1.0MHz 10MHz 100MHz 1.0GHz 10GHz
DB(I(Rin)/-I(Vin))

-20

-10

10

0

 Frequency

100Hz 1.0KHz 10KHz 100KHz 1.0MHz 10MHz 100MHz 1.0GHz 10GHz
DB(I(Rin)/-I(Vin))

-20

-10

0

10

 
(c) (d) 

Figure 7. (RX vs. frequency) Spice simulations 

5. Conclusion 
The practical applicability and suitability of the particle swarm optimization technique 
(PSO) to optimize performances of analog circuits were shown in this chapter. An 
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application example was presented. It deals with computing the Pareto trade-off surface in 
the solution space: parasitic input resistance vs. high current cut-off frequency of a positive 
second generation current conveyor (CCII+). Optimal parameters (transistors’ widths and 
lengths, and bias current), obtained thanks to the PSO algorithm were used to simulate the 
CCII+. It was shown that no more than 1000 iterations were necessary for obtaining 
‘optimal’ solutions. Besides, it was also proven that the algorithm doesn’t require severe 
parameter tuning. Some Spice simulations were presented to show the good agreement 
between the computed (optimized) values and the simulation ones. 

6. Appendix 
In the analogue sizing process, the optimization problem usually deals with the 
minimization of several objectives simultaneously. This multi-objective optimization 
problem leads to trade-off situations where it is only possible to improve one performance 
at the cost of another. Hence, the resort to the concept of Pareto optimality is necessary. 
A vector [ ]Tnθθθ L1= is considered superior to a vector [ ]Tnψψψ L1=  if it dominatesψ , 

i.e., ψθ p ⇔
{ }

( )
{ }

( )iiniiini
ψθψθ <∃∧≤∀

∈∈ ,,1,,1 LL
 

Accordingly, a performance vector •f is Pareto-optimal if and only if it is non-dominated 

within the feasible solution space ℑ , i.e., •

ℑ∈
∃¬ ff

f
p . 
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1. Introduction 
As it was shown by the authors in a previous work, the Finite-Difference Time-Domain 
(FDTD) method is adequate to solve numerically Maxwell's Equations for simulating the 
propagation of Ultra-Wideband (UWB) pulses in complex environments. These pulses are 
important in practice in high-resolution radar and GPS systems and in high performance 
(wideband) wireless communication links, because they are immune to selective frequency 
fading related to complex environments, such as residences, offices, laboratories among 
others. In this case, it is necessary to use spread spectrum techniques for transmission, in 
order to avoid interferences to other wireless systems, such as cell phone networks, GPS, 
Bluetooth and IEEE802.11. It is worth to mention that by combining these techniques to 
UWB pulses; it is possible to obtain a signal with power spectrum density under noise 
threshold, what is a very interesting characteristic for this application. 
The proposed simulated environment is a building consisting of several rooms (laboratories) 
separated by masonry. Internal and external walls are characterized by specific widths and 
electrical parameters. Wood doors were included in the analysis domain. The analysis 
region is then limited by U-PML (Uniaxial Perfectly Matched Layers) technique and the 
system is excited by omni-directional antennas. In order to make the simulations more real, 
Additive White Gaussian Noise was considered. Aiming at verifying the robustness of the 
radar network, objects are included in the domain in a semi-random spatial distribution, 
increasing the contribution of the wave scattering phenomena.  Omni-directional antennas 
were used to register transient electric field in specific points of the scenery, which are 
adequate for the propose of this work. From those transient responses, it is possible to 
determine the time intervals the electromagnetic signal requires to travel through the paths 
transceiver-intruder-transceiver and transceiver-intruder-receivers, forming, this way, a 
non-linear system of equations (involving circle and ellipses equations, respectively). 
In order to estimate the intruder position, the PSO method is used and a new methodology 
was conceived. The main idea is to apply PSO to determine the equidistant point to the 
circle and to the two ellipses generated by using the data extracted from received transient 
signals (those three curves usually does not have a single interception point for highly 
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scattering environments). The equidistant point, determined via PSO, is the position 
estimative for single radar. 
For a radar network, which is necessary for a large area under monitoring, the transmitters 
should operate in TDM (Time-Division Multiplexing) mode in order to avoid interference 
among them. For each possible transceiver-receivers combination, an estimate is obtained 
and, from the set of estimations, statistical parameters are calculated and used in order to 
produce a unique prediction of the intruder's position.  

2. The FDTD Method and its Applications 
The FDTD Method (Finite-Difference Time-Domain) had its first application in the solution 
of Maxwell’s equations, in 1966, when Kane Yee used it in the analysis of spread of 
electromagnetic waves through bidimensional structures (Yee, 1966). This technique defines 
the spacial positioning of the components of the electric and magnetic fields in such a way 
that Ampère and Faraday laws are satisfied, and it approaches the derivates, constituents of 
those equations, by centered finite differences, in which the updating of the components of 
the electric fields is alternately verified in relation to those of the magnetic fields, by forming 
this way what is known as the algorithm of Yee. The method constitutes a solution of 
complete wave, in which the reflection, refraction, and diffraction phenomena are implicitly 
included. 
Years passed by and, along with them, several scientific advances contributed to the 
establishment of this method as an important tool in the analysis and synthesis of problems 
in electromagnetism, among them it is noted: new high speed computers and auto-
performance computer networks; the expansion of the method for the solution of problems 
in the 3D space, with the inclusion of complex materials, and the condition of stability 
(Taflove & Brodwin, 1975); development of truncation techniques of the region of analysis, 
known as ABC´s (Absorbing Boundary Conditions), such as the operators of Bayliss-Turkel 
Bayliss, & Turkel, (1980), Mur of first and second orders (Mur, 1981),  Higdon technique 
(Ridon, 1987), Liao (Liao, 1987), PML of Berenger (Berenger, 1994), and the UPML of Sacks 
(Sacks et al., 1995). 
The FDTD method, for its simplicity of application, strength and application in all spectrum 
of frequencies, has been used in the solution of antenna problems (Zhang et al., 1988), circuit 
analysis in high frequencies (Fornberg et al., 2000), radars (Muller et al., 2005), photonic 
(Goorjian & Taflove, 1992), communication systems (Kondylis et al., 1999), periodic 
structures (Maloney & Kesler, 1998), medicine (Manteuffell & Simon, 2005) , electric 
grounding system (Tanabe, 2001) , etc. 

2.1 The Yee’s Algorithm 
Equations (1) and (2) represent the equations of Maxwell in its differential form, where E 
and H are the vectors intensity of electric and magnetic fields, respectively, μ is the magnetic 
permeability, ε is the electric permittivity of the medium and J is the current density vector. 
For the solution of these equations by the FDTD method, Kane Yee (Yee, 1966) proposed 
that the components of E (Ex, Ey, Ez) and H (Hx, Hy, Hz) were positioned in the space as it 
shown in Fig. 1. x۳ ൌ െµ ∂۶∂t  (1) 
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x۶ ൌ ε ∂۳∂t  ۸. (2) 

Such procedure is justified by the necessity of agreement with the mathematical operators 
indicated in the equations above. 

 
Figure 1. The Yee’s Cell 

This way, by expanding the curl operators in (1) and (2), it results in the following scalar 
equations ߲ܪ௫߲ݐ ൌ ߤ1 ൬߲ܧ߲ݖ െ ݕ௭߲ܧ߲ ൰, (3.a) 

ݐ௬߲ܪ߲ ൌ ߤ1 ൬߲ܧ௭߲ݔ െ ݖ௫߲ܧ߲ ൰, (3.b) 

ݐ௭߲ܪ߲ ൌ ߤ1 ቆ߲ܧ௫߲ݕ െ ݔ௬߲ܧ߲ ቇ, (3.c) 

and 

1 yx z
x

HE H E
t z y

σ
ε

∂⎛ ⎞∂ ∂= − −⎜ ⎟∂ ∂ ∂⎝ ⎠
 (4.a) 

ݐ௬߲ܧ߲ ൌ ߝ1 ൬߲ܪ௫߲ݖ െ ݔ௭߲ܪ߲ െ  ௬൰, (4.b)ܧߪ

ݐ௭߲ܧ߲ ൌ ߝ1 ቆ߲ܪ௬߲ݔ െ ݕ௫߲ܪ߲ െ  ௭ቇ, (4.c)ܧߪ

respectively. 



Particle Swarm Optimization 

 

186 

The derivates in (3) and (4) are then approximated by central finite differences, in the 
following way 

1 1
2 2( ) ( )F l l F l lF

l l
+ Δ − − Δ∂

∂ Δ
 

(5) 

where F represents any component of either electric or magnetic field and ݈ can be x, y, z or t. 
By applying (5) in (3) and (4), it results in the updating equations of the components of fields 
given by (6)-(7), as follows. ܪ௫ାଵଶሺ݅, ݆, ݇ሻ ൌ ,௫ିଵଶሺ݅ܪ ݆, ݇ሻ ∆௧ߤ ቈܧ௬ሺ݅, ݆, ݇  1ሻ െ ,௬ሺ݅ܧ ݆, ݇ሻ∆௭ െ ,௭ሺ݅ܧ ݆  1, ݇ሻ െ ,௭ሺ݅ܧ ݆, ݇ሻ∆௬ , (6.a) 

,௬ାଵଶሺ݅ܪ ݆, ݇ሻ ൌ ,௬ିଵଶሺ݅ܪ ݆, ݇ሻ ∆௧ߤ ቈܧ௭ሺ݅  1, ݆, ݇ሻ െ ,௭ሺ݅ܧ ݆, ݇ሻ∆௫ െ ,௫ሺ݅ܧ ݆, ݇  1ሻ െ ,௫ሺ݅ܧ ݆, ݇ሻ∆௭ , (6.b) 

,௭ାଵଶሺ݅ܪ ݆, ݇ሻ ൌ ,௭ିଵଶሺ݅ܪ ݆, ݇ሻ ∆௧ߤ ቈܧ௫ሺ݅, ݆  1, ݇ሻ െ ,௫ሺ݅ܧ ݆, ݇ሻ∆௬ െ ௬ሺ݅ܧ  1, ݆, ݇ሻ െ ,௬ሺ݅ܧ ݆, ݇ሻ∆௫ , (6.c) 

and 

,௫ାଵሺ݅ܧ ݆, ݇ሻ ൌ ,௫ሺ݅ܧ ݆, ݇ሻ ቌ1 െ ߪ ∆௧21ߝ  ߪ ∆௧2ߝቍ  

 ∆௧ߝ ቀ1  ߪ ∆௧2ߝቁ ܪ௭ାଵ/ଶሺ݅, ݆, ݇ሻ െ ,௭ାଵ/ଶሺ݅ܪ ݆ െ 1, ݇ሻ∆௬
െ ,௬ାଵ/ଶሺ݅ܪ ݆, ݇ሻ െ ,௬ାଵ/ଶሺ݅ܪ ݆, ݇ െ 1ሻ∆௭ , 

(7.a) 

,௬ାଵሺ݅ܧ ݆, ݇ሻ ൌ ,௬ሺ݅ܧ ݆, ݇ሻ ቌ1 െ ߪ ∆௧21ߝ  ߪ ∆௧2ߝቍ  

 ∆௧ߝ ቀ1  ߪ ∆௧2ߝቁ ܪ௫ାଵ/ଶሺ݅, ݆, ݇ሻ െ ,௫ାଵ/ଶሺ݅ܪ ݆, ݇ െ 1ሻ∆௭
െ ,௬ାଵ/ଶሺ݅ܪ ݆, ݇ሻ െ ௬ାଵ/ଶሺ݅ܪ െ 1, ݆, ݇ሻ∆௫ , 

(7.b) 
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,௭ାଵሺ݅ܧ ݆, ݇ሻ ൌ ,௭ሺ݅ܧ ݆, ݇ሻ ቌ1 െ ߪ ∆௧21ߝ  ߪ ∆௧2ߝቍ  

 ∆௧ߝ ቀ1  ߪ ∆௧2ߝቁ ܪ௬ାଵ/ଶሺ݅, ݆, ݇ሻ െ ௬ାଵ/ଶሺ݅ܪ െ 1, ݆, ݇ሻ∆௫െ ,௫ାଵ/ଶሺ݅ܪ ݆, ݇ሻ െ ,௫ାଵ/ଶሺ݅ܪ ݆ െ 1, ݇ሻ∆௬ , 
(7.c) 

where i,j,k and n are integers; i,j,k are indexes for the spatial coordinates x, y and z and n is 
the temporal index for the time t, in such way that x = i∆x, y = j∆y, z = k∆z and t = n∆t (∆x, ∆y 

and ∆z are the spatial increments and  ∆t is the time step). 

2.2 Precision and Stability 
The precision represents how close the obtained result is to the exact result, and the stability 
is the guarantee that the solution of the problem will not diverge. In order to precision and 
stability to be guaranteed, the following criteria are adopted in this work (Taflove & 
Hagness 2005): ∆୶,୷, λ୫୧୬10  

and ∆௧ ௫ඨݒ1 1ሺ∆௫ሻଶ  1ሺ∆௬ሻଶ  1ሺ∆௭ሻଶ
 . 

which means that the minimum wave length existing in the work environment has to be 
characterized by, at least, 10 cells (Taflove & Hagness 2005). Depending on the application, 
this number can be superior to 100, and the time increment will be limited by the maximum 
distance to be travelled, by the respective wave, in the cell of Yee (Taflove & Hagness 2005). 

2.3 The Sacks’ Uniaxial Perfecttly Matched Layers 
One of the problems of the numeric methods is the fact that they do not offer resources that 
permits the interruption of the spacial iterative process. This causes the method to be 
limited, mainly when the solution of open problems is taken into account. In order to solve 
this problem, several techniques have been developed, among them there is the UPML 
(Uniaxial perfecttly matched layers) (Sacks et al., 1995), which was used in this work. This 
method takes into account, around the region of analysis (Fig.2), layers perfectly matched, 
constituted by anisotropic media and with loss, which are characterized by the following 
equations of Maxwell, in the frequency domain. x۳ ൌ െjωµሾsሿ۶ (8) x۶ ൌ jωεሾsሿ۳, (9) 
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the target and by other objects. Transient responses obtained at certain points in space are 
used to determine the target’s position. 
In particular, multistatic radars can be composed by a transceiver (transmitter and receiver 
at the same point – Tx/Rx1) and, at least, two remote receivers (Rx2 and Rx3), such as 
illustrated by Fig. 4. The signal leaves the transceiver and reaches the target, which reflects it 
toward the receivers and the transceiver as well.  
From the transceiver perspective, the signal takes a certain amount of time for returning. 
This only means that the target could be at any point of a circle centered at the transceiver’s 
coordinates (Fig. 4). Longer the time, larger is the circumference. From the receiver 
perspective, the signal travels from the transmitter, it reaches the target and then it arrives at 
the receiver coordinates. This only means that the target is at the locus defined by an ellipse 
with foci at the transceiver’s and at the receiver’s coordinates (Fig. 3). Of course, longer the 
propagation time, greater is the total path (calculated by using time and the propagating 
speed) and larger is the ellipse’s semiminor axis. The solution of the system of equations this 
way composed provides the target’s position. 

 
Figure 3. Ideal multistatic radar 

 
Figure 4. The ellipse’s parameters 

Fig. 4 shows the ellipse’s basic parameters (T indicates the transceiver position, R indicates 
the receiver’s, position and P defines the intruder’s location). 

Target

Tx/Rx1

Rx2

Rx3
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The ellipse equation is given by  ࡲሺ࢞, ሻ࢟ ൌ ,࢞ሺ ሻ࢟  ,࢞ሺ ሻ࢟ െ  ൌ , (12)

where    ሺ࢞, ሻ࢟ ൌ ࢟ሺൣࢇ െ ሻࢉ࢟ ࢙ࢉ ࢻ െ ሺ࢞ െ ሻࢉ࢞ ࢙ ൧, (13)ࢻ

 ሺ࢞, ሻ࢟ ൌ ࢞ሺൣ࢈ െ ሻࢉ࢞ ࢙ࢉ ࢻ െ ሺ࢟ െ ሻࢉ࢟ ࢙   ൧ࢻ
and 

(14)

 ൌ (15) ,࢈ࢇ

in which a is the semimajor axis, b is the semiminor axis, xc and yc are the coordinates of the 
center C of the ellipse, and α is the angle from the x-axis to the ellipse’s semimajor axis. 
Here, n is the receiver identifier (index). The parameters nCx , nCy , na , nb  and nα  are 
calculated by 

ࢉ࢞ ൌ  ൫ࢀ࢞  ൯, (16)ࡾ࢞

ࢉ࢟ ൌ  ൫ࢀ࢟  ൯, (17)ࡾ࢟

ࢇ ൌ  ൫ࡾࡼࢀࢊ൯, (18)

࢈ ൌ  ൬ටࡾࡼࢀࢊ െ ࡾࢀࢊ ൰, (19)

ࡾࢀࢊ ൌ ටሺࢀ࢞ െ ሻࡾ࢞  ሺࢀ࢟ െ ሻ, (20)ࡾ࢟

ࢻ ൌ ିࢇ࢚ ൬ࢀ࢟ ି .൰ࡾ࢞ ି ࢀ࢞ࡾ࢟
 

(21)

were xT and yT are the coordinates of the transmitter, xR and yR are the coordinates of the 
receiver R and dTR is the distance from the receiver to the transmitter. Finally, dTPR is given 
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by the sum of the lengths of the segments ܶܲ and ܴܶ (the total path length), estimated from 
the propagation time. 
The calculation of the propagation time is performed by two steps: 1) by sending a pulse 
and registering the transient response at the transceiver and at the receivers and 2) by 
sending a second pulse and subtracting the new obtained registers from the previously 
recorded set. Of course, it is assumed that the target is in movement; otherwise the data 
obtained from steps 1) and 2) would be identical. If the pulse is UWB, it is possible to detect 
the movement of the heart of a human intruder, meaning he would be a detectable target 
even if he kept perfectly static. 

3.2 Particle Swarm Optimization 
The particle swarm optimization (PSO) method is a modern heuristic optimization 
algorithm, based on group movement of animals, such as fishes, birds and insects. The 
movement of each animal (individual or particle) can be seen as a resultant vector of 
personal and collective characteristics (vector components). 
Proposed in (Kennedy & Eberhart, 1995), this method consists on the optimization of an 
objective function trough the exchange of information among the particles (individuals), 
resulting in a non-deterministic, but robust and efficient algorithm, which can be easily 
implemented computationally. 
In an initial moment, all the particles are positioned randomly in the searching space, in 
which the solution must be. The movement of each particle is the result of a vector sum of 
three distinct terms: the first contribution is related to the inertia of the particle (a particle’s 
personal component), the second is related to the best position occupied by the particle (a 
personal component - memory) and the third is relative to the best position found by the 
group (group contribution – cooperation). Each particle position (a multidimensional vector) 
corresponds to an alternative solution for the problem (combination of the multidimensional 
vector). Each alternative solution must be evaluated. 

Thus, at a given time step, a particle i changes its position from Xi  to
newXi according to 

,
newX Xi i x i= + Δ

, 
(22) 

in which ix,Δ is the updated position increment for particle i, that is, it is the vector 

representing the position change for particle i  and it is given by 

. ( ) . ( ), , ,,
old U W b X U W b Xgx i m i i i c i ix i

Δ = Δ + − + −
 

(23) 

The heights imW ,  (memory) and icW ,  (cooperation) are previously defined, U represents 

independent samples of a random variable uniformly distributed between zero and one, bi  

is the best solution found by the particle i and bg  is the best solution found by the swarm, 

up to the current interaction. 
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The initial values for the displacements, i.e. 
,

old
x i

Δ , are randomly chosen among the real 

values limited by 
max
x−Δ  and 

max
xΔ , in order to avoid large values and the consequent 

divergence from the solution. It is worth to mention that it is necessary to avoid such large 
values during the interactions. It was observed that usually the method results in 
divergence or in low precision due to this tendency. There are, however, some methods for 
minimize these problems, such as: 

1. The employment of a descending function, affecting the inertial term, such as an 
evanescent exponential function of time; 

2. The use of terms for reduction of the velocity at each interaction, known as 
constriction terms. 

3. Simply to limit each velocity component to the interval [
max
x−Δ , 

max
xΔ ]. 

All the methods have been tested, and, although all of them were efficient, the last one was 
applied here. 

3.3 Estimation of the Intruder's Position with PSO 
After obtaining the time responses with the FDTD method, the radar theory can be 
employed. The parameters of the three curves (a circle and two ellipses) are calculated from 
the differences of the time responses (with and without the intruder), and the obtained 
system, when solved, deliveries the intruder's position estimation. However, the case where 
the three curves have a common point (Fig. 5a) does not always happen and the more 
frequent case is illustrated by Fig. 5b. This way, the objective of the PSO algorithm is to 
locate the point with the minimal distance from the three curves simultaneously. This 
defines the objective function, which is mathematically given by 

Fi = diCmin +  diE1min  +  diE2min , 
(24) 

in which diCmin is the minimal distance from particle i to the circle and diEκ
min is the minimal 

distance from particle i to the ellipse κ. 
This way, the PSO algorithm acts towards the minimization of the objective function Fi.  

  
(a)                                                                                (b) 

Figure 5. Ideal radar configuration and (b) real radar configuration and the position estimate 
(objective of the PSO Locator) 

Target

Tx/Rx1

Rx2

Rx3

 

Estimate

Tx/Rx1

Rx2 

Rx3
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In order to create a more realistic situation, additive Gaussian white noise (AWGN) has 
been added to the FDTD time responses. A sample of noise ( )ξR  is generated by 

( ) 2 ln 1/(1 ( )) cos 2 ( )a j kξ σ ξ π ξ= −⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦R U U
, 

(25) 

in which σa = 0.02 for the present work, and U(ξ) has the same meaning of U in (23). 

3.4 Estimation of the numerical velocity for distance calculations. 
FDTD Method introduces numerical dispersion and numerical anisotropy for the 
propagating waves. This means that velocity of propagation is a function of frequency and 
of the propagation direction (Taflove & Brodwin, 1975.a). Due to this numerical 
characteristic of the FDTD methodology, it is not appropriate to use the light free space 
velocity. Besides that, the dielectric walls promote delays on the signals, affecting the 
average velocity. This way, as detailed in (Muller et al., 2005), and effective velocity was 
determined experimentally for calculating the ellipses parameters (distances). The idea is to 
measure the propagating time in multiple points around the source, with and without walls, 
and take an average of the obtained velocities (Muller et al., 2005). 
It is worth to mention that the procedure presented in (Muller et al., 2005) takes 
automatically into account numerical dispersion and anisotropy and the delays caused by 
walls. In real applications, obviously only walls’ delays must be considered for the correct 
operation of the radar system. 

4. Environment and Parameters of Simulation 
In this work, the indoor environment considered for the simulations is shown in Fig. 6.  In 
that building, there are two distinct kinds of walls, characterized by different electrical 
parameters, which are: the relative electric permittivity of the exterior walls is εr= 5.0 and 
those of the interior walls have εr= 4.2. In both of them, the chosen conductivity is σ= 0.02 
S/m.  Everywhere else, the relative permittivity is equal to unity, except in the UPML. The 
thickness of walls are 27 (external) and 12 (internal) centimeters. 

 
Figure 6. Layout of the building (floor plan) 
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is 2000. An unfavorable situation of the target position is shown in Fig. 9. The transceivers 
are denoted by TRX1 and TRX2. The remote receivers are denoted by RX2,..., RX9. When a 
transceiver is transmitting, its receiver is denoted by RX1. The transceivers are activated in 
different time windows in accordance with TDM (time division multiplexing) scheme. The 
target, in this case, is on the line connecting the two transceivers, and it is situated outside 
the rooms where the transceivers are mounted. 

 
Figure 9.  An unfavorable position for the target and the radar elements’ positions 

The transmitting antennas are initially positioned in small windows in the walls (Fig. 9). 
Because of the diffraction in these windows, we can expect a larger estimation error as 
compared to the more favorable configurations. Fig. 10 shows the set ellipses for this case. 
There is a considerable dispersion of the ellipses. The estimated error for this situation is about 
17 cm, but even in this case one can still consider the precision of the target position estimation 
as rather good. Of course, more favorable conditions generate results with better precision. 
In this work, the final estimation of the position is obtained from statistically treating the 
responses obtained from all the possible combinations of multistatic radars (one transceiver 
and two receivers). The mean and standard deviation of the estimates are calculated. All the 
estimative outside the standard deviation, around the mean value, are not considered in the 
calculation of the final mean, which is the final output of the estimator. 

 
Figure 10. The set of ellipses obtained for locating the target 

Target
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Fig. 11 shows the convergence of the PSO method for a single multistatic radar (the 
transceiver and two receivers).  It is evident that the algorithm can be employed for solving 
this kind of problem, as far as the particles clearly move to the correct target’s position. 
Similar behavior was observed in many other experiments. 
Fig. 12 shows the transient electric field obtained by receiver 4 (see Fig. 9), in the presence of 
the target and in its absence. It is clear the perturbation caused in the reference signal by the 
dielectric cylinder. The perturbation (difference between the signals) is plotted in Fig. 13, 
from which the temporal information necessary for defining the ellipse with focus in that 
receiver and in the transceiver (when disturbance’s amplitude is different from zero). 
 
 
 
 

 
                                             (a)                                                                                      (b) 
 
 

 
                                             (c)                                                                                     (d) 
Figure 11.  PSO’s particles convergence for the location of the target (a) randomly 
distributed particles; (b) particles’ positions after 100 interactions; (c) particles’ positions 
after 500 interactions and (d) particles’ positions after 700 interactions 
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Figure 12.  Electric field data obtained by the receiver 4 (with and with no target) 

 
Figure 13. Difference between the signals depicted in Fig. 12 (disturbance caused by the 
target) 

Fig. 14(a) shows the configuration used for executing a second numerical experiment. In this 
case, the transceivers TRX1 and TRX2, represented by rhombuses, are positioned away from 
the walls. The receivers (represented by triangles) and the target (square) were positioned 
exactly as in the previous case (Fig. 9). For the case illustrated by Fig. 15(a), in which it is 
used only the transceiver TRX1, the PSO estimation is represented by the star (the estimated 
position was (432.98,410.92)) . The central cell of the target is (460,450) and, this way, the 
surface of the target was pointed out, as it is clearly shown by Fig. 15(a). Similar behavior 
was observed for the case illustrated by Fig. 15(b), in which only the transceiver TRX2 is 
used. It is worth to mention that the identified points of the target’s surface is, for each 
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simulation, closer to the correspondent used transceiver. This behavior is expected, as long 
as reflection is used for determining the propagation time used for calculating the circle’s 
and the ellipses’ parameters. 

 

 
Figure 14. Configuration used for the second experiment (axis represent the Yee’s cells 
indexes) 

 

 
(a)                                                                             (b) 

Figure 15. The PSO estimation for the second experiment (a) result obtained by using TRX1 
and (b) result obtained by using TRX2 

In order to increase the complexity of the environment, and for testing a more general 
situation, scatters were introduced in the environment and the situation previously 
analyzed was used as base for the configuration shown by Fig. 16, which defines the third 
experiment. Each scatter consists of a dielectric material with electrical conductivity of 0.02 
S/m and permittivity of 5.ε0. The diameters of the dielectric scatters are around 18 
centimeters. Such scatters create a chaotic electromagnetic environment, generating multiple 
reflections, refractions and delays on the propagation of the wave. As far as difference of 
electromagnetic transients are considered for calculating the propagation periods, such 
effects are suppressed and the obtained results are very similar to the previous experiment 
responses, as shown by Figs. 16(a) and 16(b). 
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(a)                                                                          (b) 

Figure 16. The PSO estimation for the third experiment (with dielectric scatters) (a) result 
obtained by using TRX1 and (b) result obtained by using TRX2 

6. Final Remarks 
We have presented in this work some results of numerical simulations of a radar array 
based on UWB pulses. The registers of the electric field have been obtained numerically 
using the FDTD method. In order to define the localization curves we have used the concept 
of optic rays. The solutions of the system of the nonlinear equations (which usually does not 
exist) defined for every combination of a transceiver and 2 remote receivers give an 
estimation of the target position. The solution, in those cases, are defined by determining the 
closest point in the space to the circle and for the two ellipses, for a single multistatic radar. 
The final estimation for the array of two transceivers and eight receivers is fulfilled by PSO 
method. We have shown that PSO is a useful tool for this type of problem. The proposed 
methodology seems to be robust, as long as the presence of dielectric scatters, which 
promotes a complex (chaotic) electromagnetic environment, does not substantially affects 
the performance of the position estimator. 
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1. Introduction     
Medical imaging refers to the techniques and processes used to obtain images of the human 
body for clinical purposes or medical science. Common medical imaging modalities include 
ultrasound (US), computerized tomography (CT), and magnetic resonance imaging (MRI). 
Medical imaging analysis is usually applied in one of two capacities: i) to gain scientific 
knowledge of diseases and their effect on anatomical structure in vivo, and ii) as a 
component for diagnostics and treatment planning (Kannan, 2008).  
Medical US uses high frequency broadband sound waves that are reflected by tissue to 
varying degrees to produce 2D or 3D images. This is often used to visualize the fetus in 
pregnant women. Other important uses include imaging the abdominal organs, heart, male 
genitalia, and the veins of the leg. US has several advantages which make it ideal in 
numerous situations. It studies the function of moving structures in real-time, emits no 
ionizing radiation, and contains speckle that can be used in elastography. It is very safe to 
use and does not appear to cause any adverse effects. It is also relatively cheap and quick to 
perform. US scanners can be taken to critically ill patients in intensive care units, avoiding 
the danger caused while moving the patient to the radiology department. The real time 
moving image obtained can be used to guide drainage and biopsy procedures. Doppler 
capabilities on modern scanners allow the blood flow in arteries and veins to be assessed. 
However, US images provides less anatomical detail than CT and MRI (Macovski, 1983). 
CT is a medical imaging method employing tomography (Slone et al., 1999). Digital 
geometry processing is used to generate a three-dimensional image of the inside of an object 
from a large series of two-dimensional X-ray images taken around a single axis of rotation. 
CT produces a volume of data which can be manipulated, through a process known as 
windowing, in order to demonstrate various structures based on their ability to block the X-
ray beam. Although historically the images generated were in the axial or transverse plane 
(orthogonal to the long axis of the body), modern scanners allow this volume of data to be 
reformatted in various planes or even as volumetric (3D) representations of structures. CT 
was the first imaging modality to provide in vivo evidence of gross brain morphological 
abnormalities in schizophrenia, with many CT reports of increase in cerebrospinal fluid 
(CSF)-filled spaces, both centrally (ventricles), and peripherally (sulci) in a variety of 
psychiatric patients.  
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MRI is a technique that uses a magnetic field and radio waves to create cross-sectional 
images of organs, soft tissues, bone and virtually all other internal body structures. MRI is 
based on the phenomenon of nuclear magnetic resonance (NMR). Nuclei with an odd 
number of nucleons, exposed to a uniform static magnetic field, can be excited with a radio 
frequency (RF) pulse with the proper frequency and energy. After the excitation pulse, NMR 
signal can be recorded. The return to equilibrium is characterized by relaxation times T1 and 
T2, which depend on the nuclei imaged and on the molecular environment. Mainly 
hydrogen nuclei (proton) are imaged in clinical applications of MRI, because they are most 
NMR-sensitive nuclei (Haacke et al., 1999). MRI possesses good contrast resolution for 
different tissues and has advantages over computerized tomography (CT) for brain studies 
due to its superior contrast properties. In this context, brain MRI segmentation is becoming 
an increasingly important image processing step in many applications including: i) 
automatic or semiautomatic delineation of areas to be treated prior to radiosurgery, ii) 
delineation of tumours before and after surgical or radiosurgical intervention for response 
assessment, and iii) tissue classification (Bondareff et al., 1990). 
Several techniques have been developed for brain MR image segmentation, most notably 
thresholding (Suzuki & Toriwaki, 1991), edge detection (Canny, 1986), region growing 
(Pohle & Toennies, 2001), and clustering (Dubes & Jain, 1988). Thresholding is the simplest 
segmentation method, where the classification of each pixel depends on its own information 
such as intensity and colour. Thresholding methods are efficient when the histograms of 
objects and background are clearly separated. Since the distribution of tissue intensities in 
brain MR images is often very complex, these methods fail to achieve acceptable 
segmentation results. Edge-based segmentation methods are based on detection of 
boundaries in the image. These techniques suffer from incorrect detection of boundaries due 
to noise, over- and under-segmentation, and variability in threshold selection in the edge 
image. These drawbacks of early image segmentation methods, has led to region growing 
algorithms. Region growing extends thresholding by combining it with connectivity 
conditions or region homogeneity criteria. However, only well defined regions can be 
robustly identified by region growing algorithms (Clarke et al., 1995).  
Since the above mentioned methods are generally limited to relatively simple structures, 
clustering methods are utilized for complex pathology. Clustering is a method of grouping 
data with similar characteristics into larger units of analysis. Expectation–maximization 
(EM) (Wells et al., 1996), hard c-means (HCM) and its fuzzy equivalent, fuzzy c-means 
(FCM) algorithms (Li et al., 1993) are the typical methods of clustering. A common 
disadvantage of EM algorithms is that the intensity distribution of brain images is modeled 
as a normal distribution, which is untrue, especially for noisy images. Since Zadeh (1965) 
first introduced fuzzy set theory which gave rise to the concept of partial membership, 
fuzziness has received increasing attention. Fuzzy clustering algorithms have been widely 
studied and applied in various areas. Among fuzzy clustering techniques, FCM is the best 
known and most powerful method used in image segmentation. Unfortunately, the greatest 
shortcoming of FCM is its over-sensitivity to noise, which is also a drawback of many other 
intensity-based segmentation methods. Since medical images contain significant amount of 
noise caused by operator, equipment, and the environment, there is an essential need for 
development of less noise-sensitive algorithms. 
Many extensions of the FCM algorithm have been reported in the literature to overcome the 
effects of noise, such as noisy clustering (NC) (Dave, 1991), possibilistic c-means (PCM) 
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(Krishnapuram & Keller, 1993), robust fuzzy c-means algorithm (RFCM) (Pham, 2001), bias-
corrected FCM (BCFCM) (Ahmed et al., 2002), spatially constrained kernelized FCM 
(SKFCM) (Zhang & Chen, 2004), and so on. These methods generally modify most equations 
along with modification of the objective function. Therefore, they lose the continuity from 
FCM, which inevitably introduce computation issues. 
Recently, Shen et al. (2005) introduced a new extension of FCM algorithm, called improved 
FCM (IFCM). They introduced two influential factors in segmentation that address the 
neighbourhood attraction. The first parameter is the feature difference between 
neighbouring pixels in the image and the second one is the relative location of the 
neighbouring pixels. Therefore, segmentation is decided not only by the pixel’s intensity but 
also by neighbouring pixel’s intensities and their locations. However, the problem of 
determining optimum parameters constitutes an important part of implementing the IFCM 
algorithm for real applications. The implementation performance of IFCM may be 
significantly degraded if the attraction parameters are not properly selected. It is therefore 
important to select suitable parameters such that the IFCM algorithm achieves superior 
partition performance compared to the FCM. In (Shen et al., 2005), an artificial neural 
network (ANN) was employed for computation of these two parameters. However, 
designing the neural network architecture and setting its parameters are always complicated 
which slow down the algorithm and may also lead to inappropriate attraction parameters 
and consequently degrade the partitioning performance (Haykin, 1998).  
In this paper we investigate the potential of genetic algorithms (GAs) and particle swarm 
optimization (PSO) to determine the optimum values of the neighborhood attraction 
parameters. We will show both GAs and PSO are superior to ANN in segmentation of noisy 
MR images; however, PSO obtains the best results. The achieved improvements are 
validated both quantitatively and qualitatively on simulated and real brain MR images at 
different noise levels.  
This paper is organized as follows. In Section 2, common clustering algorithms, including 
EM, FCM, and different extensions of FCM, are introduced. Section 3 presents new 
parameter optimization methods based on GAs and PSO for determination of optimum 
degree of attraction in IFCM algorithm. Section 4 is dedicated to a comprehensive 
comparison of the proposed segmentation algorithms based on GAs and PSO with related 
recent techniques. The paper in concluded in Section 5 with some remarks. 

2. Clustering Algorithms 
According to the limitation of conventional segmentation methods such as thresholding, 
edge detection, and region growing, clustering methods are utilized for complex pathology. 
Clustering is an unsupervised classification of data samples with similar characteristics into 
larger units of analysis (clusters). While classifiers are trained on pre-labeled data and tested 
on unlabeled data, clustering algorithms take as input a set of unlabeled samples and 
organize them into clusters based on similarity criteria. The algorithm alternates between 
dividing the data into clusters and learning the characteristics of each cluster using the 
current division. In image segmentation, a clustering algorithm iteratively computes the 
characteristics of each cluster (e.g. mean, standard deviation) and segments the image by 
classifying each pixel in the closest cluster according to a distance metric. The algorithm 
alternates between the two steps until convergence is achieved or a maximum number of 
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iterations is reached (Lauric & Frisken, 2007). In this Section, typical methods of clustering 
including EM algorithm, FCM algorithm, and extensions of FCM are described. 

2.1 EM Algorithm 
The EM algorithm is an estimation method used in statistics for finding maximum 
likelihood estimates of parameters in probabilistic models, where the model depends on 
unobserved latent variables (Wells et al., 1994). In image segmentation, the observed data 
are the feature vectors ݔ  associated with pixels ݆ , while the hidden variables are the 
expectations ܧ for each pixel ݆ that it belongs to each of the given clusters ݅. 
The algorithm starts with an initial guess at the model parameters of the clusters and then 
re-estimates the expectations for each pixel in an iterative manner. Each iteration consists of 
two steps: the expectation (E) step and the maximization (M) step. In the E-step, the 
probability distribution of each hidden variable is computed from the observed values and 
the current estimate of the model parameters (e.g. mean, covariance). In the M-step, the 
model parameters are re-estimated assuming the probability distributions computed in the 
E-step are correct. The parameters found in the M step are then used to begin another E step, 
and the process is repeated. 
Assuming Gaussian distributions for all clusters, the hidden variables are the expectations ܧ  that pixel ݆ belongs to cluster ݅. The model parameters to estimate are the mean, the 
covariance and the mixing weight corresponding to each cluster. The mixing weight is a 
measure of a cluster’s strength, representing how prevalent the cluster is in the data. The E 
and M step of the EM algorithm are as follows. 
E-step:  ܧ௧ ൌ ܲ൫݅หݔ, ௧൯ߠ ൌ ܲ൫ݔห݅, ௧൯ߠ ∑௧ߨ ܲୀଵ ൫ݔห݇, ௧ߠ ൯ ௧ߨ  (1) 

M-step: 

௧ାଵߨ ൌ 1݊  ௧ܧ
ୀଵ  (2) 

௧ାଵݒ ൌ ௧ାଵߨ1݊  ௧ܧ ݔ
ୀଵ  (3) 

௧ାଵߑ ൌ ௧ାଵߨ1݊  ௧ܧ ൫ݔ െ ݔ௧ାଵ൯൫ݒ െ ௧ାଵ൯்ݒ
ୀଵ  (4) 

where ߠ௧ are the model parameters of class ݅ at time ݐ and ߨ௧ is the mixing weight of class ݅ 
at time ݐ. Note that ∑ ௧ߨ ൌ 1ୀଵ ,  ൯ is the a posteriori conditional probability thatݔ൫݅หܲ .ݐ
pixel ݆ is a member of class ݅, given its feature vector ݔ. ܲ൫݅หݔ൯ gives the membership value 
of pixel ݆ to class ݅, where ݅ takes values between 1 and ܿ (the number of classes), while ݆ 
takes values between 1 and ݊ (the number of pixels in the image). Note that ∑ ܲ൫݇หݔ൯ ൌୀଵ1. ܲ൫ݔห݅൯ is the conditional density distribution, i.e., the probability that pixel ݆ has feature 
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vector ݔ given that it belongs to class ݅. If the feature vectors of class ݅ have a Gaussian 
distribution, the conditional density function has the form: ܲ൫ݔห݅൯ ൌ 1ሺ2ߨሻଶ ሻߑଵଶሺݐ݁݀ ݁ିଵଶ൫௫ೕି௩൯ఀ൫௫ೕି௩൯ (5) 

where ݒ and  ߑ are the mean feature vector and the covariance matrix of class ݅. The mean 
and the covariance of each class are estimated from training data. ܦ is the dimension of the 
feature vector. The prior probability of class ݅ is: ܲሺ݅ሻ ൌ ∑|ݓ| |ୀଵݓ|  (6) 

where |ݓ| is a measure of the frequency of occurrence of class ݅ and ∑ |ୀଵݓ|  is a measure 
of the total occurrence of all classes. In image segmentation, |ݓ| is usually set to the number 
of pixels which belong to class ݅ in the training data, and ∑ |ୀଵݓ|  to the total number of 
pixels in the training data.  
The algorithm iterates between the two steps until the log likelihood increases by less than 
some threshold or a maximum number of iterations is reached. EM algorithm can be 
summarized as follows (Lauric & Frisken, 2007): 
1. Initialize the means ݒ , the covariance matrices ߑ  and the mixing weights ߨ . 

Typically, the means are initialized to random values, the covariance matrices to the 
identity matrix and the mixing weights to 1 ܿ⁄ . 

2. E-step: Estimate ܧ for each pixel ݆ and class ݅, using (1). 
3. M-step: Estimate the model parameters for class ݅, using (2)-(4). 
4. Stop if convergence condition ൫log ∏ ௧ାଵୀଵܧ െ log ∏ ௧ୀଵܧ ൯  ߳ is achieved. Otherwise, 

repeat steps 2 to 4. 
A common disadvantage of EM algorithms is that the intensity distribution of brain images 
is modeled as a normal distribution, which is untrue, especially for noisy images. 

2.2 FCM Algorithm 
Let ܺ ൌ ሼݔଵ, … ,  ሽ be a data set and let ܿ be a positive integer greater than one. A partitionݔ
of ܺ into ܿ clusters is represented by mutually disjoint sets ଵܺ, … , ܺ such that ଵܺ  ڮ  ܺ ൌܺ or equivalently by indicator function ߤଵ, … , ሻݔሺߤ  such thatߤ ൌ 1 if ݔ is in ܺ and ߤሺݔሻ ൌ0 if ݔ is not in ܺ, for all ݅ ൌ 1, … , ܿ. This is known as clustering ܺ into ܿ clusters ଵܺ, … , ܺ by 
hard ܿ-partition ሼߤଵ, … , ,ሻ taking values in the interval ሾ0ݔሺߤ ሽ. A fuzzy extension allowsߤ 1ሿ 
such that ∑ ሻୀଵݔሺߤ ൌ 1 for all ݔ in ܺ. In this case, ሼߤଵ, … ,  :ிெ is defined as (Bezdek, 1981)ܬ ሽ is called a fuzzy ܿ-partition of ܺ. Thus, the FCM objective functionߤ

,ߤிெሺܬ ሻݒ ൌ   ,ݔ݀ଶ൫ߤ ൯ݒ
ୀଵ


ୀଵ  (7) 

where ߤ ൌ ሼߤଵ, … , ߤ ሽ is a fuzzy ܿ-partition withߤ ൌ  ൯, the weighted exponent ݉ is aݔ൫ߤ
fixed number greater than one establishing the degree of fuzziness, ݒ ൌ ሼݒଵ, … ,  ܿ ሽ is theݒ
cluster centers, and ݀ଶ൫ݔ, ൯ݒ ൌ ฮݔ െ ฮଶݒ represents the Euclidean distance or its 
generalization such as the Mahalanobis distance. The FCM algorithm is an iteration through 
the necessary conditions for minimizing ܬிெ with the following update equations: 
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ݒ ൌ ∑ ∑ୀଵݔߤ ୀଵߤ  ሺ݅ ൌ 1, … , ܿሻ (8) 

and 

ߤ ൌ 1∑ ቆ݀൫ݔ, ,ݔ൯݀൫ݒ ൯ቇଶݒ ሺିଵሻ⁄ୀଵ
 

(9) 

The FCM algorithm iteratively optimizes ܬிெሺߤ,  ,ݒ and ߤ ሻ with the continuous update ofݒ
until หߤሺାଵሻ െ หߤ   .where ݈ is the number of iterations ,ߝ
From (7), it is clear that the objective function of FCM does not take into consideration any 
spatial dependence among ܺ and deals with each image pixel as a separate point. Also, the 
membership function in (9) is mostly decided by ݀ଶ൫ݔ,  ൯, which measures the similarityݒ
between the pixel intensity and the cluster center. Higher membership depends on closer 
intensity values to the cluster center. It therefore increases the sensitivity of the membership 
function to noise. If an MR image contains noise or is affected by artifacts, their presence can 
change the pixel intensities, which will result in an incorrect membership and improper 
segmentation.  
There are several approaches to reduce sensitivity of FCM algorithm to noise. The most 
direct way is the use of low pass filters in order to smooth the image and then applying the 
FCM algorithm. However low pass filtering, may lead to lose some important details. 
Different extensions of FCM algorithm were proposed by researchers in order to solve 
sensitivity to noise.  In the following Subsections we will introduce some of these 
extensions. 

2.2.1 NC algorithm 
The most popular approach for increasing the robustness of FCM to noise is to modify the 
objective function directly. Dáve (1991) proposed the idea of a noise cluster to deal with 
noisy clustering data in the approach known as NC. Noise is effectively clustered into a 
separate cluster which is unique from signal clusters. However, it is not suitable for image 
segmentation, since noisy pixels should not be separated from other pixels, but assigned to 
the most appropriate clusters in order to reduce the effect of noise. 

2.2.2 PCM algorithm 
Another similar method, developed by Krishnapuram and Keller (1993), is called PCM, 
which interprets clustering as a possibilistic partition. Instead of having one term in the 
objective function, a second term is included, forcing the membership to be as high as 
possible without a maximum limit constraint of one. However, it caused clustering being 
stuck in one or two clusters. The objective function of PCM is defined as follows: 

,ߤெሺܬ ሻݒ ൌ   ,ݔ݀ଶ൫ߤ ൯ݒ
ୀଵ


ୀଵ   ߟ ൫1 െ ൯ߤ

ୀଵ


ୀଵ  (10) 
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where ߟ are suitable positive numbers. The first term demands that the distances from the 
feature vectors to the prototypes be as low as possible, whereas the second term forces the ߤ to be as large as possible, thus avoiding the trivial solution. 

2.2.3 RFCM algorithm 
Pham presented a new approach of FCM, named the robust RFCM (Pham, 2001). A 
modified objective function was proposed for incorporating spatial context into FCM. A 
parameter controls the tradeoff between the conventional FCM objective function and the 
smooth membership functions. However, the modification of the objective function results 
in the complex variation of the membership function. The objective function of RFCM is 
defined as follows:  

,ߤோிெሺܬ ሻݒ ൌ   ,ݔ݀ଶ൫ߤ ൯ݒ
ୀଵאΩ  2ߚ   ߤ

ୀଵאΩ   ேೕאெא௦௦ߤ  (11) 

where ܰ  is the set of neighbors of pixel ݆  in Ω, and ܯ ൌ ሼ1, … , ܿሽ\ሼ݅ሽ. The parameter ߚ 
controls the trade-off between minimizing the standard FCM objective function and 
obtaining smooth membership functions. 

2.2.4 BCFCM algorithm 
Another improved version of FCM by the modification of the objective function was 
introduced by Ahmed et al. (2002). They proposed a modification of the objective function 
by introducing a term that allows the labeling of a pixel to be influenced by the labels in its 
immediate neighborhood. The neighborhood effect acts as a regularizer and biases the 
solution toward piecewise-homogeneous labeling. Such regularization is useful in 
segmenting scans corrupted by salt and pepper noise. The modified objective function is 
given by: 

,ߤெሺܬ ሻݒ ൌ   ,ݔ݀ଶ൫ߤ ൯ݒ
ୀଵ


ୀଵ  ܰߙோ   ߤ ቌ  ݀ଶሺݔ, ேೕאሻ௫ೝݒ ቍ

ୀଵ


ୀଵ  (12) 

where ܰ  stands for the set of neighbors that exist in a window around ݔ  and ோܰ  is the 
cardinality of ܰ. The effect of the neighbors term is controlled by the parameter ߙ. The 
relative importance of the regularizing term is inversely proportional to the signal-to-noise 
ratio (SNR) of the MRI signal. Lower SNR would require a higher value of the parameter ߙ. 

2.2.5 SKFCM algorithm 
The SKFCM uses a different penalty term containing spatial neighborhood information in 
the objective function, and simultaneously the similarity measurement in the FCM, is 
replaced by a kernel-induced distance (Zhang & Chen, 2004). We know every algorithm that 
only uses inner products can implicitly be executed in the feature space F. This trick can also 
be used in clustering, as shown in support vector clustering (Hur et al., 2001) and kernel 
FCM (KFCM) algorithms (Girolami, 2002; Zhang & Chen, 2002). A common ground of these 
algorithms is to represent the clustering center as a linearly-combined sum of all ൫ݔ൯, i.e. 
the clustering centers lie in feature space. The KFCM objective function is as follows: 
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,ߤிெሺܬ ሻݒ ൌ   ݀ଶߤ ቀ൫ݔ൯, ሻቁݒሺ
ୀଵ


ୀଵ  (13) 

where  is an implicit nonlinear map. Same as BCFCM, the KFCM-based methods inevitably 
introduce computation issues, by modifying most equations along with the modification of 
the objective function, and have to lose the continuity from FCM, which is well-realized 
with many types of software, such as MATLAB. 

2.2.6 IFCM algorithm 
To overcome these drawbacks, Shen et al. (2005) presented an improved algorithm. They 
found that the similarity function ݀ଶ൫ݔ,  ൯ is the key to segmentation success. In theirݒ
approach, an attraction entitled neighborhood attraction is considered to exist between 
neighboring pixels. During clustering, each pixel attempts to attract its neighboring pixels 
toward its own cluster. This neighborhood attraction depends on two factors; the pixel 
intensities or feature attraction ߣ , and the spatial position of the neighbors or distance 
attraction ߦ , which also depends on the neighborhood structure. Considering this 
neighborhood attraction, they defined the similarity function as below: ݀ଶ൫ݔ, ൯ݒ ൌ ฮݔ െ ฮଶ൫1ݒ െ ܪߣ െ  ൯ (14)ܨߦ

where ܪ  represents the feature attraction and ܨ  represents the distance attraction. 
Magnitudes of two parameters λ and ζ are between 0 and 1; adjust the degree of the two 
neighborhood attractions.  ܪ and ܨ are computed in a neighborhood containing ܵ pixels 
as follow: ܪ ൌ ∑ ∑݃ௌୀଵߤ ௌୀଵߤ  (15) 

ܨ ൌ ∑ ଶߤ ∑ଶௌୀଵݍ ଶௌୀଵߤ  (16) 

with ݃ ൌ หݔ െ ,หݔ ݍ ൌ ൫ ܽ െ ܽ൯ଶ  ൫ ܾ െ ܾ൯ଶ  (17) 

where ሺ ܽ,  ܾሻ and ሺܽ,  ܾሻ denote the coordinate of pixel ݆ and ݇, respectively. It should be 
noted that a higher value of ߣ leads to stronger feature attraction and a higher value of ߦ 
leads to stronger distance attraction. Optimized values of these parameters enable the best 
segmentation results to be achieved. However, inappropriate values can be detrimental. 
Therefore, parameter optimization is an important issue in IFCM algorithm that can 
significantly affect the segmentation results. 

3. Parameter Optimization of IFCM Algorithm 
Optimization algorithms are search methods, where the goal is to find a solution to an 
optimization problem, such that a given quantity is optimized, possibly subject to a set of 
constrains. Although this definition is simple, it hides a number of complex issues. For 
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example, the solution may consist of a combination of different data types, nonlinear 
constrains may restrict the search area, the search space can be convoluted with many 
candidate solutions, the characteristics of the problem may change over time, or the quantity 
being optimized may have conflicting objectives (Engelbrecht, 2006). 
As mentioned earlier, the problem of determining optimum attraction parameters 
constitutes an important part of implementing the IFCM algorithm. Shen et al. (2005) 
computed these two parameters using an ANN through an optimization problem. However, 
designing the neural network architecture and setting its parameters are always complicated 
tasks which slow down the algorithm and may lead to inappropriate attraction parameters 
and consequently degrade the partitioning performance. In this Section we introduce two 
new algorithms, namely GAs and PSO, for optimum determination of the attraction 
parameters. The performance evaluation of the proposed algorithms is carried out in the 
next Section. 

3.1. Structure of GAs 
Like neural networks, GAs are based on a biological metaphor, however, instead of the 
biological brain, GAs view learning in terms of competition among a population of evolving 
candidate problem solutions. GAs were first introduced by Holland (1992) and have been 
widely successful in optimization problems. Algorithm is started with a set of solutions 
(represented by chromosomes) called population. Solutions from one population are taken 
and used to form a new population. This is motivated by a hope, that the new population 
will be better than the old one. Solutions which are selected to form new solutions 
(offspring) are selected according to their fitness; the more suitable they are the more 
chances they have to reproduce. This is repeated until some condition is satisfied. The GAs 
can be outlined as follows. 
1. [Start] Generate random population of ܲ  chromosomes (suitable solutions for the 

problem). 
2. [Fitness] Evaluate the fitness of each chromosome in the population with respect to the 

cost function J. 
3. [New population] Create a new population by repeating following steps until the new 

population is complete: 
a. [Selection] Select two parent chromosomes from a population according to their 

fitness (the better fitness, the bigger chance to be selected). 
b. [Crossover] With a crossover probability, cross over the parents to form a new 

offspring (children). If no crossover was performed, offspring is an exact copy of 
parents. 

c. [Mutation] With a mutation probability, mutate new offspring at each locus 
(position in chromosome). 

d. [Accepting] Place new offspring in a new population. 
4. [Loop] Go to step 2 until convergence. 
For selection stage a roulette wheel approach is adopted. Construction of roulette wheel is 
as follows (Mitchel, 1999): 
1. Arrange the chromosomes according to their fitness.  
2. Compute summations of all fitness values and calculate the total fitness. 
3. Divide each fitness value to total fitness and compute the selection probability ሺሻ for 

each chromosome.  
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4. Calculate cumulative probability ሺ ܲሻ for each chromosome. 
In selection process, roulette wheel spins equal to the number population size. Each time a 
single chromosome is selected for a new population in the following manner (Gen & Cheng, 
1997): 
1. Generate a random number ݎ from the rang ሾ0, 1ሿ. 
2. If ݎ  ଵܲ, then select the first chromosome, otherwise select the ݇-th chromosome such 

that ݍିଵ ൏ ݎ ൏  .ݍ
The mentioned algorithm is iterated until a certain criterion is met. At this point, the most 
fitted chromosome represents the corresponding optimum values. The specific parameters 
of the introduced structure are described in Section 4.  

3.2. Structure of PSO 
Team formation has been observed in many animal species. For some animal species, teams 
or groups are controlled by a leader, for example a pride of lions, a troop of baboon, and a 
troop of wild buck. In these societies the behavior of individuals is strongly dictated by 
social hierarchy. More interesting is the self-organizing behavior of species living in groups 
where no leader can be identified, for example, a flock of birds, a school of fish, or a herd of 
sheep. Within these social groups, individuals have no knowledge of the global behavior of 
the entire group, nor they have any global information about the environment. Despite this, 
they have the ability to gather and move together, based on local interactions between 
individuals. From the simple, local interaction between individuals, more complex collective 
behavior emerges, such as flocking behavior, homing behavior, exploration and herding. 
Studies of the collective behavior of social animals include (Engelbrecht, 2006): 
1. Bird flocking behavior; 
2. Fish schooling behavior; 
3. The hunting behavior of humpback whales; 
4. The foraging behavior of wild monkeys; and 
5. The courtship-like and foraging behavior of the basking shark. 
PSO, introduced by Kennedy and Eberhart (1995), is a member of wide category of swarm 
intelligence methods (Kennedy & Eberhart, 2001). Kennedy originally proposed PSO as a 
simulation of social behavior and it was initially introduced as an optimization method. The 
PSO algorithm is conceptually simple and can be implemented in a few lines of code. A PSO 
individual also retains the knowledge of where in search space it performed the best, while 
in GAs if an individual is not selected for crossover or mutation, the information contained 
by that individual is lost. Comparisons between PSO and GAs are done analytically in 
(Eberhart & Shi, 1998) and also with regards to performance in (Angeline, 1998). In PSO, a 
swarm consists of individuals, called particles, which change their position ݔҧሺݐሻ with time ݐ. 
Each particle represents a potential solution to the problem and flies around in a 
multidimensional search space. During flight each particle adjusts its position according to 
its own experience, and according to the experience of neighboring particles, making use of 
the best position encountered by itself and its neighbors. The effect is that particles move 
towards the best solution. The performance of each particle is measured according to a pre-
defined fitness function, which is related to the problem being solved.  
To implement the PSO algorithm, we have to define a neighborhood in the corresponding 
population and then describe the relations between particles that fall in that neighborhood. 
In this context, we have many topologies such as: star, ring, and wheel. Here we use the ring 
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topology. In ring topology, each particle is related with two neighbors and attempts to 
imitate its best neighbor by moving closer to the best solution found within the 
neighborhood. The local best algorithm is associated with this topology (Eberhart et al., 
1996; Corne et al., 1999): 
1. [Start] Generate a random swarm of ܲ  particles in ܦ -dimensional space, where  ܦ 

represents the number of variables (here ܦ ൌ 2). 
2. [Fitness] Evaluate the fitness ݂൫ݔҧሺݐሻ൯ of each particle with respect to the cost function ܬ. 
3. [Update] Particles are moved toward the best solution by repeating the following steps: 

a. If ݂൫ݔҧሺݐሻ൯ ൏ ݐݏܾ݁  then ݐݏܾ݁ ൌ ݂൫ݔҧሺݐሻ൯  and ݔҧ௦௧ ൌ ݐݏܾ݁ ሻ, whereݐҧሺݔ  is the 
current best fitness achieved by the ݅-th particle and ݔҧ௦௧  is the corresponding 
coordinate. 

b. If ݂൫ݔҧሺݐሻ൯ < ݈ܾ݁ݐݏ  then ݈ܾ݁ݐݏ ൌ ݂൫ݔҧሺݐሻ൯, where ݈ܾ݁ݐݏ  is the best fitness over the 
topological neighbors. 

c. Change the velocity ݒ of each particle: ݒҧሺݐሻ ൌ ݐҧሺݒ െ 1ሻ  ଵߩ ቀݔҧ௦௧ െ ሻቁݐҧሺݔ  ଶߩ ቀݔҧ௦௧ െ  ሻቁ (18)ݐҧሺݔ

where ߩଵ and ߩଶ are random accelerate constants between 0 and 1. 
d. Fly each particle to its new position ݔҧሺݐሻ   .ሻݐҧሺݒ

4. [Loop] Go to step 2 until convergence. 
The above procedures are iterated until a certain criterion is met. At this point, the most 
fitted particle represents the corresponding optimum values. The specific parameters of the 
introduced structure are described in Section 4. 

4. Experimental Results 
This Section is dedicated to a comprehensive investigation on the proposed methods 
performance. To this end, we will compare the proposed algorithms with FCM, PCM 
(Krishnapuram & Keller, 1993), RFCM (Pham, 2001), and an implementation of IFCM 
algorithm based on ANN (ANN-IFCM) (Shen et al., 2005).   
Our experiments were performed on three types of images: 1) a synthetic square image; 2) 
simulated brain images obtained from Brainweb1; and 3) real MR images acquired from 
IBSR2. In all experiment the size of the population (ܲ) is set to 20 and the cost function ܬிெ 
with the similarity index defined in (14) is employed as a measure of fitness. Also, a single 
point crossover with probability of 0.2 and an order changing mutation with probability of 
0.01 are applied. The weighting exponent ݉ in all fuzzy clustering methods was set to 2. It 
has been observed that this value of weighting exponent yields the best results in most brain 
MR images (Shen et al., 2005). 

4.1 Square Image 
A synthetic square image consisting of 16 squares of size 64 × 64 is generated. This square 
image consists of 4 classes with intensity values of 0, 100, 200, and 300, respectively. In order 
to investigate the sensitivity of the algorithms to noise, a uniformly distributed noise in the 

                                                                 
1 http://www.bic.mni.mcgill.ca/brainweb/ 
2 http://www.cma.mgh.harvard.edu/ibsr/ 
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interval (0, 120) is added to the image. The reference noise-free image and the noisy one are 
illustrated in Figures 1 (a) and (b), respectively.  
In order to evaluate the segmentation performance quantitatively, some metrics are defined 
as follows: 
1. Under segmentation (ܷ݊ܵ), representing the percentage of negative false segmentation: ܷ݊ܵ ൌ ܰܰ ൈ 100 (19) 

2. Over segmentation (ܱܵݒ), representing the percentage of positive false segmentation: ܱܵݒ ൌ ܰܰ ൈ 100 (20) 

3. Incorrect segmentation (ܥ݊ܫ), representing the total percentage of false segmentation: ܥ݊ܫ ൌ ܰ  ܰܰ ൈ 100 (21) 

where ܰ is the number of pixels that do not belong to a cluster and are segmented into the 
cluster. ܰ is the number of pixels that belong to a cluster and are not segmented into the 
cluster. ܰ is the number of all pixels that belong to a cluster, and ܰ is the total number of 
pixels that do not belong to a cluster. 
Table 1 lists the above metrics calculated for the seven tested methods. It is clear that FCM, 
PCM, and RFCM cannot overcome the degradation caused by noise and their segmentation 
performance is very poor compared to IFCM-based algorithms. Among IFCM-based 
algorithms, the PSO-based is superior to the others. For better comparison, the segmentation 
results of IFCM-based methods are illustrated in Figures 1(c)-(e); where the segmented 
classes are demonstrated in red, green, blue and black colors. 

Evaluation 
parameters FCM PCM RFCM ANN-

IFCM 
GAs-
IFCM 

PSO-
IFCM 

UnS(%) 9.560 25.20 6.420 0.0230 0.0210 0.0110 
OvS(%) 23.79 75.00 16.22 0.0530 0.0468 0.0358 
InC(%) 14.24 43.75 9.88 0.0260 0.0220 0.0143 

Table 1. Segmentation evaluation of synthetic square image 

Since the segmentation results of IFCM-based algorithms are too closed to each other, we 
define another metric for better comparison of these methods. The new metric is the 
similarity index (SI) used for comparing the similarity of two samples defined as follows: ܵܫ ൌ 2 ൈ ܣ ת ܣܤ  ܤ ൈ 100 (22) 

where ܣ and ܤ are the reference and the segmented images, respectively. We compute this 
metric on the squared segmented image at different noise levels. The results are averaged 
over 10 runs of the algorithms. Figure 2 illustrates the performance comparison of different 
IFCM-based methods. The comparison clearly indicates that both GAs and PSO are superior 
to ANN in optimized estimation of ߣ and ߦ. However, best results are obtained using the 
PSO algorithm. 
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         (a)                (b) 
 

   
            (c)     (d)           (e) 
Figure 1. Segmentation results on a synthetic square image with a uniformly distributed 
noise in the interval (0, 120). (a) Noise-free reference image, (b) Noisy image, (c) ANN-
IFCM, (d) GAs-IFCM, (e) PSO-IFCM  

 
 
 

 
Figure 2. Performance comparison of IFCM-based methods using the SI metric at different 
noise levels 
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4.2 Simulated MR images 
Generally, it is impossible to quantitatively evaluate the segmentation performance of an 
algorithm on real MR images, since the ground truth of segmentation for real images is not 
available. Therefore, only visual comparison is possible. However, Brainweb provides a 
simulated brain database including a set of realistic MRI data volumes produced by an MRI 
simulator. These data enable us to evaluate the performance of various image analysis 
methods in a setting where the truth is known. 
In this experiment, a simulated T1-weighted MR image (181 × 217 × 181) was downloaded 
from Brainweb. 7% noise was applied to each slice of the simulated image.  The 100th brain 
region slice of the simulated image is shown in Figure 3(a) and its discrete anatomical 
structure consisting of cerebral spinal fluid (CSF), white matter, and gray matter is shown in 
Figure 3(b). The noisy slice was segmented into four clusters: background, CSF, white 
matter, and gray matter (the background was neglected from the viewing results) using 
FCM, PCM, RFCM, and the IFCM-based methods. The segmentation results after applying 
IFCM-based methods are shown in Figures 3(c)-(e). Also, the performance evaluation 
parameters of FCM, PCM, RFCM, and IFCMs are compared in Table 2. Again, it is obvious 
that the PSO-IFCM has achieved the best segmentation results. These observations are 
consistent with the simulation results obtained in the previous Section. 

4.3 Real MR images 
Finally, an evaluation was performed on real MR images. A real MR image (coronal T1-
weighted image with a matrix of 256 × 256) was obtained from IBSR the Center of 
Morphometric Analysis at Massachusetts General Hospital. IBSR provides manually guided 
expert segmentation results along with brain MRI data to support the evaluation and 
development of segmentation methods.  
Figure 4(a) shows a slice of the image with 5% Gaussian noise and Figure 4(b) shows the 
manual segmentation result provided by the IBSR. For comparison with the manual 
segmentation     result,   which  included  four      classes,     CSF,  gray  matter,  white  matter,   and 
others, the cluster number was set to 4. The segmentation results of FCM algorithm is shown 
in Figure 4(c), while segmentation of IFCM-based methods are shown in Figures 4(d)-(f). 
Table 3 lists the evaluation parameters for all methods. PSO-IFCM showed a significant 
improvement over other IFCMs both visually and parametrically, and eliminated the effect 
of noise, considerably. These results nominate the PSO-IFCM algorithm as a good technique 
for segmentation of noisy brain MR images in real application. 
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     (d) 
 
 
 
 
 
 
 
 

   (e) 
 
 
 
 
 
 
 
 

Figure 3. Simulated T1-weighted MR image. (a) The original image with 7% noise, (b) 
Discrete anatomical model (from left to right) white matter, gray matter, CSF, and the total 
segmentation, (c) Segmentation result of ANN-IFCM, (d) Segmentation result of GAs-IFCM, 
(e) Segmentation result of PSO-IFCM 
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PSO-
IFCM 

GAs-
IFCM 

ANN-
IFCM RFCM PCM FCM Evaluation 

parameters class 

        
0.11 0.16 0.20 0.47 0 0.50 UnS(%) 

CSF 4.36 5.91 6.82 7.98 100 7.98 OvS(%) 
0.31 0.45 0.57 0.73 34.0 0.76 InC(%) 
        
0.78 0.91 0.95 1.11 0 1.35 UnS(%) 

White 
matter 5.56 7.02 7.31 10.92 100 11.08 OvS(%) 

1.06 1.39 1.59 2.11 10.16 2.33 InC(%) 
        
0.29 0.48 0.54 0.76 15.86 0.75 UnS(%) 

Gray matter 2.13 2.61 2.65 5.72 0 7.23 OvS(%) 
0.71 0.87 0.93 1.47 13.57 1.68 InC(%) 
        
0.39 0.52 0.56 0.78 5.29 0.87 UnS(%) 

Average 4.02 5.18 5.59 8.21 66.67 8.76 OvS(%) 
0.69 0.90 1.03 1.44 19.24 1.59 InC(%) 

Table 2. Segmentation evaluation on simulated T1-weighted MR 

 

class Evaluation 
parameters FCM ANN- 

IFCM 
GAs- 
IFCM 

PSO- 
IFCM 

CFS 

UnS(%) 11.1732 11.1142 10.6406 10.1619 
OvS(%) 44.4444 45.1356 41.4939 40.9091 
InC(%) 12.4009 12.7177 11.7791 11.2965 
SI(%) 87.5991 87.6305 88.2209 88.7035 

White 
matter 

UnS(%) 3.3556 2.7622 0.9783 1.5532 
OvS(%) 14.8345 9.6177 3.1523 9.0279 
InC(%) 6.2951 4.5178 1.5350 3.4673 
SI(%) 93.7049 95.4822 98.4650 96.5327 

Gray 
matter 

UnS(%) 5.9200 3.8073 3.8469 3.5824 
OvS(%) 36.9655 35.9035 31.4066 30.5603 
InC(%) 16.9305 15.1905 13.6211 13.1503 
SI(%) 83.0695 87.6305 86.3789 86.8497 

Average 

UnS(%) 5.7635 5.1014 4.5606 4.4094 
OvS(%) 24.2163 22.7491 20.7562 20.2043 
InC(%) 9.3831 8.4900 7.6465 7.3856 
SI(%) 90.6169 91.5100 92.3535 92.6144 

Table 3. Segmentation evaluation on Real T1-weighted MR image 
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Figure 4. Real T1-weighted MR image. (a) The original image with 5% noise, (b) Discrete 
anatomical model (from left to right) white matter, gray matter, CSF, others, and the total 
segmentation, (c) Segmentation results of FCM, (d) Segmentation result of ANN-IFCM, (e) 
Segmentation result of GAs-IFCM, (f) Segmentation result of PSO-IFCM 

5. Conclusion and Future Work 
Brain MRI segmentation is becoming an increasingly important image processing step in 
many applications including automatic or semiautomatic delineation of areas to be treated 
prior to radiosurgery, delineation of tumors before and after surgical or radiosurgical 
intervention for response assessment, and tissue classification. A traditional approach to 
segmentation of MR images is the FCM clustering algorithm. The efficacy of FCM algorithm 
considerably reduces in the case of noisy data. In order to improve the performance of FCM 
algorithm, researchers have introduced a neighborhood attraction, which is dependent on 
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the relative location and features of neighboring pixels. However, determination of the 
degree of attraction is a challenging task which can considerably affect the segmentation 
results.  
In this context, we introduced new optimized IFCM-based algorithms for segmentation of 
noisy brain MR images. We utilized GAs and PSO, to estimate the optimized values of 
neighborhood attraction parameters in IFCM clustering algorithm. GAs are best at reaching 
a near optimal solution but have trouble finding an exact solution, while PSO’s group 
interactions enhances the search for an optimal local solution. We tested the proposed 
methods on three kinds of images; a square image, simulated brain MR images, and real 
brain MR images. Both quantitative and quantitative comparisons at different noise levels 
demonstrated that both GAs and PSO are superior to the previously proposed ANN method 
in optimizing the attraction parameters. However, best segmentation results were achieved 
using the PSO algorithm. These results nominate the PSO-IFCM algorithm as a good 
technique for segmentation of noisy brain MR images. It is expected that a hybrid method 
combining the strengths of PSO with GAs, simultaneously, would result to significant 
improvements that will be addressed in a future work. 
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1. Introduction    
Portfolio selection problems in investments are among the most studied in modern finance, 
because of their computational intractability. The basic perception in modern portfolio 
theory is the way that upon it investors construct diversified portfolio of financial securities 
so as to achieve improved tradeoffs between risk and return. 
Portfolio optimization is a procedure for generating the composition that best achieves the 
portfolio manager's objectives. One of the first to apply mathematical programming models 
to portfolio management was the quadratic programming model of Markowitz (1952), who 
proposed that risk be represented as the variance of the return (a quadratic function), which 
is to be minimized subject to achieving a minimum expected return on investment (a linear 
constraint). This single-period model is explained in detail by Luenberger (1998). The inputs 
of this analysis are security expected returns, variances, and covariance for each pair of 
securities, and these are all estimated from past performances of the securities. However, it 
is not realistic for real ever-changing asset markets. In addition, it would be so difficult to 
find the efficient portfolio when short sales are not allowed. 
Mathematical programming (e.g., linear programming, integer linear programming, 
nonlinear programming, and dynamic programming) models have been applied to portfolio 
management for at least half a century. For a review on the application of mathematical 
programming models to financial markets refer to Board and Sutcliffe (1999). 
Several portfolio optimization strategies have been proposed to respond to the investment 
objectives of individuals, corporations and financial firms, where the optimization strategy 
is selected according to one's investment objective. Jones (2000) gives a framework for 
classifying these alternative investment objectives. 
Although the most obvious applications of portfolio optimization models are to equity 
portfolios, several mathematical programming methods (including linear, mixed integer, 
quadratic, dynamic, and goal programming) have also been applied to the solution of fixed 
income portfolio management problems since the early 1970s. 
Recently, many Evolutionary Computation (EC) techniques (Beyer, 1996) such as Genetic 
Algorithm (GA), Particle Swarm Optimization (PSO) (Xu et al., 2006), (Delvalle et al., 2007) 
have been applied to solve combinatorial optimization problems (Angeline, 1995). These 
techniques use a set of potential solutions as a population, and find the optimal solution 
through cooperation and contest among the particles of the population. In comparison, in 
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optimization problems with computation complexity, EC techniques find often optimal 
solution faster than traditional algorithms (Pursehouse and Fleming, 2007).  
In this study, the portfolio selection problem is concerned, in case that expected return rates 
are stochastic variables and the breeding swarm algorithm is applied to solve this problem. 
The First, the stochastic portfolio model and reliable decision are presented. The Second, the 
global evolutionary computation algorithm–breeding swarm is proposed in order to 
overcome the computational complexity and local and global searching limitation of 
traditional optimization methods. Finally, a numerical example of portfolio selection 
problem is given. Findings endorse the effectiveness of the newly proposed algorithm in 
comparison to particle swarm optimization method. The results show that the breeding 
swarm approach to portfolio selection has high potential to achieve better solution and 
higher convergence. 

2. Stochastic Portfolio Model 
The mean-variance model of Markowitz, to find an efficient portfolio is led to solve the 
following optimization problem (Markowitz, 1952): 
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where )(Xρ  is the reward on the portfolio ρ,X  is a constant target reward for a specific 

investor, and e′  is the transpose of the vector ne ℜ∈  of all 1s. The risk, )(2 XR′σ , of portfolio 
nX ℜ∈  is defined as the variance of its return XR′ . R  is the random vector of return rates. 

The expectation of R  will be denoted by R , that is, RRE =)( . Conveniently, we set: 
.)1,...,1,1(,),...,,(,),...,,( 2121 ′=′=′= errrRxxxX nn  

This model can be rewritten by the following quadratic programming: 
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where Σ  is the covariance matrix of the random variables R . 
In real ever-changing asset markets, returns of risky assets are not constant over the time. So 
we need to estimate )(RE  and nnij ×=Σ )(σ  in practical. The notion of efficient portfolio is a 
relative concept. The dominance between two portfolios can be defined in many different 
ways, and each one is expected to produce a different set of efficient portfolios. Only 
efficient portfolios are presented to the investor to make his/her final choice according to 
his/her taste toward risk. All investors in the same class, say risk averters, when the return 
of portfolio satisfy the expected value select the security with the lowest risk. According to 
above perceptions, the stochastic portfolio model can be described as: 
A: Stochastic portfolio model without risk-free asset 



Swarm Intelligence in Portfolio Selection 

 

225 

 

0
1

.. 0

≥
=′
≥′

Σ′

X
Xe

RRXts
XXmin

 (3) 

On condition that short sales are allowed, the stochastic portfolio model without risk-free 
asset can be described by eliminating the constraint .0≥X  
B: Stochastic portfolio model with risk-free asset 
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where fR  is the return rate of risk-free asset. 

3. Reliable Decision of Portfolio Selection 

Because of randomness of the condition 0RRX ≥′ , the feasible solution to the model (3) and 
(4) maybe achievable or not. Due to the degree of probability available in model (3) and (4), 
we define reliability and construct a model with limited probability. The new model can be 
described as follows: 
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in the case that a risk-free asset exists: 
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The model (5) and (6) is defined as the reliable model (3) and (4), and the possible solution 
of (5) and (6) is named α  feasible solution of model (3) and (4) and is defined as α  reliable 
decision for the portfolio. Since α  reliable decision demonstrates that the portfolio decision 
is stochastic decision, is more important and practical and reflect the inconsistence of asset 
markets. 
The model (5) and (6) can be converted into the determinate decision model. Defining 
constant M  by the following formula: 

α=≥
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The condition α≥≥′ )( 0RRXP  would be equivalent to the determinate condition  

.0RMXXMRX ≥′+′  The proof can be so followed: 

.1)()( 00 αα −≤≤′≥≥′ RRXPthenRRXPif  Since α−=Σ′+′≤′ 1)( XXMRXRXP , then 
according to unchanging nondecreasing manner of the distribution function of random 
variable, we obtain 0RXXMRX ≥Σ′+′ . Contradictorily, if 0RXXMRX ≥Σ′+′  

then α=Σ′+′≥′≥≥′ )()( 0 XXMRXRXPRRXP  
Hence, the model (5) and (6) can be described with determinate constraint model (7) and (8): 
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in the case that we have a risk-free asset: 
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If risky assets follow normal distribution ),( 2
iiRN σ , constant M  can be obtained by 

following formula: 
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where α  is reliable decision for the portfolio. Since α  reliable decision demonstrates that 
the portfolio decision is stochastic decision, is more important and practical and reflect the 
inconsistence of asset markets (Xu et al., 2006). 

4. Breeding Swarm Optimization Method for Stochastic Portfolio Selection 
4.1 structure of Breeding Swarm Model 
Angeline (1998) and Eberhart and Shi (1998) proposed that a hybrid model of GA and PSO 
can produce a very effective search strategy. In this context, our goal is to introduce a hybrid 
GA/PSO model. It has been shown that the performance of the PSO is not sensitive to the 
population size (Shi and Eberhart, 1999). Therefore, the PSO will work well (with a low 
number of particles) compared to the number of individuals needed for the GA. Since, each 
particle has one fitness function to be evaluated per iteration, the number of fitness function 
evaluations can be reduced or more iteration can be performed. The hybrid PSOs combine 
the traditional velocity and position update rules with the idea of breeding and 
subpopulations. 
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In this study, the hybrid model is tested and compared with the standard PSO model. This 
is done to illustrate that PSO with breeding strategies has the potential to achieve faster 
convergence and better solution. Our results show that with the correct combination of GA 
and PSO, the hybrid can outperform, or perform as well as, both the standard PSO and GA 
models. The hybrid algorithm combines the standard velocity and position update rules of 
PSOs (Xiao et al., 2004) with the ideas of selection, crossover and mutation from GAs. An 
additional parameter, the breeding ratio ( Ψ ), determines the proportion of the population 
which undergoes breeding (selection, crossover and mutation) in the current generation. 
Values for the breeding ratio parameter range from 0.0 to 1.0. In each generation, after the 
fitness values of all the individuals in the same population are calculated, the bottom 
(N ⋅Ψ ), where N is the population size, is discarded and removed from the population. The 
remaining individual’s velocity vectors are updated, acquiring new information from the 
population. The next generation is then created by updating the position vectors of these 
individuals to fill N (1 )⋅ − Ψ  individuals in the next generation. The N ⋅Ψ  individuals 
needed to fill the population are selected from the individuals whose velocities are updated 
to undergo crossover and mutation and the process is repeated. 

4.2 The Breeding Swarm Optimization Approach for Portfolio Selection 
As mentioned in the previous section, domain of variables ix is [0, 1] and the number of 
particles required for simultaneous computation is 7. These particles represent the 
investment rate to asset i. We considered the population size equal to 20 and then generated 
a random initial population. Cost function J in (7) is defined as fitness function and used for 
evaluation of initial chromosomes. In this stage some particles are strong and others are 
weak (some of them produce lower value for fitness function and vice versa). These particles 
are floated in a 7-dimensional (7-D) space. After ranking the particles based on their fitness 
functions the best particles are selected. First each particle changes its position according to 
its own experience and its neighbors. So, first we have to define a neighborhood in the 
corresponding population and then describe the relations between particles that fall in that 
neighborhood. In this context, we have many topologies such as: Star, Ring, and Wheel. In 
this study we use the ring topology. In ring topology, each particle is related with two 
neighbors and intends to move toward the best neighbor. Each particle attempts to imitate 
its best neighbor by moving closer to the best solution found within the neighborhoods. It is 
important to note that neighborhoods overlap, which facilitates the exchange of information 
between neighborhoods and convergence to a single solution. In addition, we are using 
mutation and crossover operators for offspring from the selected particles to generate new 
populations. Therefore new populations are generated using two approaches: PSO and GA. 
The local best of BS algorithm is associated with the following topology (Settles et al., 2005): 

1. Initialize a swarm of P particles in D-dimensional space, where D is the number of 
weights and biases. 

2. Evaluate the fitness fp of each particle p as the J. 
3. If fp < pbest  then pbest = fp and xpbest = xp, where pbest is the current best fitness achieved 

by particle p, xp is the current coordinates of particle p in D-dimensional weights 
space, and xpbest is the coordinate corresponding to particle p’s best fitness so far. 

4. If fp < lbest  then lbest = p, where lbest is the particle having the overall best fitness over 
all particles in the swarm. 
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5. Select the first K best of P particles 
6. Generate new population  

A: Change K particles velocity with equation: 

1 2( 1) ( ( )) ( ( ))i ii i pbest i lbest iv v t x x t x x tρ ρ= − + − + −  

where 21 , ρρ  are accelerate constants and rand return uniform random number 
between 0 and 1. Then fly each particle K to xK + VK. 
B: Then each K particles are used to offspring with mutation and crossover 
operators. 

7. Loop to step 2 until convergence. 
After completion of above processes, a new population is produced and the current iteration 
is completed. We iterate the above procedures until a certain criterion is met. At this point, 
the best fitted particle represents the optimum values of ix . 

5. Experimental Results 
In this part we present experimental results to illustrate the effectiveness of breeding swarm 
optimization method for the stochastic portfolio selection. The problem of portfolio selection 
is considered here with seven risky assets. In addition, we only examine model (7) by the 
breeding swarm optimization, but the optimal solution can be obtained for model (8) by the 
same algorithm. The return rate and covariance chart of returns are shown in Table 1 (Xu et 
al., 2006). Denote •F  as the obtained result of the risk of portfolio, •R  as the obtained result 
of the return of the portfolio. 

5.1 Simulation Results 
We used the following values for parameters in our experiments: the size of the population 
is 20, and for each experimental setting, 20 trials were performed. For the stochastic model, 
the expected portfolio return rate is 175.00 =R  , 42.0=M . Finally, the optimal portfolio of 
assets is obtained as follows. By 2000 iterations we found: 

{ }0245.0,2985.0,0066.0,0213.0,0019.0,3918.0,8076.0=•X , the risk of portfolio is: 

 0018.0)(2 =•Xσ , the return of the portfolio is: 1716.0)( =•XR . 
By 5000 iteration we obtained the following result for the optimal portfolio: 

{ }0089.0,2997.0,0018.0,0115.0,385.0,9137.0=•X , the risk of portfolio is: 0011.0)(2 =•Xσ , 

the return of the portfolio is: 1812.0)( =•XR . 

5.2 Illustration and Analysis 
The efficiency of the breeding swarm algorithm for portfolio selection, can be appraised 
from •F  (the risk of portfolio), •R  (the return of portfolio), number of iterations and the 
convergence rate. The results of simulation for two different iteration numbers are listed in 
Table 2., Fig. 1., Fig. 2., and Fig. 3.. In Table 2. the precision of the solutions for different 
iteration numbers is showed. From Fig. 1., Fig. 2., and Fig. 3. it can be found that the 
breeding swarm algorithm has so fast convergence rate for different iteration numbers. 
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These figures show the average fitness function of risk in 20 trials in three different 
iterations. 

Covariance 
Return 

1 2 3 4 5 6 7 

0.120 0.141 -0.189 0.167 0.188 -0.186 -0.194 0.161 

0.090 -0.189 0.260 -0.220 -0.248 0.253 0.255 -0.216 

0.100 0.167 -0.220 0.224 0.238 -0.217 -0.238 0.209 

0.100 0.188 -0.248 0.238 0.270 -0.247 -0.260 0.220 

0.009 -0.186 0.253 -0.238 -0.260 0.256 0.279 -0.230 

0.115 -0.194 0.255 -0.238 -0.260 0.256 0.279 -0.230 

0.110 0.161 -0.216 0.209 0.220 -0.217 -0.230 0.209 

Table 1. Return rate and covariance chart (Xu et al., 2006) 

 
Iterations Best •F  Best •R  Average •F  Average •R  

2000 0.0018 0.1716 0.0038 0.1588 

5000 0.0011 0.1812 0.0026 0.1638 

Table 2. BS Algorithm Evaluation Results 
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Figure 1. The performance and convergence rate with 1000 iterations 
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Figure 2. The performance and convergence rate with 2000 iterations 
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Figure 3. The performance and convergence rate with 5000 iterations 

It is obvious from the figures that the BS algorithm has achieved to its efficient solution by 
nearly 1000 iterations. These results approve that the BS algorithm can find the solution of 
portfolio selection problem with high accuracy and convergence rate. The best results of 
Limited Velocity Particle Swarm Optimization (LVPSO) approach (Xu et al., 2006) are 
summarized in Table 3 to compare with our results. 
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Method Iterations Average 
Iterations Best F* Best R* Average 

F* 
Average 

R* 
7544 5006 0.009311 0.112622 0.009926 0.111531 LVPSO  (Xu 

et al., 2006) 5415 3444 0.010612 0.110619 0.011098 0.107835 
5000 4850 0.001100 0.181200 0.002600 0.163800 BS 
2000 1920 0.001800 0.171600 0.003800 0.158800 

Table 3. Compare best results of two approaches LVPSO and BS 

6. Conclusion 

In this study, a new optimization method is used for portfolio selection problem which is 
powerful to select the best portfolio proportion with minimum risk and high return. One of 
the advantages of this hybrid approach is the high speed of convergence to the best solution, 
because it uses both advantages of GA and PSO approaches. Simulation results demonstrate 
that the BS approach can achieve better solutions to stochastic portfolio selection compared 
to PSO method. 
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1. Introduction  
Optimization methods are invaluable tools for the engineer who has to face the increasing 
complexity in the design of electromagnetic devices, or has to deal with inverse problems. 
Basically, an objective function f(x) is defined where x is the set of parameters that has to 
be optimized in order to satisfy the imposed requirements. In design problems the 
parameters defined in x completely describe the features of the device (a printed antenna 
for example), and f(x) is a measure of the system performance (gain or return loss). 
However, the objective function for a real-world problem may be nonlinear, may have 
many local extrema and may even be nondifferentiable.  Numerous optimization methods 
that have been proposed in the literature can be divided into two groups − deterministic 
and stochastic. The former performs a local search which yields results that are highly 
influenced by the starting point, and sometimes requires the objective function to be 
differentiable. They might lead to a rapid convergence to a local extremum, as opposed to 
the global one and impose constraints on the solution domain that may be difficult to 
handle. The latter are largely independent of the initial conditions and place few 
constraints on the solution domain. They carry out a global search, and are able to deal 
with solution spaces with discontinuities, as well as  a large number of dimensions and 
hence  many potential local minima and maxima. Among the stochastic methods, for 
instance  Monte Carlo and Simulated Annealing techniques, a particular subset also 
referred to as evolutionary algorithms have been recently growing in importance and 
interest. This class comprises the Genetic Algorithms (GA) (Goldberg, 1989), the Ant 
Colony Optimization (ACO) (Dorigo and Stutzle, 2004) and the Particle Swarm 
Optimization (PSO). 
The PSO algorithm has been originally proposed by Kennedy and his colleagues 
(Kennedy and Eberhart, 1995) and it is inspired by a zoological metaphor of the social 
behavior of animals (birds, insects, or fishes) that are organized in groups (flocks, swarms, 
or schools). All of the basic units of the swarm, called particles (or agents) are trial 
solutions for the problem to be optimized, and are free to fly through the 
multidimensional search-space toward the optimal solution. The search-space represents 
the global set of potential results, where each dimension of this space corresponds to a 
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parameter of the problem to be determined. The swarm is largely self-organized, and 
coordination arises from the different interactions among agents. Each member of the 
swarm exploits the solution space by taking into account the experience of the single 
particle as well as that of the entire swarm. This combined and synergic use of 
information yields a promising tool for solving design problems that require the 
optimization of a relatively large number of parameters. 
The organization of this chapter is as follows: Section 2 describes the implementation of a 
PSO algorithm employed in the design of Frequency Selective Surfaces. A parallelization 
of the PSO method is described in Section 3 that makes efficient use of all  the available 
hardware resources  to overcome the computational burden incurred in the process. A 
useful procedure for increasing  the convergence rate is described in Section 4 and 
numerical results are provided to illustrate the reliability and efficiency of the new 
algorithm. Finally, concluding remarks are given in Section 5. 

2. Optimization of Frequency Selective Surfaces 
In this section  the problem of synthesizing Frequency Selective Surfaces (FSSs) is 
addressed by using a specifically derived particle swarm optimization procedure, which 
is able to handle, simultaneously, both real and binary parameters. After a brief 
introduction of the nature of the FSSs and the applications in which they are employed, 
the PSO method developed for their optimization is described and a representative 
numerical example is given to demonstrate  the effectiveness of this tool. 

2.1 Frequency Selective Surfaces 
At the end of the 18th century the American physicist David Rittenhouse (Rittenhouse, 
1786), found that the light spectrum is decomposed into lines of different brightness and 
color, while observing a street lamp through his silk handkerchief. This was the first proof 
of the fact that non-continuous and periodic surfaces show different transmission 
properties for different frequencies of incident wave. The first device which takes 
advantage of this phenomenon is the parabolic reflector of wire sections, built by Marconi 
and Franklin in 1919 and, since then, FSSs have been further investigated and exploited 
for use in many practical applications. For instance, FSSs find use as subreflectors in dual 
frequency Cassegrainian systems and in radomes designed for antennas, where FSSs are 
used as pass band or stop band filters. They are employed to reduce the Radar Cross 
Section (RCS) of antennas outside their operating frequency band, and provide a reflective 
surface for beam focusing in reflector antenna system, realize waveguide filters and 
artificial magnetic conductors. At microwaves FSSs protect humans from harmful 
electronic radiation, as for instance, in the case of a microwave oven , in which the FSS 
printed on the screen doors totally reflects microwave energy at 2.45 GHz while allowing 
light to pass through. Recently,  the FSSs  have been employed at infrared (IR) frequencies 
for beam-splitters, filters and polarizers. 
An FSS is either a periodic array of metallic patches printed on a substrate, or a 
conducting sheet periodically perforated with apertures. Their shape, size, periodicity,  
thickness of the metal screen and the dielectric substrate determine their frequency and 
angular response (Mittra et al., 1988; Munk, 2000). 
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2.2 Particle Swarm Optimization with mixed parameters 
In the basic PSO algorithm, each agent in the swarm flies in an n-dimension space, and the 
position at a certain instant i is identified by the vector of the coordinates X: 

 X(i)=[x1(i),x2(i),...,xn(i)]. (1) 

Each xn(i) component represents a parameter of the physical problem that has to be 
optimized. At the beginning of the process, each particle is randomly located at a position, 
and moves with a random velocity, both in direction and magnitude. The particle is free to 
fly inside the n-dimensional space defined by the user, within the constraints of the n 
boundary conditions, which limit the extent of the search space and, hence, the values of the 
parameters during the optimization process. At the generic time step i+1, the velocity is 
expressed by the following equation: 

 vl(i+1)=w* vl(i)+c1*rand()*(pbest,l(i)-xl(i))+c2*rand()*(gbest,l(i)-xl(i)), (2) 

where vl(i) is the velocity along the l direction at the time step i; w is the inertial weight; c1 
and c2 are the cognitive and the social rate, respectively;  pbest,l(i) is the best position along 
the l direction found by the agent during its own wandering up to i-th; gbest,l(i) is the best 
position along the l direction discovered by the entire swarm; and rand() is a generator of 
random numbers uniformly distributed between 0 and 1. The position of each particle is 
then simply updated according to the equation:  

 xl(i+1)= xl(i)+ vl(i)*Δt (3) 

where xl(i) is the current position of the agent along the direction l at the iteration  i-th, and 
Δt is the time step. An interesting insight into the basic PSO algorithm details may be found 
in (Robinson and Rahmat-Samii, 2002). This basic procedure is suitable for solving 
optimization problems involving real parameters. However, for the case of the FSS design, 
we need to manage not only the real but also the binary parameters in order to describe the 
shape of the unit cell (Manara et al., 1999). Therefore it is necessary to incorporate both of 
these features into the algorithm (Fig. 1). A discrete binary version of the PSO was first 
introduced by Kennedy and Eberhart (Kennedy and Eberhart, 1997), in which the concept of 
velocity loses its physical meaning and assumes the value of a probability instead. More 
specifically, the position along a direction can now be either 0 or 1, and the velocity 
represents the probability of change for the value of that bit. In light of this, the expression 
in (2) has to be modified by imposing the condition that the value of vl(i) must be in the 
interval [0.0, 1.0], and enforcing the constraint that any value outside this interval be 
unacceptable. As a consequence, a function T is defined to map the results of (2) within the 
allowed range. If w=1 and c1= c2=2, vl(i) is within the interval [-4, 5]. The T function linearly 
compresses this dynamic range into the desired set [0, 1] and then the position is updated by 
using the following rule:  

if (rand() < T(vl(i)) then 
xl(i)= NOT(xl(i)) 

   else 
  xl(i)= xl(i) 

(4) 

where rand() is the same random function adopted in (2) and the operator NOT indicates the 
binary negation of xl. 
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Figure 1. Each agent represents number and type of the parameters involved in the 
optimization process 

This implies that if the random number is less than the probability expressed by the velocity, 
then the bit is changed. Hence, the faster the particle moves in that direction, the larger is the 
possibility of change.  
The parameters that can be optimized by the algorithm for the design of an FSS structure are 
the shape of the unit cell, its dimensions, the permittivities of dielectric layers and their 
thicknesses. The size of the multi-dimensional space in which the particle moves is variable, 
and it is related to the different options given to the user. In fact, the number and the kind of 
the parameters depend on the choices offered at the beginning of the optimization process. 
First of all, the two real-valued parameters that can be tuned according to the imposed 
requirements are the dimensions of the unit cell along the main directions of periodicity (Tx, 
Ty). For each dielectric substrate, it is possible to choose the value of the permittivity from a 
predefined database, using integer parameters in this case. Consequently, the particle is only 
allowed to assume integer values, and a finite number of these values in the search 
direction. As for the thickness,  it can be either chosen from a database (integer parameter) 
or be a real value within the imposed boundary for that component. The shape of the unit 
cell is completely defined as a binary parameter,  where ‘1’ implies the presence of perfect 
electric conductor and ‘0’ designates an absence of conductor. The discretization adopted for 
the FSS binary mask can be 16×16 for a total of 256 binary parameters. This number reduces 
to 64 and 36, for a four-fold or eight-fold symmetry imposed to the unit cell, respectively. 
The analysis of the entire FSS structure is performed via an MoM code, employing roof top 
basis functions (Manara et al., 1999). The objective function (also referred to as the fitness 
function),  which is employed to test the performance of the solution proposed by the PSO, 
is based on the mean square error between the reflection coefficient (or the transmission 
one) of the synthesized structure and the frequency mask which translates the requirements 
imposed by the user in one (or more) frequency band and for a set of incidence angles. It is 
apparent that in this case the aim is to minimize the fitness value and therefore we are in 
search of a the global minimum.  
In order to demonstrate the capabilities of the PSO algorithm, a frequency mask is imposed 
to have a transmission coefficient less than -15 dB in the 0.1 GHz – 2.0 GHz band , less than 
− 10 dB within the 10.0 GHz-12-0 GHz and to be transparent in the 5.0 GHz - 6.0 GHz band. 
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The algorithm has to optimize the shape of the unit cell and the thickness and dielectric 
constant values of two dielectric slabs which contains the FSS. The unit cell designed by the 
PSO is a square and has a period of 1 cm. The two dielectric slab have permittivities of εr=3.3 
and εr=7.68,  and thicknesses of 0.2 cm and 0.1 cm, respectively. The result is shown in Fig.2 
as well as the unit cell shape represented in the binary variables.  
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Figure 2. Comparison between the mask expressing the requirements  imposed by the user 
(red line) and the transmission coefficient of the FSS optimized by the PSO algorithm (black 
line). In the inset the unit cell is reported 

3. Parallel Particle Swarm Optimization 
There have been many attempts  in the past toward increasing the convergence of the PSO 
algorithm by modifying it (Clerc and Kennedy, 2002; Shi and Eberhart, 1999). This section 
will focus on an alternative approach, that involves an enhancement in the performance via 
the implementation of a parallel version of the PSO algorithm (PPSO) which is designed to 
address the CPU time issue. The parallel version can be useful, for example, for designing 
FSSs requiring a unit cell geometry with a fine discretization (e.g., 32×32), or for 
synthesizing a dual-screen version, both of which demand a significant computational 
effort, which is not easily handled by a single processor, at least within a reasonable time 
frame. The basic structure the parallel PSO algorithm is reported in Fig. 3(a). Starting from 
the observation that the updating of the velocity and the position of the agents, together 
with the evaluation of the scores of the fitness values to determine pbest and gbest, requires a 
relatively small fraction of the time needed to compute the fitness function; hence the 
evaluation of the objective function is the only operation that is parallelized. The basic idea 
is to make a partitioning of the swarm among all the CPUs. The global partitioning strategy 
is clearly shown Fig. 3(b), where the case of four processors used in the optimization is 
considered for a swarm comprising eight particles. 
A partition (two agents) of the swarm is assigned to each processor, which evaluates the 
fitness function of the given set of particles at each stage of iteration. Upon finishing these 
tasks, the processors communicate with each other to broadcast the best location they have 
found individually (red lines in Fig.4).  
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(a) 

 
 

 
(b) 

Figure 3. PPSO implementation: (a) Flow chart; (b) detail of work subdivision among all the 
available processors. Each CPU considers only the agents assigned (red dots) 

 
Figure 4. At  iteration K, after the computation (blue), all the CPUs communicate to the 
others their results (red lines) and each processor perform the ranking to find the gbest 
(yellow) 

Since the configuration analyzed by each processor is different, the time they require for 
their computation (highlighted in blue in Fig. 4) may vary slightly between the processors, 
even if the wait-time experienced by the faster processors is relatively small. All the 
processors have their own information, at the end of each evaluation step, as well as the 
latest information from the others about the best areas; hence, it is relatively easy to find the 
gbest . There is no master processor to carry out the ranking task and, hence, only  a single 
transfer of information is needed at each iteration step. As is evident from Fig. 5, the general 
trend is a decrease of the overall simulation time. 
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Figure 5. General trend of the saved time achieved by employing the PPSO approach 

4. Space partitioning for increasing convergence rate 
The problems of control of parameters and their tuning has been widely investigated (Clerc 
and Kennedy, 2002; Shi, and Eberhart, 2001) in the context of PSO, who have dealt with 
open issues such as premature convergence and stagnation into local minima. Furthermore, 
the effect of changing the neighborhood topology has been discussed extensively (Clerc, 
1999; Kennedy, 1999; Lovbjerg et al., 2001; Abdelbar et al., 2005). However, to the best of our 
knowledge, the initialization of the position of the particles within the search space has not 
been subject of the same attention. The initialization of the position of the particles has a 
deep impact on the rate of convergence a in PSO and, therefore, has to be carefully taken 
into account. Since the agents are randomly located in most cases, it is possible that some 
areas may have higher densities of particles than others, especially if the multidimensional 
domain is large. Of course, this inhomogeneity in the distributions of the agents does not 
prevent them from pursuing the goal but can affect the time required for approaching the 
final solution. We propose to circumvent this difficulty by subdividing the solution space 
into sub-domains within which groups of agents are initially located in order to guarantee 
the homogeneous distribution of agents all over the computational domain. Each particle 
cooperates only with those particles in its own group independently from the other groups. 
After a fixed number of iterations, the sub-boundaries are removed, the best positions found 
by each group are scored and the actual global best location is revealed to all. It is 
demonstrated that the first part of the optimization process, managed by particles inside the 
sub-boundaries, improves the speed with which we find the optimal solution and hence 
increases the convergence rate of the process. The efficiency of the proposed 
implementation, referred to enhanced PSO in this Section, has been verified through the 
optimization of commonly employed test functions as well as of a complex electromagnetic 
problem, viz., the design of Artificial Magnetic Conductors (AMCs).  
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4.1 Space partitioning 
We now discuss the space partitioning scheme using a slightly modified notation than used 
in Section 2. Let us denote to the position of the generic agent k at a certain instant i by using 
the vector X given by:  

 Xk(i)=[xk1(i),xk2(i),...,xkn(i)], (5) 

and let pkbest,n be the best position along the direction n found by the agent k during its own 
wandering up to the i-th time step, and let gbest,n be the best position along the direction n, 
discovered by the entire swarm at time step i. The particle is free to fly inside the defined 
n−dimensional space, within the constraints imposed by the n boundary conditions, which 
delimit the extent of the search space between a minimum (xn,min) and maximum (xn,MAX) 
and, hence, the values of the parameters during the optimization process. Accordinlgy, at 
the generic time step i+1, the velocity of the simple particle k along each direction is updated 
by following the rule:  

 vkn(i+1)=w* vkn(i)+c1*rand()*(pkbest,n(i)-xkn(i))+c2*rand()*(gbest,n(i)-xkn(i)), (6) 

Define the allowed range of each dimension (boundaries) 
Set i=1 
for k=1, number_of_agents 
    for n=1, number_of_dimensions  
        Random initialization of xkn(i) within the allowed range [xn,min ; xn,MAX] 
        Random initialization of  vkn(i) proportional to the dynamic of dim. n 
    next n 
next k 
for j=1, number_of_iterations 
    for k=1, number_of_agents 
        Evaluate fitnessk(i), the fitness of agent k at instant i 
    next k 
    Rank the fitness values of all agents 
    for k=1, number_of_agents 
        if fitnessk(i) is the best value ever found by agent k then 
            pkbest,n(i)= xkn(i) 
        end if 
       if fitnessk(i) is the best value ever found by all agents then 
            gbest,n(i)= xkn(i) 
        end if 
    next k 
Update agent velocity by using (6) and limit if required 
Update agent position, check it with respect to the Boundaries 
i=i+1        
next j 

Figure 6. PSO implementation with initialization by using boundary conditions 

To refresh the memory of  the standard particle swarm optimization algorithm, we present 
its pseudocode in Fig. 6, since it is useful to understand the novelty introduced by the 
initialization of the sub-boundaries. The solution we propose is based on the simple 
observation that there exists a high probability that the initial step, which entails a random 
position of all the agents, can determine a non-uniform coverage of the search domain. This 
fact affects the convergence rate, especially if the domain is large compared to the number of 
agents involved in the search process. Even if the algorithm is able to find the optimal 
solution, the process could be speeded up by adopting an approach which will be detailed 
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in this section. The underlying concept upon which the algorithm is based is to distribute 
the agents uniformly at the start of the optimization process. The agents are organized into 
equal groups and these groups are then forced to exploit a sector of the domain defined by 
the sub-boundaries. This concept is described in Fig. 7 for a three-dimensional domain. 

 
Figure 7. The domain defined by the boundaries is split into sectors defined by sub-
boundaries within groups of agents wandering in search of the best location 

 
Figure 8. After the last iteration in sub-domain mode, and before starting the entire domain 
discovery, each particle is attracted by its own sub-domain best (blue dots) and its local best 
(red squares). The blue star in sector 2 is the best of all the sectors’ bests 
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The domain is subdivided into sectors (or sub-domains) by using sub-boundaries that split 
one or more dimensions into equal intervals. The number of sub-boundaries cannot exceed 
the number of agents but, as it will be evident later, they should not produce groups that 
contain very few agents. During the initial stages, each group flies inside the assigned sub-
domain and, hence, each group g has its own “sub-domain best” (indicated by ggbest,n). 
Furthermore, each agent k in the group g has its own position xk,g and the local best location 
(pk,gbest). The sub-boundaries pose impassable limits and consequently, none of the agents of 
one group can cross these boundaries to enter another sector. This guarantees that the 
number of agents in each sector is constant and so that the homogeneity of their spread 
within the multidimensional domain is preserved. Once the number of iterations dedicated 
to this process is exceeded, the barriers imposed by the sub-boundaries are removed and the 
particles are free to fly all over the entire domain. The “global best” is then chosen from 
those found in the sectors by the groups while the “local best” position of each agent is 
preserved. The operation executed at the exact instant of the passage from the sub-boundary 
conditions to the global boundary conditions is described in Figs. 8 and  9 for a two-
dimensional case. To illustrate the differences introduced in this modified version of the 
PSO, its pseudocode is presented in Fig. 10.  

 
Figure 9. Opening the sub-boundaries: all the agents gain the information about the global 
best as soon as the barriers imposed by the sub-boundaries are removed. They are attracted 
both by that location as well as by the own local best previously found 
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To point out the changes in the results obtained by using this new PSO implementation, we 
have optimized several functions used as test beds for studying the performance of 
optimizers (Clerc and Kennedy, 2002). In particular, the following functions have been 
considered. The first type is the Rastrigin function defined as:  
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N

i i
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f x x xπ
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with (-5.12 < xi < 5.12). The second type is the Griewank function (-600 < xi < 600):  
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The last function considered is the Rosenbrock function: 
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with (-50 < xi < 50). 
All the introduced functions have a global minimum equal to zero. Several simulations have 
been run for each of these functions, both with the standard PSO algorithm as well as with 
the new proposed one. 
Three different sizes of the swarm have been considered, comprising of 16, 20 and 32 agents, 
respectively. Furthermore, to better understand the influence of the sub-boundary 
initialization, we have addressed the problem with a variable number of sectors (2, 4, 8, and 
16) and, hence, different number of groups. As mentioned previously each sector contains 
only one group. The maximum allowed number of iterations to reach the minimum has 
been set to 150. Except for the boundary case, we have run half of the total amount of 
iterations with active sub-boundaries. This choice is to be regarded only as a suggestion , 
which is important for efficient cooperation of all the agents acting together − one of the 
most important features of the PSO algorithm. The results for N=3 are shown in Table I.  
The first value expresses the average number of iterations necessary to approach the 
minimum with a tolerance of less than 0.01. The abbreviation N.R. (not reached) means that 
this requirement has not been satisfied up to the 150-th iteration. The second value within 
the brackets is the number of fitness evaluations which indicates the number of calls to the 
solver.  We have deliberately omitted to consider the case of 20 agents and 8 sectors because 
it is not possible to have groups with the same number of agents. From the above results, it 
is possible to state that the initialization with the sub-boundaries not only helps us to reach 
the convergence more rapidly, but also that the more we increase the number of divisions 
the less we improve the performance. Moreover, in the case of 16 groups the efficiency 
drops dramatically and the results are even worse than without sub-boundaries. This fact 
suggests a logical conclusion, viz., that there is a limit to the improvement  that we can 
achieve by increasing the number of subdomains beyond a certain point. Of course, the 
number of sectors is also limited by the number of agents, since a group has to be composed 
at least by two agents. The above results lead us to conclude that the initialization with the 
sub-boundaries helps us to reach the convergence more rapidly, but we have to prevent the 
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use of very small groups. Therefore, even if a group has to be composed at least by two 
agents, these results suggested us to use a minimum of 4 agents in each group.  

Set i=1 
for g=1, number_of_groups 
    for k=1, number_of_agents_in_the_group 
        for n=1, number_of_dimensions 
           Random initialization of xk,gn(i) within the range of  subdomain 
#g 
           Random initialization of vk,gn(i) prop. to the dynamic of subd. #g 
        next n 
    next k 
next g 
do while (Sub_boundary_case) 
    Flag_set_global_best = FALSE 
    for g=1, number_of_groups 
        for k=1, number_of_agents_in_the_group 
           Evaluate fitnessk,g(i), the fitness of agent k in group g at instant i 
        next k 
    next g 
    for g=1, number_of_groups 
        Rank the fitness values of all agents included only in group g 
    next g 
    for g=1, number_of_groups 
        for k=1, number_of_agents_in_the_group 
            if fitnessk,g(i) is the best value ever found by agent k in group g then 
              pk,gbest,n(i)= xk,gn(i)  
           end if 
           if fitnessk,g(i) is the best value ever found by all agents then 
              ggbest,n(i)= xk,gn(i)  
           end if 
        next k 
    next g 
    i=i+1 
    if (i >= sub_boundaries_iterations) then Sub_boundary_case= FALSE 
end do 
if (Flag_set_global_best = FALSE) then 
        Flag_set_global_best = TRUE 
        Rank all the ggbest,n(i) and set the actual gbest,n(i)  
else 
        follow, with the actual value of i, the procedure showed in Fig.6 
end if 

Figure 10. Pseudocode of the modified PSO. During the preliminary iterations the agents 
seek together, organized in groups, in an area defined by the sub-boundaries. After this 
stage, they are set free and can move all over the solution space 
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Rastrigin function 

# of 
agent

s 

No Sub-
Boundari

es 

2 
Groups 

4 
Groups 

8 
Groups

16 
Groups

 
16 

N.R. 
 

142 
(2272) 

117 
(1872) 

98 
(1568) 

N.R. 

 
20 

N.R. 
 

110 
(2200) 

70 
(1400) 

_ _ 

 
32 

N.R. 
 

60 
(1920) 

40 
(1280) 

34 
(1088) 

138 
(4416) 

Griewanck function 

# of 
agent

s 

No Sub-
Boundari

es 

2 
Groups 

4 
Groups 

8 
Groups

16 
Groups

 
16 

122 
(1952) 

110 
(1760) 

93 
(1488) 

80 
(1280) 

130 
(4160) 

 
20 

96 
(1920) 

84 
(1680) 

74 
(1480) 

_ _ 

 
32 

80 
(2560) 

52 
(1664) 

45 
(1440) 

38 
(1216) 

112 
(3584) 

Rosenbrock function 

# of 
agent

s 

No Sub-
Boundari

es 

2 
Groups 

4 
Groups 

8 
Groups

16 
Groups

 
16 

44 
(704) 

31 
(496) 

18 
(288) 

15 
(240) 

58 
(1856) 

 
20 

30 
(600) 

23 
(460) 

12 
(240) 

_ _ 

 
32 

19 
(608) 

14 
(448) 

7 
(224) 

7 
(224) 

55 
(1760) 

Table 1. Results obtained by using sub-boundaries initialization in solving benchmark 
functions 

4.2 Artificial Magnetic Conductor case study 
In recent years, much attention has been devoted to the problem of designing Artificial 
Magnetic Conductors (AMC) that find a variety of applications, especially in the field of 
low-profile antennas (Sievenpiper et al., 1999; Kern et al. 2005). The zero-phase reflection 
coefficient at the resonance frequency allows one to place the source close to the artificial 
magnetic ground plane, and this offers the possibility of reducing the total dimension of the 
device. In order to realize an AMC ground plane, one can exploit the use of planar 
architectures which incorporate an FSS printed on a grounded dielectric slab (Kern et al. 
2005). As shown in Fig. 6(a), once the number and the configuration of the dielectric layers 
have been chosen, it is necessary to design the FSS unit cell, choose the values of dielectric 
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constants as well as the thickness of each dielectric slab so as to realize the AMC behavior at 
the desired frequency.  

 
Figure 11. Geometry of an AMC screen A FSS is printed on a dielectric substrate backed by a 
perfect electric conductor (PEC) 

A quantity proportional to the root mean square of the difference between the actual electric 
field reflection coefficient (ΓE) and the desired one (Re{ΓAMC}=1, Im{ΓAMC}=0), for both TE 
and TM modes, is used to evaluate the performance of the structure. In order to evaluate the 
performance of the PSO enhanced with sub-boundaries we have run several simulations, 
each one carrying out 300 iterations, with different number of sectors. Our aim is to design 
an AMC screen acting as a PMC at 2.5 GHz, optimizing both the unit cell and the 
characteristic of two dielectric slabs (a superstrate and a substrate). At each simulation 
(except for the case with no sub-boundaries), one half of these iterations are carried out by 
using sub-boundaries and the average value of the fitness considered is the one of the best 
sector. The number of particles in the swarm is 32. The results are summarized in Fig. 12 
where we show the convergence rate for each sub-domain configuration. 
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Figure 12. Trend of the convergence rates for four different cases. The grey zone represents 
the part of the iteration run by using sub-boundaries (except for the no-groups case) 

We note that there is an improvement in the performance as we increase the number of 
groups and that, as in the previous case, the advantages of this approach are not directly 
proportional to the number of sub-boundaries utilized. In fact, we gain an advantage over 



Enhanced Particle Swarm Optimization for Design and Optimization  
of Frequency Selective Surfaces and Artificial Magnetic Conductors 

 

247 

the conventional PSO when we use two groups and the performance is better if we change 
the number of groups to four. However, it is not worthwhile to go beyond this value and to 
further subdivide the domain into eight groups. Moreover the sub-boundary approach is 
not applied to the binary map in this case and, hence, it reduces the impact of further 
subdivisions of the domain. As an example, in Fig. 13 we show an AMC screen, together 
with its electromagnetic performance, obtained in the case of a swarm initialized by using 4 
groups. 
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Figure 13. Phase of the reflection coefficient vs. frequency for the AMC screen shown in the 
inset. The phase response is reported for normal incidence 

5. Conclusion 
In this chapter, we have address the problem of efficiently synthesizing Frequency Selective 
Surfaces by using PSO. We have presented our specifically derived particle swarm 
optimization procedure which is able to handle, simultaneously, both real and binary 
parameters. We proposed a parallel version of the PSO algorithm to face challenging 
problems, which may require  hardware resources and computational time that cannot be 
handled by a single CPU. Finally, we have introduced a novel strategy for the initialization 
of the agents’ position within the multidimensional solution domain to further improve the 
convergence rate. This new procedure has been shown to be reliable with benchmark 
functions and has been successfully applied to the synthesis of Artificial Magnetic 
Conductors. 
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1. Introduction  
Particle swarm optimisation (PSO) was developed by Kennedy and Eberhart in 1995 
(Kennedy & Eberhart, 1995) inspired by the collective behaviour of natural birds or fish. 
PSO is a stochastic optimisation technique that uses a behaviour of population composed by 
many search points called particle. In spite of easy implementation in computer algorithms, 
it is well known as a powerful numerical optimizer. In the typical PSO algorithms, a set of 
particles searches the optimal solution in the problem space efficiently, by sharing the 
common attractor called global best. There are many modified versions of PSO by 
improving convergence property to a certain problem. While, a standard PSO is defined by 
Bratton and Kennedy (Bratton & Kennedy, 2007) to give a real standard for PSO studies. 
PSO seems as one of the evolutionary computations (ECs), and it has been shown that PSO 
is comparable to a genetic algorithm (Angeline, 1998). Thus, a lot of studies have 
demonstrated the effectiveness of PSO family in optimizing various continuous and discrete 
optimization problems. And a plenty of applications of PSO, such as the neural network 
training, PID controller tuning, electric system optimisation have been studied and achieved 
well results (Kennedy, 1997). 
However, PSO is often failed in searching the global optimal solution in the case of the 
objective function has a large number of dimensions. The reason of this phenomenon is not 
only existence of the local optimal solutions, the velocities of the particles sometimes lapsed 
into the degeneracy, so that the successive range is restricted in the sub-plain of the whole 
search hyper-plain. The sub-plane that is defined by finite number of particle velocities is a 
partial space in the whole search space. The issue of local optima in PSO has been studied 
and proposed several modifications on the basic particle driven equation (Parsopoulos et al., 
2001; Hendtlass, 2005; Liang et al., 2006). There used a kind of adaptation technique or 
randomized method (e.g. mutation in evolutionary computations) to keep particles 
velocities or to accelerate them. Although such improvements work well and have ability to 
avoid fall in the local optima, the problem of early convergence by the degeneracy of some 
dimensions is still remaining, even if there are no local optima. Hence the PSO algorithm 
does not always work well for the high-dimensional function.  
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From this point of view, the purpose of this paper is to improve performance of the PSO 
algorithm in case of high-dimensional optimization. To avoid such convergence with finite 
number of particles, we propose a novel PSO model, called as the Rotated Particle Swarm 
(RPS), where we introduce a coordinate conversion method. The numerical simulation 
results show the RPS is efficient in optimizing high-dimensional functions. 
The remaining parts of this chapter organized as the following.  In Section 2, PSO is briefly 
introduced, and then the early convergence phenomenon is illustrated. The proposed novel 
PSO model is shown in Section 3. Some results of the numerical studies for the benchmark 
problems are presented in Section 4, and we mention about some remarks in the last section. 

2. Particle Swarm Optimization 
Each particle, it is a member of the population, has its own position x and velocity v. A 
velocity decides a movement direction of a particle. The particles fly around the problem 
space, searching for the position of optima. Each particle memorizes two positions in order 
to find a favourite position in the search space. One is its own best position called the 
personal best and the other is the global best that is the best among all particles, denoted by 
p and g, respectively. Then, )(ip  indicates the best position found by i-th particle from the 

first time step and )(ig  indicates the best position among all pi in the neighbour particle of i-

th particle.  Neighbour particle is defined by the topology of particles, which represents the 
network structure of population. Memories are utilized in adjusting the velocity to find 
better solutions.  
In one of the standard versions of PSO algorithm, the velocity and position are updated at 
each time step, according to the following two equations,  
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Here, χ is the constriction coefficient, which prevents explosion of the velocity and balances 
between exploration and exploitation. The coefficients r1,d and r2,d are random values  
uniformly distributed over the range [0, 1]. These parameters are often set as φ1,d = φ2d = 2.05 
and χ = 0.7298 (Kenndy & Clerc, 2002).  )(i

dv  indicates d-th element of velocity vector of i-th 

particle, and  )(i
dx indicates d-th element of position.  )(i

dp  and )(i
dg represent d-th elements of 

)(ip and )(ig  respectively. 

Some theoretical analyses of particle trajectories derived from Eq. (1) and (2) have been 
performed, where PSO algorithm is simplified (e.g., only one particle, one dimension, no 
stochastic elements) (Ozcan & Mohan, 1998; Ozcan & Mohan, 1999; Kenndy & Clerc, 2002). 
In those studies, it is shown that each particle oscillates around the weighted average 
position of its p and g, and settle down in an equilibrium state where velocities are 
considerably small until new p or g  is found by particle. Note that the particles converge are 
not always local or global optima. We consider the effect of this kind of convergence 
property on high-dimensional optimization. Now, we present the experimental results 
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where a standard PSO algorithm is applied to high-dimension Sphere function. Sphere 
function is one of the standard test functions without local optima. It is defined as follows, 

  ∑
=

=
D

d
dxxf

1

2
1 )(    (3) 

where D represents the number of dimensions.  
Population size is set to 20 particles. Star topology, where all particles are interconnected, is 
used. The average fitness (function value) for 10 dimensions case at each time step over 10 
trials is shown in Fig.1. 

  
Figure 1. Function value of the global best particle, in case of dimension size D=10 

 
Figure 2. Function value of the global best particle, in case of dimension size D=100 

Figure 2 shows the average fitness in the same conditions except for the dimension. In this 
case, a dimension is 100. The function value in 10 dimensions keeps decreasing as the search 
proceeds, while the improvement of the fitness value in 100 dimensions gets slow. Note that 
both vertical and horizontal axes are not same order. For higher dimension, the convergence 
speed is very low, or it does not converge. 
We examined the other topologies such as four clusters, pyramid or ring. They have low 
connectivity to keep diversity in population. Though they yield better results than the Star 
topology, performance gets worse as the dimension of dimensions increases. When PSO 
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does not work well in optimizing high-dimensional function like this result, it is frequently 
observed that diversity of positions and memories of the whole population in some 
dimensions gets lost without trapping local optima.  
It is conjectured that such premature convergence occurs because the velocity updating by 
Eq. (1) depends only on information of the same dimension. Once the diversity of positions 
and memories of certain dimension gets low, particles have difficulty in searching in the 
direction of the dimension. In the next section, we propose the novel velocity model that 
utilizes information of other dimensions. 

3. Rotated Particle Swarm 
Now, to consider the conventional way to update the velocity, we rewrite Eq. (1) by vectors 
and matrixes, such as, 

 ))()(( 21 iiiiii xgxpvv −Φ+−Φ+= χ ,  (4) 

where  

 ),,,( ,1,12,12,11,11,11 DDrrrdiag φφφ K=Φ   (5) 

 ),,,( ,2,22,22,21,21,22 DDrrrdiag φφφ K=Φ .  (6) 

Fig.3 illustrates sample space by )( )()(
1

ii xp −Φ , the second term of Eq. (1), in 2 dimensions.  

 
Figure 3. Geometric illustration of sample space by )( )()(

1
ii xp −Φ  in 2 dimensions 

In 21 xx −  coordinate system where ix  and ip  are aligned parallel to the axis, the sample 
space has only one degree of freedom. On the other hand, the sample space is two-
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dimensional in the 21 xx ′−′  coordinate system. The same can be said about )( )()(
2

ii xg −Φ . 
The original PSO algorithm was designed by emulating birds seeking food. Birds probably 
never change the strategy to seek according to whether food exists in the true north or in the 
northeast. Consequently, particles can search optima even if axes are rotated. We introduce 
the coordinate conversion to the velocity update.  
Before the values are sampled by )( )()(

1
ii xp −Φ and )( )()(

2
ii xg −Φ , the coordinate system is 

rotated.  Thus information of other dimensions is employed in calculating each component 
of velocity.  In the proposed method, the velocity update equation Eq. (5) is substituted into 

 ))()(( 2
1

1
1

iiiiii xgAAxpAAvv −Φ+−Φ+= −−χ   (7) 

where A is DD ×  matrix to rotate the axes. For the remainder of this paper, we refer to the 
PSO algorithm with this proposed velocity update method as the Rotated Particle Swarm 
(RPS). The RPS is designed for high-dimensional optimization. Therefore matrix 
computation is time-consuming if axes are arbitrarily rotated. To avoid it, in this study, 
certain number of axes are randomly selected without duplication and paired respectively. 
Only pairs of selected axes are rotated by θ. Most of the elements of A determined by this 
means are zero. For example, if D = 5 and selected pairs of axes are 21 xx − and 53 xx − , 
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4. Numerical Simulation 
The following well-known test functions, i.e. Sphere function, Quatric function (De Jong F4), 
Rosenbrock function, Griewank Function, and Rastrigin function) are used to evaluate 
convergence property of the proposed method.   

Sphere function:    ∑
=

=
D

d
dxxf

1

2
1 )(   (9) 

Quatric function:    ∑
=

=
D

d
ddxxf

1

4
2 )(   (10) 

Rosenbrock function:    2
1

1

22
13 )1()(100)( −+−=∑

−

=
+ d

D

d
dd xxxxf   (11) 

Griewank function:   1)cos(
4000

1)(
11

2
4 +−= ∏∑

==

D

d

d
D

d
d d

xxxf   (12) 

Rastrigin function:   )2cos(1010)(
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2
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d
d xxxf π−+=∑
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  (13) 
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Sphere function, Quatric function and Rosenbrock function are unimodal. The others are 
multimodal functions. Rosenbrock function has dependence among variables.  
For each function, search range and initialization rage were defined as listed in Table.1. 
Rosenbrock function has its global optimum at [1, 1]D and the others have at the origin. We 
use asymmetric initialization method, in which initial population is distributed only in a 
portion of the search range (Angeline, 1998).  Optimal population size is problem-
dependent.  In this study, population size is set to 20 which is commonly used (Bergh & 
Engelbrecht, 2001).  The canonical PSO and the RPS are tested with Star and Von Neumann 
topology.  Von Neumann topology is grid-structured and has been shown to outperform 
other topologies in various problems (Kennedy & Mendes, 2002).  In the RPS algorithm, the 
angle of rotation θ is set to π/5 and number of axes to be rotated is 40% of number of 
dimensions.  The number of dimension D is set to 30, 100, and 400.  Each experiment is run 
20 times in each condition and the fitness at each time step is averaged.   
In the results of Sphere function shown in Fig.3 - 5, in these figures, the bold lines show the 
convergence properties of the conventional PSO and the thin lines show the convergence 
properties of the proposed PSO. The solid lines indicate using the star topology and the 
dash lines indicate using Von-Neumann topology.  
We can see a great difference in convergence ability between the RPS and the canonical PSO.   
Especially in D=400 though it becomes difficult for the canonical PSO to keep converging to 
the optimum, the fitness of RPS keeps decreasing. Similarly, in the case of Quatric, 
Rosenbrock and Griewank shown in Fig.6-14, for every functions, a convergence speed and 
final obtained fitness of the RPS get relatively good compared with the canonical PSO as the 
number of dimension increases. 

Function Search range Range of the initial population 
Sphere [-50, 50]D [25, 40] D  
Quatric [-20, 20]D [10, 16] D  
Rosenbrock [-100, 100]D [50, 80] D  
Griewank [-600, 600]D [300, 500] D  
Rastrigin [-5.12, 5.12]D [1, 4.5]D 

Table 1. Search range and initialization for each function 

5. Conclusion 
The purpose of this study is to improve the early convergence of the particle swarm 
optimization in high-dimensional function optimization problems by the degeneracy. We 
have proposed the novel particle driven model, called Rotated Particle Swarm (RPS). It 
employs a coordinate conversion where information of other dimensions is utilized to keep 
diversity of each dimension. It is very simple technique and it is able to apply to any 
modified PSO model. The experimental results have shown that the proposed RPS is more 
efficient in optimizing high-dimensional functions than a standard PSO. The proposed RPS 
indicated remarkable improvement in convergence for high-dimensional space, especially in 
unimodal functions. An appropriate selection of rotated angles and dimensions are the 
future study, however it is envisioned that the performance of the proposed algorithm has 
robustness for such parameter settings. To compare the proposed method to the other 
modifications and to develop more powerful algorithm by combining with local optima 
technique are now under investigation. 
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Figure 4. Sphere function (D=30) 

 
Figure 5. Sphere function (D=100) 

 
Figure 6. Sphere function (D=400) 
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Figure 7. Quatric function (D=30) 

 
Figure 8. Quatric function (D=100) 

 
Figure 9. Quatric function (D=400) 
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Figure 10. Rosenbrock function (D=30) 

 
Figure 11. Rosenbrock function (D=100) 

 
Figure 12. Rosenbrock function (D=400) 
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Figure 13. Griewank function (D=30) 

 
Figure 14. Griewank function (D=30) 

 
Figure 15. Griewank function (D=30) 
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Figure 16. Rastrigin function (D=30) 

 
Figure 17. Rastrigin function (D=100) 

 
Figure 18. Rastrigin function (D=400) 
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1. Abstract 
In wireless sensor networks, minimizing power consumption to prolong network lifetime is 
very crucial. In the past, Pan et al. proposed two algorithms to find the optimal locations of 
base stations in two-tiered wireless sensor networks. Their approaches assumed the initial 
energy and the energy-consumption parameters were the same for all application nodes. If 
any of the above parameters were not the same, their approaches could not work. Recently, 
the PSO technique has been widely used in finding nearly optimal solutions for 
optimization problems. In this paper, an algorithm based on particle swarm optimization 
(PSO) is thus proposed for general power-consumption constraints. The proposed approach 
can search for nearly optimal BS locations in heterogeneous sensor networks, where 
application nodes may own different data transmission rates, initial energies and parameter 
values. Experimental results also show the good performance of the proposed PSO 
approach and the effects of the parameters on the results. The proposed algorithm can thus 
help find good BS locations to reduce power consumption and maximize network lifetime in 
two-tiered wireless sensor networks. 
Keywords: wireless sensor network, network lifetime, energy consumption, particle swarm 
optimization, base station. 

2. Introduction 
Recently, a two-tiered architecture of wireless sensor networks has been proposed and 
become popular [1]. It is motivated by the latest advances in distributed signal processing 

                                                                 
* This is a modified and expanded version of the paper "A PSO heuristic algorithm for base-station 
locations," presented at The Joint Conference of the Third International Conference on Soft Computing 
and Intelligent Systems and the Seventh International Symposium on Advanced Intelligent Systems, 
2006, Japan. 
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and source coding and can offer a more flexible balance among reliability, redundancy and 
scalability of wireless sensor networks. A two-tiered wireless sensor network, as shown in 
Figure 1, consists of sensor nodes (SNs), application nodes (ANs), and one or several base 
stations (BSs).  

SN

AN

BS

 
Figure 1. A two-tiered architecture of wireless sensor networks 

Sensor nodes are usually small, low-cost and disposable, and do not communicate with 
other sensor nodes. They are usually deployed in clusters around interesting areas. Each 
cluster of sensor nodes is allocated with at least one application node. Application nodes 
possess longer-range transmission, higher-speed computation, and more energy than sensor 
nodes. The raw data obtained from sensor nodes are first transmitted to their corresponding 
application nodes. After receiving the raw data from all its sensor nodes, an application 
node conducts data fusion within each cluster. It then transmits the aggregated data directly 
to the base station or via multi-hop communication. The base station is usually assumed to 
have unlimited energy and powerful processing capability. It also serves as a gateway for 
wireless sensor networks to exchange data and information to other networks. Wireless 
sensor networks usually have some assumptions for SNs and ANs. For instance, each AN 
may be aware of its own location through receiving GPS signals [11] and its own energy. 
In the past, many approaches were proposed to efficiently utilize energy in wireless 
networks. For example, appropriate transmission ways were designed to save energy for 
multi-hop communication in ad-hoc networks [16][10][5][19][7][6][20]. Good algorithms for 
allocation of base stations and sensors nodes were also proposed to reduce power 
consumption [12][15][16][8][9]. Thus, a fundamental problem in wireless sensor networks is 
to maximize the system lifetime under some given constraints. Pan et al. proposed two 
algorithms to find the optimal locations of base stations in two-tiered wireless sensor 
networks [13]. Their approaches assumed the initial energy and the energy-consumption 
parameters were the same for all ANs. If any of the above parameters were not the same, 
their approaches could not work.  
In this paper, an algorithm based on particle swarm optimization (PSO) is proposed to find 
the base-station locations for general power-consumption constraints. The PSO technique 
was proposed by Eberhart and Kennedy in 1995 [2][3] and has been widely used in finding 
solutions for optimization problems. Some related researches about its improvement and 
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applications has also been proposed [4][14][17][18]. It maintains several particles (each 
represents a solution) and all the particles continuously move in the search space according 
to their own local optima and the up-to-date global optimum. After a lot of generations, the 
optimal solution or an approximate optimal solution is expected to be found. The proposed 
approach here can search for nearly optimal BS locations in heterogeneous sensor networks. 
Experimental results also show the performance of the proposed PSO approach on finding 
the BS locations and the effects of the parameters on the results. 
The remaining parts of this paper are organized as follows. Some related works about 
finding the locations of base stations in a two-tiered wireless networks is reviewed in 
Section 3. An algorithm based on PSO to discover base stations in a two-tiered wireless 
networks is proposed in Section 4. An example to illustrate the proposed algorithm is given 
in Section 5. Experimental results for demonstrating the performance of the algorithm and 
the effects of the parameters are described in Section 6. Conclusions are stated in Section 7. 

3. Review of Related Works 
As mentioned above, a fundamental problem in wireless sensor networks is to maximize the 
system lifetime under some given constraints. Pan et al. proposed two algorithms to find the 
optimal locations of base stations in two-tiered wireless sensor networks [13]. The first 
algorithm was used to find the optimal locations of base stations for homogenous ANs, and 
the second one was used for heterogeneous ANs. Homogenous ANs had the same data 
transmission rate and heterogeneous ANs might have different data transmission rates. In 
their paper, only the energy in ANs was considered. If a single SN ran out of energy, its 
corresponding AN might still have the capability to collect enough information. However, if 
an AN ran out of energy, the information in its coverage range would be completely lost, 
which was dangerous to the whole system. 
Let d be the Euclidean distance from an AN to a BS, and r be the data transmission rate. Pan 
et al. adopted the following formula to calculate the energy consumption per unit time: 

 )(),( 21
bdrdrp αα += , (1) 

where α1 is a distance-independent parameter, α2 is a distance-dependent parameter, and b is 
the Euclidean dimension. The energy consumption thus relates to Euclidean distances and 
data transmission rates. 
Pan et al. assumed each AN had the same α1, α2 and initial energy. For homogenous ANs, 
they showed that the center of the minimal circle covering all the ANs was the optimal BS 
location (with the maximum lifetime). 

4. A General Base-Station Allocation Algorithm Based on PSO 
The ANs produced by different manufacturers may own different data transmission rates, 
initial energies and parameter values. When different kinds of ANs exist in a wireless 
network, it is hard to find the optimal BS location. In this section, a heuristic algorithm 
based on PSO to search for optimal BS locations under general constraints is proposed. An 
initial set of particles is first randomly generated, with each particle representing a possible 
BS location. Each particle is also allocated an initial velocity for changing its state. Let ej(0) be 
the initial energy, rj be the data transmission rate, αj1 be the distance-independent parameter, 
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and αj2 be the distance-dependent parameter of the j-th AN. The lifetime lij of an application 
node ANj for the i-th particle is calculated by the following formula: 

 ,)()0( 21
b
ijjjjjij drel αα +=   (2) 

where b
ijd  is the b-order Euclidian distance from the j-th AN to the i-th particle. The fitness 

function used for evaluating each particle is thus shown below: 

 ,)(
1 ij

m

j
lMinifitness

=
=   (3) 

where m is number of ANs. That is, each particle takes the minimal lifetime of all ANs as its 
fitness value. A larger fitness value denotes a longer lifetime of the whole system, meaning 
the corresponding BS location is better. The fitness value of each particle is then compared 
with that of its corresponding pBest. If the fitness value of the i-th particle is larger than that 
of pBesti, pBesti is replaced with the i-th particle. The best pBesti among all the particles is 
chosen as the gBest. Besides, each particle has a velocity, which is used to change the current 
position. All particles thus continuously move in the search space. When the termination 
conditions are achieved, the final gBest will be output as the location of the base station. The 
proposed algorithm is stated below. 

The proposed PSO algorithm for finding the best BS location: 
• Input: A set of ANs, each ANj with its location (xj, yj), data transmission rate rj, initial 

energy ej(0), parameters αj1 and αj2. 
• Output: A BS location that will cause a nearly maximal lifetime in the whole system. 
• Step 1: Initialize the fitness values of all pBests and the gBest to zero. 
• Step 2: Randomly generate a group of n particles, each representing a possible BS 

location. Locations may be two-dimensional or three-dimensional, depending on the 
problems to be solved.  

• Step 3: Randomly generate an initial velocity for each particle.  
• Step 4: Calculate the lifetime lij of the j-th AN for the i-th particle by the following 

formula: 

),()0( 2
b
ijjj1jjij drel αα +=  

where ej(0) is the initial energy, rj is the data transmission rate, αj1 is a distance-
independent parameter, αj2 is a distance-dependent parameter of the j-th AN, and b

ijd  
is the b-order Euclidean distance from the i-th particle (BS) to the j-th AN. 

• Step 5: Calculate the lifetime of the whole sensor system for the i-th particle as its fitness 
value (fitnessi) by the following formula:  

ij
m

j
lMinifitness

1
)(

=
= , 

where m is number of ANs and i = 1 to n.  
• Step 6: Set pBesti as the current i-th particle if the value of fitness(i) is larger than the 

current fitness value of pBesti. 
• Step 7: Set gBest as the best pBest among all the particles. That is, let:  
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fitness of pBestk =
n
imax 1= fitness of pBesti,  

and set gBest=pBestk. 
• Step 8: Update the velocity of the i-th particle as:  

)(() idid11
old

id
new

id xpBestRandcVwV −××+×= )(() idd22 xgBestRandc −××+  

where new
idx  is the new velocity of the i-th particle at the d-th dimension, old

idx  is the 
current velocity of the i-th particle at the d-th dimension, w is the inertial weight, c1 is 
the acceleration constant for particles moving to pBest, c2 is the acceleration constant for 
particles moving to gBest, Rand1() and Rand2() are two random numbers among 0 to 1, xid 

is the current position of the i-th particle at the d-th dimension, pBestid is the value of 
pBesti at the d-th dimension, and gBestd is the value of gBest at the d-th dimension. 

• Step 9: Update the position of the i-th particle as: 

new
id

old
id

new
id Vxx += , 

where new
idx  and old

idx  are respectively the new position and the current position of the i-th 
particle at the d-th dimension. 

• Step 10: Repeat Steps 4 to 9 until the termination conditions are satisfied. 
In Step 10, the termination conditions may be predefined execution time, a fixed number of 
generation or when the particles have converged to a certain threshold. 

5. An Example 
In this section, a simple example in a two-dimensional space is given to explain how the 
PSO approach can be used to find the best BS location that will generate the nearly maximal 
lifetime in the whole system. Assume there are totally four ANs in this example and their 
initial parameters are shown in Table 1, where “Location” represents the two-dimensional 
coordinate position of an AN, “Rate” represents the data transmission rate, and “Power” 
represents the initially allocated energy. All αj1’s are set at 0 and all αj2’s at 1 for simplicity. 

AN Location Rate Power
1 (1, 10) 5 10000 
2 (11, 0) 5 10000 
3 (8, 7) 4 6400 
4 (4, 3) 4 6400 

Table 1. The initial parameters of ANs in the example 

For the example, the proposed PSO algorithm proceeds as follows.  
• Step 1: The initial fitness values of all pBests and the gBest are set to zero. 
• Step 2: A group of n particles are generated at random. Assume n is set at 3 in this 

example for simplicity. Also assume the three initial particles randomly generated are 
located at (4, 7), (9, 5) and (6, 4). Figure 2 shows the positions of the given ANs and the 
initial particles, where the triangles represent the particles and the circles represent the 
ANs. 
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Figure 2. The positions of the given ANs and the initial particles 

• Step 3: An initial velocity is randomly generated for each particle. In this example  
assume the initial velocity is set at zero for simplicity.  

• Step 4: The lifetime of each AN for a particle is calculated. Take the first AN for the first 
particle as an example. Its lifetime is calculated as follows: 

11.111])107()14[(510000 22
11 =−+−=l . 

The lifetimes of all ANs for all particles are shown in Table 2. 
 

 1(1, 10) 2(11, 0) 3(8, 7) 4(4, 3)
1(4, 7) 111.11 20.41 100 100 
2(9, 5) 22.47 68.97 320 55.17 
3(6, 4) 32.79 48.78 123.08 320 

Table 2. The lifetimes of all ANs for all particles 

• Step 5: The lifetime of the whole sensor system for each particle is calculated as the 
fitness value. Take the first particle as an example. Its fitness is calculated as follows: 

Fitness(1) = Min{l11, l12, l13, l14} = Min{111.11, 20.41, 100, 100} = 20.41. 
In the same way, the fitness values of all the particles are calculated and shown in Table 
3. 

Particle Location Fitness
1 (4, 7) 20.41 
2 (9, 5) 22.47 
3 (6, 4) 32.79 

Table 3. The fitness values of all the particles 

• Step 6: The fitness value of each particle is compared with that of its corresponding 
pBest. If the fitness value of the i-th particle is larger than that of pBesti,  pBesti is replaced 
with the i-th particle. In the first generation, the fitness values of all the pBests are zero, 
smaller than those of the particles. The particles are then stored as the new pBests. The 

Particle AN 



Finding Base-Station Locations in Two-Tiered Wireless Sensor Networks  
by Particle Swarm Optimization 

 

267 

resulting pBests are shown in Table 4, where the field “appearance generation” 
represents the generation number in which a particle is set as the current pBest. 

Particle Location Fitness Appearing 
Generation 

1 (4, 7) 20.41 1 
2 (9, 5) 22.47 1 
3 (6, 4) 32.79 1 

Table 4. The pBests after the first generation 

• Step 7: The best pBesti among all the particles is chosen as the gBest. In this example, 
pBest3 has the largest fitness value and is set as the gBest. 

• Step 8: The new velocity of each particle is updated. Assume the inertial weight w is set 
at 1, the acceleration constant c1 for particles moving to pBest is set at 2, and the 
acceleration constant c2 for particles moving to gBest is set at 2. Take the first particle as 
an example to illustrate the step. Its new velocity is calculated as follows:  

)(() 1x1x11
old

1x
new

1x xpBestRandcVwV −××+×=
)(() 1xd22 xgBestRandc −××+  

)46(25.02)44(5.0201 −×+−×+×=  
= 1, and 

)(() 1y1y31
old

1y
new

1y xpBestRandcVwV −××+×=
)(() 1yd42 xgBestRandc −××+  

)74(125.02)77(1201 −×+−×+×=  
= -0.75, 

where the four random numbers generated are 0.5, 0.25, 1 and 0.125, respectively. In 
the same way, the new velocities of the other two particles can be calculated. The 
results are shown in Table 5. 

Particle Old Location Velocity 

1 (4, 7) (1, -0.75) 
2 (9, 5) (-1.2, -0.2)
 3 (6, 4) (0, 0) 

Table 5. The new velocities of all the three particles 

• Step 9: The position of each particle is updated. Take the first particle as an example. Its 
new position is calculated as follows: 

1 1 1
new old new
x x xx x V= +  

= 4 + 1 
= 5, and 

1 1 1
new old new
y y yx x V= +  

= 7 + (-0.75) 
= 6.25. 
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In the same way, the new positions of all the other two particles can be found. The 
results are shown in Table 6. 

Particle Old Location Velocity New Location
1 (4, 7) (1, -0.75) (5, 6.25) 
2 (9, 5) (-1.2, -0.2) (7.8, 4.8) 
3 (6, 4) (0, 0) (6, 4) 

Table 6. The new positions of all the three particles 

• Step 10: Steps 4 to 9 are then repeated until the termination conditions are satisfied. The 
lifetime evolution along with different generations is shown in Figure 3. 
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Figure 3. The evolution of the maximal lifetime for the example 

6. Experimental Results 
Experiments were made to show the performance of the proposed PSO algorithm on finding 
the optimal positions of base stations. They were performed in C language on an AMD PC 
with a 2.0GHz processor and 1G main memory and running the Microsoft Window XP 
operating system. The simulation was done in a two-dimensional real-number space of 
1000*1000. That is, the ranges for both x and y axes were within 0 to 1000. The data 
transmission rate was limited within 1 to 10 and the range of initial energy was limited 
between 100000000 to 999999999. The data of all ANs, each with its own location, data 
transmission rate and initial energy, were randomly generated. Note that the data 
transmission rates and the initial energy amounts of real-life sensors may not fall in the 
above range. But the proposed approach is still suitable since the lifetime is proportional to 
the initial energy amount and inversely proportional to the transmission rate. 
Experiments were first made to show the convergence of the proposed PSO algorithm when 
the acceleration constant (c1) for a particle moving to its pBest was set at 2, the acceleration 
constant (c2) for a particle moving to its gBest was set at 2, the inertial weight (w) was set at 
0.6, the distance-independent parameter (αj1) was set at zero, and the distance-dependent 
parameter (αj2) was set at one. The experimental results of the resulting lifetime along with 
different generations for 50 ANs and 10 particles in each generation are shown in Figure 4. 
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Figure 4. The lifetime for 50 ANs and10 particles 

It is easily seen from Figure 4 that the proposed PSO algorithm could converge very fast 
(below 50 generations). Next, experiments were made to show the effects of different 
parameters on the lifetime. The influence of the acceleration constant (c1) for a particle 
moving to its pBest on the proposed algorithm was first considered. The process was 
terminated at 300 generations. When w = 1 and c2 = 2, the nearly optimal lifetimes for 50ANs 
and 10 particles along with different acceleration constants (c1) are shown in Figure 5. 
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Figure 5. The lifetimes along with different acceleration constants (c1) 

It can be observed from Figure 5 that the lifetime first increased and then decreased along 
with the increase of the acceleration constant (c1). When the value of the acceleration 
constant (c1) was small, the velocity update of each particle was also small, causing the 
convergence speed slow. The proposed PSO algorithm might thus not get the optimal 
solution after the predefined number of generations. On the contrary, when the value of the 
acceleration constant (c1) was large, the velocity change would be large as well, causing the 
particles to move fast. It was then hard to converge. In the experiments, the optimal c1 value 
was about 2. Next, experiments were made to show the effects of the acceleration constant 
(c2) for a particle moving to its gBest on the proposed algorithm. When w = 1 and c1 = 2, the 
experimental results are shown in Figure 6. 
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Figure 6. The lifetimes along with different acceleration constants (c2) 

It can be observed from Figure 6 that the lifetime first increased and then decreased along 
with the increase of the acceleration constant (c2). The reason was the same as above. In the 
experiments, the optimal c2 value was about 2. Next, experiments were made to show the 
effects of the inertial weight (w) on the proposed algorithm. When c1 = 2 and c2 = 2, the 
experimental results are shown in Figure 7. 
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Figure 7. The lifetimes along with different inertial weights (w) 

It can be observed from Figure 7 that the proposed algorithm could get good lifetime when 
the inertial weight (w) was smaller than 0.6. The lifetime decreased along with the increase 
of the inertial weight (w) when w was bigger than 0.6. This was because when the value of 
the inertial weight was large, the particles would move fast due to the multiple of the old 
velocity. It was then hard to converge. Next, experiments were made to show the relation 
between lifetimes and numbers of ANs. The experimental results are shown in Figure 8. 



Finding Base-Station Locations in Two-Tiered Wireless Sensor Networks  
by Particle Swarm Optimization 

 

271 

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100

ANs

Li
fe

tim
e

 
Figure 8. The lifetimes along with different numbers of ANs 

It can be seen from Figure 8 that the lifetime decreased along with the increase of the 
number of ANs. It was reasonable since the probability for at least an AN in the system to 
fail would increase when the number of ANS grew up. The execution time along with 
different numbers of ANs is shown in Figure 9. 
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Figure 9. The execution time along with different numbers of ANs 

It can be observed from Figure 9 that the execution time increased along with the increase of 
numbers of ANs. The relation was nearly linear. Experiments were then made to show the 
relation between lifetimes and numbers of particles for 50 ANs and 300 generations. The 
internal weight was set at 1. The experimental results are shown in Figure 10. 
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Figure 10. The lifetimes along with different numbers of particles 

It can be seen from Figure 10 that the lifetime increased along with the increase of numbers 
of particles for the same number of generations. The execution time along with different 
numbers of particles for 300 generations is shown in Figure 11. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100
Particles

Ti
m

e 
(s

ec
.)

 
Figure 11. The execution time along with different numbers of particles for 50 ANs 

Method Lifetime
The proposed PSO algorithm 72.0763 

The exhaustive grid search 
(grid size = 1) 72.0048 

The exhaustive grid search 
 (grid size = 0.1) 72.0666 

The exhaustive grid search 
 (grid size = 0.01) 72.0752 

Table 7. A lifetime comparison of the PSO approach and the exhaustive grid searc 
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It can be observed from Figure 11 that the execution time increased along with the increase 
of numbers of particles. The relation was nearly linear. This was reasonable since the 
execution time would be approximately proportional to the number of particles. 
Note that no optimal solutions can be found in a finite amount of time since the problem is 
NP-hard. For a comparison, an exhaustive search using grids was used to find nearly 
optimal solutions. The approach found the lifetime of the system when a BS was allocated at 
any cross-point of the grids. The cross-point with the maximum lifetime was then output as 
the solution. A lifetime comparison of the PSO approach and the exhaustive search with 
different grid sizes are shown in Table 7. 
It can be observed from Table 7 that the lifetime obtained by our proposed PSO algorithm 
was not worse than those by the exhaustive grid search within a certain precision. The 
lifetime by the proposed PSO algorithm was 72.0763, and was 72.0048, 72.0666 and 72.0752 
for the exhaustive search when the grid size was set at 1, 0.1 and 0.01, respectively. For the 
exhaustive grid search, the smaller the grid size, the better the results. 

7. Conclusion 
In wireless sensor networks, minimizing power consumption to prolong network lifetime is 
very crucial. In this paper, a two-tiered wireless sensor networks has been considered and 
an algorithm based on particle swarm optimization (PSO) has been proposed for general 
power-consumption constraints. The proposed approach can search for nearly optimal BS 
locations in heterogeneous sensor networks, where ANs may own different data 
transmission rates, initial energies and parameter values. Finding BS locations is by nature 
very similar to finding the food locations originated from PSO. It is thus very easy to model 
such a problem by the proposed algorithm based on PSO. Experiments have also been made 
to show the performance of the proposed PSO approach and the effects of the parameters on 
the results. From the experimental results, it can be easily concluded that the proposed PSO 
algorithm converges very fast when compared to the exhaustive search. It can also be easily 
extended to finding multiple base stations. 
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1. Brief Introduction of PSO 
Particle swarm optimization (PSO) is a newer evolutionary computational method than 
genetic algorithm and evolutionary programming. PSO has some common properties of 
evolutionary computation like randomly searching, iteration time and so on. However, 
there are no crossover and mutation operators in the classical PSO. PSO simulates the social 
behavior of birds: Individual birds exchange information about their position, velocity and 
fitness, and the behavior of the flock is then influenced to increase the probability of 
migration to regions of high fitness. The framework of PSO can be described as Figure 1. 

 
Figure 1. The framework of classical PSO 

In the optimal size and shape design problem, the position of each bird is designed as 
variables x , while the velocity of each bird v  influences the incremental change in the 

position of each bird. For particle d  Kennedy proposed that position dx  be updated as: 

 1 1
d d d

t t tx x v+ += +  (1) 

 1 1 1 2 2( ) ( )d d d d g d
t t t t t tv v c r p x c r p x+ = + − + −  (2) 

Here, d
tp  is the best previous position of particle d  at time t , while g

tp  is the global best 

position in the swarm at time t . 1r  and 2r are uniform random numbers between 0 and 1, 

and 1 2 2c c= = . 

1. Initialize K  Particles 1 2, ,..., KX X X , calculating 1,..., Kpbest pbest and 

gbest , 1t = ; 

2. For 1,...,i K=  and 1,...,j N= , update particles and use iX  to refresh 

ipbest  and gbest ; (shown as equation 1 and 2) 

3. 1t t= + ; If max_t gen> , output gbest  and exit; else, return Step 2. 
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2. Particle Swarm Optimization for linear Transportation Problem 
2.1 Linear and Balance Transportation Problem 
The transportation problem (TP) is one of the fundamental problems of network flow 
optimization. A surprisingly large number of real-life applications can be formulated as a 
TP. It seeks determination of a minimum cost transportation plan for a single commodity 
from a number of sources to a number of destinations. So the LTP can be described as: 
Given there are n  sources and m  destinations. The amount of supply at source i  is ia  

and the demand at destination j  is jb . The unit transportation cost between source i  and 

destination j  is ijc . ijx  is the transport amount from source i  to destination j , and the 

LTP model is: 

1 1

min
n m

ij ij
i j

z c x
= =

=∑∑  

 s.t.  
1

1, 2,...,
m

ij i
j

x a i n
=

≤ =∑  (3) 

1
1, 2, ...,

n

i
ij j j mx b

=
=≥∑ .      

     0; 1,2,..., ; 1, 2,...,ijx i n j m≥ = =  

TP has been paid much attention to and classified into several types of transmutation. 
According to the nature of object function, there are four types: (1) linear TP and nonlinear 
TP. (2) single objective TP and multi objective. Based on the type of constraints, there are 
planar TP and solid TP. The single object LTP dealt with in this paper is the basic model for 
other kinds of transportation problems. 
A special LTP called balanced LTP is considered as follows: 

1 1
min

n m

ij ij
i j

z c x
= =

=∑∑  

 s.t.     
1

1, 2,...,
m

ij i
j

x a i n
=

= =∑  (4) 

1
1,2,...,

n

ij j
i

x b j m
=

= =∑ . 

1 1

n m

i j
i j

a b
= =

=∑ ∑  

0; 1,2,..., ; 1, 2,...,ijx i n j m≥ = =  
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The fact that a n m×  LTP can be changed into a ( 1)n m× +  balanced LTP, can be found 

in operational research because the demand at destination 1m +  could be calculated by 

1
1 1

n m

m i j
i j

b a b+
= =

= −∑ ∑ with the condition 
1 1

n m

i j
i j

a b
= =

≥∑ ∑ . 

2.2 Initialization of PSO for Linear and Balance Particle Swarm Optimization 

A particle
11 1

1

...
... ... ...

...

m

n nm

x x
X

x x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 stands for a solution to LTP. There are nm particles 

initialized to form nm  initial solutions in the initialization. Every element of set N  can be 
chosen as the first assignment to generate the solutions dispersedly, which is good for 
obtaining the optimal solution in the iteration. 
If a LTP is balanced, the following procedure can be used to obtain an initial solution: 
 

program GetOnePrimal (var X: Particle, first: int) 
var    i,j,k: integer; 
      N: Set of Integer; 
begin 
   k :=0; 

N := {1,2,…,nm};  
repeat 

if k=0 then  
k:=first ; 

else  
k:= a random element in N; 

i := (k -1 )/m + 1⎢ ⎥⎣ ⎦ ; 

j := ((k-1) mod m) +1; 
xij := min {ai, bj}; 
ai := ai - xij; 
bi := bi - xij; 
N := N \ {k}; 

until N is empty 
end. 
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And the initialization of PSO-TP can be designed as follows: 
 

program Initialization 
   var    i : integer; 
   begin 
     Get a balanced LTP; 

i := 1;  
repeat 

GetOnePrimal (Xi, i); 
i := i+1; 

until i > nm 
end. 

2.3 Updating Rule of PSO for Linear and Balance Particle Swarm Optimization 
In PSO algorithm, a new solution can be obtained by using the position updating rule as 
equations 2 and 3. However, the classical rule is unable to meet such constraints of TP as 

1

m

ij i
j

x a
=

=∑ and
1

n

ij j
i

x b
=

=∑ . A new rule is designed to overcome this shortcoming. For 

particle d , we propose that position dX  ( n m× ) be updated as 

 1 2

1 2 1 2
1

( ) ( ) 0
[ ( ) ( )] 0

t t t t

t t t t t

d d g d
d

t d d d g d
P X P X t

V
V P X P X t
ϕ ϕ

λ λ ϕ ϕ+
⎧ − + − =

= ⎨ + − + − >⎩
  (5) 

     1 1
d d d

t t tX V X+ += +  (6) 

where t t
g dP X≠  and t t

d dP X≠ .  

If t t
g dP X=  and t t

d dP X≠ , 1 1ϕ = . If t t
g dP X≠  and t t

d dP X= , 2 1ϕ = . If 

t t
g dP X=  and t t

d dP X= , 1 1λ = . 
d

tP ( n m× ) is the best previous position of particle d  at time t , while g
tP ( n m× ) is the 

global best position in the swarm at time t . 1ϕ  and 2ϕ  are uniform random numbers in (0, 

1), meeting 1 2 1ϕ ϕ+ = , while 1λ  is a uniform random number between [0.8, 1.0) and 

2 11λ λ= − . 

0,if t = 1 1
d d d

t t tX V X+ += +  

1 2( ) ( )d d g d d
t t t t tP X P X Xϕ ϕ= − + − +  1 2 1 2( ) ( )d g d d d

t t t t tP P X X Xϕ ϕ ϕ ϕ+ − + +=  
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1
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x t
=
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m m m m m

d g d d d
ij ij ij ij ij

j j j j j

p t p t x t x t x tϕ ϕ ϕ ϕ
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n
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ij
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x t
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1 2 1 2
1 1 1 1 1

( ) ( ) ( ( ) ( )) ( )
n n n n n
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,0if t >  

1
d

tX + 1
d d

t tV X+= +  

1 2 1 2[ ( ) ( )]d d d g d d
t t t t t tV P X P X Xλ λ ϕ ϕ= + − + − +  

1 2 1 2 1 2[( ) ( )]d d g d d d
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Therefore, 1
d

tX +  would meet the condition that 
1

( 1)
m

d
ij i

j

x t a
=

+ =∑ and 

1
( 1)

n
d

ij j
i

x t b
=

+ =∑  with the function of Formulae 5 and 6. However, the new rule cannot 

ensure the last constraint that 0, 1,.., , 1,...,ijx i n j m≥ = = . In the following section, an 

extra operator is given to improve the algorithm. 

2.4 Negative Repair Operator 
A particle of PSO-TP (Formula 7) will be influenced by the negative repair operator if 

0, 1,..., , 1,...,kix k n i m< = = , which is indicated as follows: 

 
11 1 1

1

1

1

... ...
... ... ... ... ...

... ...
... ... ...... ...

... ...

... ...... ... ...

... ...

i m

k ki km

l li lm

nmnin

x x x

x x x
X

x x x

x x x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

 （7） 

 
 
 
 

program RepairOnePos (var X: Particle, k,i: int) 
begin 
   select the maximum element signed as lix  in Col. i; 

0 : kix x= , 0:li lix x x= − , : 0kix = ; 

change elements in Row.k into 
0

0
:

0

kj kj

kj
kj kj

x x
x x

x x
u

⎧
⎪
⎨
⎪
⎩

=
=

− >
;  

( u is the number of times when the following condition 0, 1,...,kjx j m> =  is met) 

change elements in Row. l into 
0

0
:

0

lj kj

lj
lj kj

x x
x x

x x
u

⎧
⎪
⎨
⎪
⎩

=
=

+ >
; 

end. 
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As a result, the procedure of negative repair operator can be described as: 
 

program NegativeRepair (var X: Particle) 
var    i,j: integer; 
begin 
      if some element of X is negative then 

repeat 
   If xij<0 is found then  

RepairOnePos (X, i, j); 
until Every element of X is not negative 

end. 

2.5 PSO Mutation 
Mutation is a popular operator in Genetic Algorithm, and a special PSO mutation is 
designed to help PSO-TP change the partial structure of some particles in order to get new 
types of solution. PSO-TP cannot fall into the local convergence easily because the mutation 
operator can explore the new solution. 
 

program PSOMutation (var X: Particle) 
begin 
    Obtain p and q randomly meeting 0<p<n and 0<q<m; 

  Select p rows {i1,…ip} and q lines {j1,…jq} randomly from matrix X to form a small matrix 
Y (yij,i=1,…,p,j=1,…,q); 

  
1{ },...,

y
i ij

j qj j
a x

∈
= ∑         ( 1,..., pi i i= )  

1{ },...,

y
j ij

i pi i
b x

∈
= ∑         ( 1,..., qj j j= ) 

Use a method like the one in initialization to form the initial assignment for Y; 
  Update X with Y; 

end. 

2.6 The Structure of PSO-TP 
According to the setting above, the structure of PSO-TP is shown as: 
 

program PSO-TP (problem: balanced LTP of n×m size, pm: float) 
var t:integer; 
begin 

t:=0; 
Initialization; 



Particle Swarm Optimization 

 

282 

Obtain 0
gP ( n m× ) and 0

dP ( n m× )(d=1,…,n×m); 

repeat 
t:=t+1; 

Calculate d
tX  with Formula 5 and 6 (d=1,…,n×m); 

NegativeRepair( d
tX )(d=1,…,n×m); 

Carry out PSOMutation( d
tX ) by the probability pm; 

Update g
tP ( n m× ) and d

tP ( n m× )(d=1,…,n×m); 

until meeting the condition to stop 
end. 

3. Numerical Results 
There are two experiments in this section: one is comparing PSO-TP with genetic algorithm 
(GA) in some integer instances and the second is testing the performance of PSO-TP in the 
open problems. Both of the experiments are done at a PC with 3.06G Hz, 512M DDR 
memory and Windows XP operating system. GA and PSO-TP would stop when no better 
solution could be found in 500 iterations, which is considered as a virtual convergence of the 
algorithms. The probability of mutation in PSO-TP is set to be 0.05. 

 

Problem\ 
five runs 

PSO-TP 
Min 

PSO-TP 
Ave 

GA 
Min

GA 
Ave

PSO-TP 
Time(s) 

GA 
Time(s) 

P1 (3*4) 152 152 152 153 0.015 1.72 

P2 (4*8) 287 288 290 301 0.368 5.831 

P3 (3*4) 375 375 375 375 0.028 0.265 

P4 (3*4) 119 119 119 119 0.018 1.273 

P5 (3*4) 85 85 85 85 0.159 0.968 

P6*(15*20) 596 598 - - 36.4 - 

Table 1.  Comparison Between PSO-TP and GA 

As Table 1 shows, both the minimum cost and average cost obtained by PSO-TP are less 
than those of GA. Furthermore, the time cost of PSO-TP is much less than that of GA. In 
order to verify the effectiveness of PSO-TP, 9 real number instances are computed and the 
results are shown in Table 2. Since GA is unable to deal with the real number LTP directly, 
only PSO-T is tested. 
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Problem\five runs Optimal Value PSO-TP Average PSO-TP Time(s) 

No.1 67.98 67.98 0.02 

No.2 1020 1020 0.184 

No.4 13610 13610 0.168 

No.5 1580 1580 0.015 

No.6 98 98 0.023 

No.7 2000 2000 0.015 

No.8 250 250 <0.001 

No.9 215 215 0.003 

No.10 110 110 0.012 

Table 2.  Performance of PSO-TP in open problems 

According to the results in Table 2, PSO-TP can solve the test problems very quickly. The 
efficiency of PSO-TP may be due to the characteristic of PSO algorithm and the special 
operators. Through the function of the new position updating rule and negative repair 
operator, the idea of PSO is introduced to solve LTP successfully. The nature of PSO can 
accelerate the searching of the novel algorithm, which would also enable PSO-TP to get the 
local best solution. What’s more, the PSO mutation as an extra operator can help PSO-TP to 
avoid finishing searching prematurely. Therefore, PSO-TP can be a novel effective algorithm 
for solving TP. 

4. Particle Swarm Optimization for Non-linear Transportation Problem 
4.1 Non-linear and Balance Transportation Problem 
The unit transportation cost between source i  and destination j  is ( )ij ijf x  where ijx  is 

the transportation amount from source i  to destination j , and TP model is: 

1 1
min ( )

n m

ij ij
i j

z f x
= =

=∑∑  

 s.t.  
1

1, 2,...,
m

ij i
j

x a i n
=

≤ =∑  (8) 

      
1

1, 2 , ...,
n

i
ij j j mx b

=
=≥∑ .      

    0; 1,2,..., ; 1, 2,...,ijx i n j m≥ = =  
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According to the nature of object function, there are four types: linear TP in which the 
function ( )ij ijf x  is linear and nonlinear TP in which ( )ij ijf x  is non-linear, as well as 

single objective and multi-objective TP. Based on the types of constraints, there are planar 
TP and solid TP. The single object NLTP is dealt with in this paper. In many fields like 
railway transportation, the relation between transportation amount and price is often non-
linear, so NLTP is an important for application. 

4.2 Framework of PSO for Non-linear TP 

In the population of PSO-NLTP, an individual 
11 1

1

...
... ... ...

...

m

i

n nm

x x
X

x x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 stands for a solution 

to NLTP (Exp. 2), where n m×  is the population size. There are n m×  individuals 
initialized to form n m×  initial solutions in the initialization. The initialization and 
mutation are the same as the ones in PSO-LTP (Section 2.2 and 2.5). 
And the framework of PSO-NLTP is given: 
 

Algorithm: PSO-NLTP  
Input: NLTP problem (Exp. 8) 
begin 

Initialization;          
Setting parameters;     

repeat 
Updating rule;           
Mutation;                 
Updating the current optimal solution 

until meeting the condition to stop 
end. 
Output: Optimal solution for NLTP 
 
In the parameter setting, The parameters of PSO-NLTP are all set adaptively: as the 
population size is n m× , the size of mutation matrix Y is set randomly meeting 0<p<n and 

0<q<m and the mutation probability mP  is calculated by 0.005m tP N= × , where 1tN =  

when ( )t
bestX  is updated and 1t tN N= +  when ( )t

bestX  remains the same as ( 1)t
bestX − . 

4.3 Updating Rule of PSO-NLTP 
As one of the important evolutionary operator, recombination is designed to optimize the 

individuals and make them meet the constraints of supply and demand as 
1

m

ij i
j

x a
=

=∑ and 
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1

n

ij j
i

x b
=

=∑ (Exp. 4). At the beginning of an iteration, every individual is recombined by the 

following expression. 

 ( 1) ( ) ( ) ( )
1 2 3

t t t t
i i best randomX X X Xϕ ϕ ϕ+ = + +  (9) 

( )t
bestX  is the best particle found by PSO-NLTP form iteration 0 to t . ( )t

randomX  is the 
particle formed randomly (by sub-algorithm GetOnePrimal in section 2.2) for the updating 

rule of ( )t
iX . 1ϕ , 2ϕ  and 3ϕ  are the weight terms meeting 1 2 3 1ϕ ϕ ϕ+ + = , which are 

calculated as Exp 4-6 show, where ( ) )( t
if X is the cost of the solution for TP (Exp. 4).  

 ( )1 1 1 1( ) ( ) ( ) ( )
1 ) / ) ) )( ( ( (t t t t

i i best randomf X f X f X f Xϕ − − − −+ +=  (10) 

 ( )1 1 1 1( ) ( ) ( ) ( )
2 ) / ) ) )( ( ( (t t t t
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3 ) / ) ) )( ( ( (t t t t

irandom best randomf X f X f X f Xϕ − − − −+ +=  (12) 

( 1)t
iX +  can be considered as a combination of ( )t

iX , ( )t
bestX  and ( )t

randomX  based on 
the their quality, and proved to meet the constraints of supply and demand. 
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Furthermore, the recombination rule can also ensure the positive constraint that 
( 1) ( ) ( ) ( )

1 2 3, , , , 0, 1,.., , 1,...,t
ij

t t t
ij i j best i j randomx i n j mx x xϕ ϕ ϕ+ = ≥ = =+ + . 

4.4 Numerical Results 
There are 56 NLTP instances computed in the experiment, of which the results are shown in 
this section. The experiment is done at a PC with 3.06G Hz, 512M DDR memory and 
Windows XP operating system. The NLTP instances are generated by replacing the linear 
cost functions of the open problems with the non-linear functions. The methods which are 
effective for linear TP cannot deal with NLTP for the complexity of non-linear object 
function. The common NLTP cost functions are indicated in Table 1. 

 

Problem Transportation Cost Functions 

No.1 2( )ij ij ij ijf x c x=  

No.2 ( )ij ij ij ijf x c x=  

No.3 
( ) , 0

( ) , 2

2
(1 ) , 2

ij
ij ij

ij ij ij ij

ij
ij ij

x
c if x S

S
f x c if S x S

x S
c if S x

S

⎧
≤ <⎪

⎪⎪= < ≤⎨
⎪ −⎪ + <
⎪⎩

 

No.4 5( ) [sin( ) 1]
4ij ij ij ij ijf x c x x

S
π= +  

Table 3.  NLTP cost functions [15] 

The comparison between PSO-NLTP and EP with penalty strategy only indicates whether 
the recombination of PSO-NLTP is better at dealing with the constraints of NLTP (Exp. 8) 
than penalty strategy of EP. There cannot be any conclusion that PSO-NLTP or EP is better 
than the other because they are the algorithms for different applications. The three 
algorithms are computed in 50 runs independently, and the results are in Table 4 and Table 
5. They would stop when no better solution could be found in 100 iterations, which is 
considered as a virtual convergence of the algorithms.  
NLTP instances in Table 4 are formed with the non-linear functions (shown in Table 3) and 
the problems. And the instances in Table 5 are formed with the non-linear functions and the 

problems. We set 
1

/10
n

i
i

S a
=

=∑  in function No.3 and 1S =  in function No.4 in the 

experiment. 
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Problem PSO-NLTP 
Average 

GA 
Average 

EP 
Average 

PSO-NLTP 
Time(s) 

GA 
Time(s) 

EP 
Time(s) 

No.1-1 8.03 8.10 8.36 0.093 0.89 0.109 
No.1-2 112.29 114.25 120.61 0.11 0.312 0.125 
No.1-4 1348.3 1350.8 1476.1 0.062 0.109 0.078 
No.1-5 205.9 206.3 216.1 0.043 0.125 0.052 
No.1-6 12.64 12.72 13.53 0.062 0.75 0.078 
No.1-7 246.9 247.6 256.9 0.088 0.32 0.093 
No.1-8 84.72 84.72 87.5 <0.001 0.015 <0.001 
No.1-9 44.64 44.65 46.2 <0.001 0.046 <0.001 
No.1-10 24.85 24.97 25.83 <0.001 0.032 <0.001 
No.2-1 155.3 155.3 168.5 <0.001 0.016 <0.001 
No.2-2 2281.5 2281.5 2696.2 <0.001 0.015 <0.001 
No.2-4 28021 28021 30020.2 <0.001 0.015 <0.001 
No.2-5 3519.3 3520.4 3583.1 <0.001 0.015 <0.001 
No.2-6 264.9 266.5 314.4 <0.001 0.015 <0.001 
No.2-7 4576.9 4584.5 5326.0 0.009 0.052 0.012 
No.2-8 432.8 432.8 432.8 <0.001 0.015 <0.001 
No.2-9 386.3 386.3 386.3 <0.001 0.031 <0.001 
No.2-10 195.3 195.3 226.0 <0.001 0.006 <0.001 
No.3-1 309.9 310.0 346.6 <0.001 0.093 0.001 
No.3-2 4649.2 4650 5415.2 <0.001 0.921 0.012 
No.3-4 65496.7 66123.3 68223.3 <0.001 0.105 <0.001 
No.3-5 7038.1 7066.6 7220.9 <0.001 1.015 0.001 
No.3-6 540 540 672.5 0.001 0.062 0.002 
No.3-7 9171.0 9173.2 9833.3 <0.001 0.312 <0.001 
No.3-8 1033.4 1033.4 1066.7 <0.001 0.012 <0.001 
No.3-9 933.3 933.4 1006.4 0.002 0.147 0.015 
No.3-10 480 480 480 0.016 0.046 0.004 
No.4-1 107.6 107.8 118.2 0.063 0.159 0.078 
No.4-2 1583.5 1585.2 1622 0.062 0.285 0.093 
No.4-4 19528.4 19531.3 20119 0.075 0.968 0.068 
No.4-5 2466.9 2468.2 2880.2 0.072 0.625 0.046 
No.4-6 151.7 152.1 161.9 0.093 1.046 0.167 
No.4-7 3171.1 3173.8 3227.5 0.047 0.692 0.073 
No.4-8 467.1 467.1 467.1 <0.001 0.036 <0.001 
No.4-9 376.3 376.3 382.5 <0.001 0.081 0.003 
No.4-10 205.9 205.9 227.6 0.026 0.422 0.031 

Table 4.  Comparison I between PSO-NLTP, GA and EP with penalty strategy  
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Problem PSO-NLTP 
Average 

GA 
Average 

EP 
Average 

PSO-NLTP 
Time(s) 

GA 
Time(s) 

EP 
Time(s) 

No.1-11 1113.4 1143.09 1158.2 0.031 0.065 0.046 
No.1-12 429.3 440.3 488.3 0.187 1.312 0.203 
No.1-13 740.5 740.5 863.6 0.09 2.406 0.781 
No.1-14 2519.4 2529.0 2630.3 0.015 0.067 0.016 
No.1-15 297.2 297.9 309.2 0.046 0.178 0.058 
No.1-16 219.92 220.8 234.6 0.040 1.75 0.060 
No.2-11 49.7 51.9 64.2 <0.001 0.001 <0.001 
No.2-12 78.4 78.4 104.5 0.001 0.025 <0.001 
No.2-13 150.2 150.4 177.9 <0.001 0.015 <0.001 
No.2-14 118.6 118.2 148.4 <0.001 0.001 <0.001 
No.2-15 64.5 64.5 64.5 <0.001 0.031 <0.001 
No.2-16 47.1 47.8 53.4 <0.001 0.015 <0.001 
No.3-11 13.3 13.3 13.3 0.015 0.734 0.031 
No.3-12 21.0 21.0 26.3 0.018 0.308 0.036 
No.3-13 37.2 37.4 43.5 0.171 1.906 0.156 
No.3-14 37.5 37.8 46.7 0.011 0.578 0.008 
No.3-15 28.3 28.1 33 0.009 0.325 0.013 
No.3-16 22.5 23.0 29.6 <0.001 0.059 0.015 
No.4-11 8.6 8.8 37.4 0.001 0.106 0.001 
No.4-12 20.0 23.1 40.8 0.253 2.328 0.234 
No.4-13 49.0 52.3 72.1 0.109 2.031 0.359 
No.4-14 47.7 51.2 82.2 0.003 0.629 0.006 
No.4-15 11.97 12.06 36.58 0.019 0.484 0.026 
No.4-16 2.92 3.08 8.1 0.031 0.921 0.045 

Table 5.  Comparison II between PSO-NLTP, GA and EP with penalty strategy 

As Table 4 and Table 5 indicate, PSO-NLTP performs the best of three in the items of 
average transportation cost and average computational cost. The NLTP solutions found by 
EP with penalty strategy cost more than PSO-NLTP and GA, which indicates recombination 
of PSO-NLTP and crossover of GA handle the constraints of NLTP (Exp. 4) better than the 
penalty strategy. However, EP with penalty strategy cost less time than GA to converge 
because the crossover and mutation operator of GA is more complicated. PSO-NLTP can 
cost the least to obtain the best NLTP solution of the three tested methods. Its recombination 
makes the particles feasible and evolutionary for optimization. The combination of updating 
rule and mutation operators can play a part of global searching quickly, which makes PSO-
NLTP effective for solving NLTPs. 
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5. Discussions and Conclusions 
Most of the methods that solve linear transportation problems well cannot handle the non-
linear TP. An particle swarm optimization algorithm named PSO-NLTP is proposed in the 
present paper to deal with NLTP. The updating rule of PSO-NLTP can make the particles of 
the swarm optimally in the feasible solution space, which satisfies the constraints of NLTP. 
A mutation operator is added to strengthen the global optimal capacity of PSO-NLTP. In the 
experiment of computing 56 NLTP instances, PSO-NLTP performs much better than GA 
and EP with penalty strategy. All of the parameters of PSO-NLTP are set adaptively in the 
iteration so that it is good for the application of the proposed algorithm. Moreover, PSO-
NLTP can also solve linear TPs. 
The design of the updating rule of PSO can be considered as an example for solving 
optimization problems with special constraints. The operator is different from other 
methods such as stochastic approach, greedy decoders and repair mechanisms, which are to 
restrict the searching only to some feasible sub-space satisfying the constraints. It uses both 
the local and global heuristic information for searching in the whole feasible solution space. 
Furthermore, through the initial experimental result, it performs better than the penalty 
strategy which is another popular approach for handling constraints. 
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1. Introduction 
In many real-world applications, the arrangement, ordering, and selection of a discrete set of 
objects from a finite set, is used to satisfy a desired objective. The problem of finding optimal 
configurations from a discrete set of objects is known as the combinatorial optimisation 
problem. Examples of combinatorial optimisation problems in real-world scenarios include 
network design for optimal performance, fleet management, transportation and logistics, 
production-planning, inventory, airline-crew scheduling, and facility location.  
While many of these combinatorial optimisation problems can be solved in polynomial time, 
a majority belong to the class of NP -hard (Aardal et al., 1997). To deal with these hard 
combinatorial optimisation problems, approximation and heuristic algorithms have been 
employed as a compromise between solution quality and computational time (Festa and 
Resende, 2008). This makes heuristic algorithms well-suited for applications where 
computational resources are limited. These include dynamic ad-hoc networks, decentralised 
multi-agent systems, and multi-vehicle formations. The success of these heuristic algorithms 
depends on the computational complexity of the algorithm and their ability to converge to 
the optimal solution (Festa and Resende, 2008). In most cases, the solutions obtained by 
these heuristic algorithms are not guaranteed optimal.  
A recently developed class of heuristic algorithms, known as the meta-heuristic algorithms, 
have demonstrated promising results in the field of combinatorial optimisation. Meta-
heuristic algorithms represent the class of all-purpose search techniques that can be applied 
to a variety of optimisation problems including combinatorial optimisation. The class of 
meta-heuristic algorithms include (but not restricted to) simulated annealing (SA), tabu 
search, evolutionary algorithms (EA) (including genetic algorithms), ant colony 
optimisation (ACO) (Aguilar, 2001), bacterial foraging (Passino, 2002), scatter search, and 
iterated local search. 
Recently, a new family of computationally efficient meta-heuristic algorithms better posed 
at handling non-linear constraints and non-convex solution spaces have been developed. 
From this family of meta-heuristic algorithms, is particle swarm optimisation (PSO) 
(Kennedy and Eberhart, 1995). Like other biologically inspired meta-heuristic algorithms, 
PSO is an adaptive search technique that is based on the social foraging of insects and 
animals. In PSO, a population of candidate solutions are modelled as a swarm of particles. 
At each iteration, the particles update their position (and solution) by moving stochastically 
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towards regions previously visited by the individual particle and the collective swarm. The 
simplicity, robustness, and adaptability of PSO, has found application in a wide-range of 
optimisation problems over continuous search spaces. While PSO has proven to be 
successful on a variety of continuous functions, limited success has been demonstrated to 
adapt PSO to more complex richer spaces such as combinatorial optimisation.  
In this chapter, the concepts of the standard PSO model are extended to the discrete 
combinatorial space and a new PSO is developed to solve the combinatorial optimisation 
problem. The chapter is organised as follows: In Section 2, a brief review of related works to 
solving the combinatorial optimisation space using meta-heuristics is presented. In Section 
3, the standard PSO model is introduced. The nature of the combinatorial optimisation 
problem is then presented in Section 4 before the concepts of the standard PSO model are 
adapted to the combinatorial space in Section 5. Section 6 analyses the stability and 
performance of the newly developed algorithm. The performance of the newly developed 
algorithm is then compared to the performance of a traditional genetic algorithm in Section 
7 before Section 8 concludes with final remarks. 

2. Related Works 
In recent years, variants of traditional PSO have been used to solve discrete and 
combinatorial optimisation problems. A binary PSO was first developed in (Kennedy and 
Eberhart, 1997) to solve discrete optimisation problems. In the binary PSO, each particle 
encoded a binary string in the solution space. A particle moved according to a probability 
distribution function determined using the Hamming distance between two points in the 
binary space. The early concepts introduced by the binary PSO appeared in later PSO 
algorithms for combinatorial optimisation such as in (Shi et al., 2006); (Tasgetiren et al., 
2004); (Liu et al., 2007b); (Pang et al., 2004); (Martínez García and Moreno Pérez, 2008); (Song 
et al., 2008); and (Wang et al., 2003). Tasgetiren et al. (Tasgetiren et al., 2004) introduced the 
smallest position value rule (SPV) to enable the continuous PSO algorithm to be applied the 
class of sequencing and combinatorial problems. In SPV, each particle assigns a position 
value in continuous space to each dimension in the discrete space. At each iteration, the 
position value is updated according to the traditional velocity update equation and the 
sequence of objects is re-sorted according to the values assigned to the continuous space. 
The method proposed by (Tasgetiren et al., 2004) is similar to the random keys in GA (Bean, 
1994). Following a similar method to (Kennedy and Eberhart, 1997), Wang et al. (Wang et 
al., 2003) introduced the concept of a swap operator to exchange dimensions in the particle 
position. In (Wang et al., 2003), each particle encoded a permutation of objects and a 
transition from one position to the next was achieved by exchanging elements in the 
permutation. To account for both the personal best positions and global best positions, 
Wang et al. extended the concept of swap operator to swap sequence. The swap sequence 
was used to move a particle from one position to the next by successively applying a 
sequence of swap operators. Using this approach, the notion of velocity on the 
combinatorial space was defined; and the Hamming distance was used to exclusively 
determine the motion of a particle. Premature convergence was addressed by randomly 
applying the swap operator to the particle. Similar approaches to Wang et al. include (Shi et 
al., 2006); (Martínez García and Moreno Pérez, 2008); and (Bonyadi et al., 2007), where a 
swap sequence was also constructed through the concatenation of successive swap 
operators. The ordering of these swap operators influences the position of the particle at the 
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end of each iteration. In (Wang et al., 2003); (Shi et al., 2006); (Martínez García and Moreno 
Pérez, 2008); and (Bonyadi et al., 2007), the swap sequence is constructed by first applying 
the swap operators that move the particle to it’s personal best, followed by the swap 
operators that move the particle to it’s global best. For sufficiently small perturbations, the 
particles will tend towards the global best position of the swarm and stimulate the loss of 
solution diversity. This invariably leads to the rapid convergence of the algorithm and poor 
solution quality. For large complex optimisation problems, the PSO must compromise the 
local and global search strategies effectively to find high-quality (if not optimal) solutions 
rapidly. In addition, the PSO framework must be sufficiently robust to adapt to a wide 
variety of discrete and combinatorial optimisation problems. In this chapter, a generalised 
combinatorial optimisation framework is introduced that builds on the works of (Wang et 
al., 2003); (Shi et al., 2006); (Tasgetiren et al., 2004); and (Kennedy and Eberhart, 1997) to 
develop a new combinatorial optimisation PSO. In the following section, a brief introduction 
into the traditional PSO is presented before the main results of this chapter are developed. 

3. The Standard Particle Swarm Optimisation Model 
Let P  denote a D -dimensional problem, and R→Xxf :)( an objective function for the 
problem that maps X to the set of real numbers. Without loss of generality, consider the 
following optimisation problem )(minarg xfxXx Xx∈

∗∗ =⇔∈  Xx ∈∀ . In traditional PSO, a 
solution i  is represented by a particle in a swarm P  moving through D -dimensional space 
with position vector ))(,),(,),1(( Dxdxxx i

k
i
k

i
k

i
k KK=  for any time k . At each iteration, the 

particles adjust their velocity i
kv  along each dimension according to the previous best 

position of the i -th particle i
kp  and the best position of the collective swarm g

kp  (see Fig. 1). 
The position i

kx  for the i -th particle is updated according to the following velocity function: 

 )()( 22111
i
k

g
k

i
k

i
k

i
k

i
k xprcxprcvwv −⋅⋅+−⋅⋅+⋅=+  (1a) 

 i
k

i
k

i
k vxx +=+1  (1b) 

where ]1,0[, 21 ∈rr are random variables affecting the search direction, R∈21,cc are 
configuration parameters weighting the relative confidence in the personal best solutions 
and the global best solutions respectively, and w is an inertia term influencing the 
momentum along a given search direction. Algorithm 1 summarises the iterative nature of 
the PSO algorithm. 
The terms 1c  and 2c are the main configuration parameters of the PSO that directly influence 
the convergence of the algorithm. For large values of 1c , exploration of particles is bounded 
to local regions of the best previously found solutions i

kp . This maintains population 
diversity and is favourable when the problem is characterised by non-linear and non-convex 
solution spaces. In contrast, large 2c values will encourage particles to explore regions closer 
to the global best solution g

kp at each iteration. Generally, this search strategy will converge 
faster and is practical for convex solution spaces with unique optima. Adjusting the inertia 
term w affects the relative weighting of the local and global searches. A large w  encourages 
the particles to explore a larger region of the solution space at each iteration and maximise 
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global search ability, whilst a smaller w  will restrict the particles to local search at each 
iteration (Shi and Eberhart, 1998b). 
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Figure 1. Particle position and velocity on a two-dimensional vector space 

0: for all particle i do 
1:  initialise position i

kx randomly in the search space 
2: end for 
3: while termination criteria not satisfied do 
4:  for all particle i do 
5:   set personal best i

kp as the best position found by the particle so far 
6:   set global best g

kp as the best position found by the swarm so far 
7:  end for 
8:  for all particle i do 
9:   update velocity according to 
   )()( 22111

i
k

g
k

i
k

i
k

i
k

i
k xprcxprcvwv −⋅⋅+−⋅⋅+⋅=+  

10:   update position according to 
   i

k
i
k

i
k vxx +=+1  

11:  end for 
12: end while 

Algorithm 1. Traditional PSO 

4. Problem Description and Model Construction 

The combinatorial optimisation problem for PSO is now discussed. Let },,,,{ 21 KK ixxxX =  
denote the finite set of solutions to the combinatorial optimisation problem with objective 
function R→Xf : . Assume the objective of the combinatorial optimisation problem is to 
find Xx ∈∗ , such that )(minarg xfxXx Xx∈

∗∗ =⇔∈  Xx ∈∀ . Consider the case where a 
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solution Xxi ∈ to the combinatorial optimisation problem is given by the linear ordering of 
elements in the set },,2,1{][ nn K= , such that Xxi ∈∀ , },,2,1{))(,),2(),1(( nnxxxx iiii KK ∈= . 
Then !nX = . Each integer value in the list encodes the relative ordering of a set of objects 
and is referred to as a permutation of objects (Bóna, 2004). These include cities in a tour, 
nodes in a network, jobs in a schedule, or vehicles in a formation. For convenience, a 
permutation is represented using two-line form. Let ][][: ndg → be a bijection on the ordered 
list. If ][n describes the list of numbers },,1{][ nn K= , then },,1{][ nd K=  and g is also a 
permutation of the set ][n (Bóna, 2004).  
Example 1. 
As an example, consider the following permutation }2,5,1,4,3{ . The function ]5[]5[: →g  
defined by 3)1( =g , 4)2( =g , 1)3( =g , 5)4( =g , and 2)5( =g is also permutation of ]5[  
(Bóna, 2004). In two-line form, the set ]5[  can be written as: 

 
25143
54321

=g   

where it is implied that g maps 1 to 3, 2 to 4, 3 to 1, 4 to 5, and 5 to 2. 

5. Fitness Landscape 
In order to adapt PSO to the combinatorial space, it is convenient to define a metric space 
characteristic of the combinatorial optimisation problem. Let XX 2: →N  denote a syntactic 
neighbourhood function that attaches to each solution Xxi ∈  the neighbouring set of 
solutions Xxx i

i
j ⊆∈ )(N that can be reached by applying a unitary syntactic operation 

moving ji xx a  (Moraglio and Poli, 2004). Denote this unitary syntactic operator by ϕ and 
assume that the operation is reversible, i.e. )()( j

j
ii

i
j xxxx NN ∈⇔∈ . Such a 

neighbourhood can be associated to an undirected neighbourhood graph ),( EVG = , where 
V is the set of vertices representing the solutions Xxi ∈ , and E the set of edges representing 
the transformation paths for permutations. By definition, the combinatorial space endowed 
with a neighbourhood structure )( i

i xN and induced by a distance function ),( ji
ij xxh is a 

metric space. Formally, the definition of a metric or distance function is any real valued 
function ),( ji

ij xxh that conforms to the axioms of identity, symmetry, and triangular 
inequality, i.e.: 

1. 0),( ≥ji
ij xxh  and 0),( =ii

ij xxh  (identity); 

2. ),(),( ij
ij

ji
ij xxhxxh = (symmetric); 

3. ),(),(),( ji
ij

il
li

jl
ij xxhxxhxxh +≤ (triangle inequality); 

4. if ji ≠ , then 0),( >ji
ij xxh . 

A neighbourhood structure )( i
i xN induced by a distance function ),( ji

ij xxh can then be 
formally expressed as: 

 }),(,|{)( sxxhXxxx ji
ij

jji
i ≤∈=N  (2) 
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where R∈s . On a combinatorial space with syntactic operator ϕ , any configuration ix can 
be transformed into any other jx by applying the operator ϕ a finite number of times 
( ns ≤<1 ) (Misevicius et al., 2004). In such a case, the distance metric ),( ji

ij xxh  is given by 
the Hamming distance: 

∑
=

−=
n

l

jiji
ij dxdxxxh

1

)()(sgn),(  

and s represents the minimum number of exchanges to transform ix into jx . Other distance 
metrics can be similarly defined (see (Ronald, 1997); (Ronald, 1998); and (Moraglio and Poli, 
2004) references therein for a comprehensive treatment on distance metrics defined on the 
combinatorial space). 
For generality, only the deviation distance metric (Ronald, 1998) will be considered hereafter. 
While other distance metrics can be defined for discrete and combinatorial spaces, the 
decision to use the deviation distance metric is trivial with respect to algorithmic design. 
Other problem-specific metrics can be substituted into the developed algorithm with little 
influence on the procedural implementations of the algorithm. 
The deviation distance metric provides a measure of the relative distance of neighbouring 
elements between two permutations ix  and jx . In problems where the adjacency of two 
elements influences the cost of the objective function )(xf , such as in TSP and flow-shop 
scheduling, the deviation distance function provides an appropriate choice of metric for the 
problem space (Ronald, 1998). Formally, the positional perturbation aΔ  of one element value 

)( 1dxi  to its matching value in )( 2dx j , such that adxdx ji == )()( 21 , ][na ∈ , is given by the 
following: 

 21 dda −=Δ  (3) 

For convenience, aΔ is normalised ]1,0[∈Δa : 

 
1−

Δ=Δ
n

a
a  (4) 

The deviation distance ),( ji
ij xxh  is then defined as the sum of the aΔ values: 

 ∑Δ=
n

a
a

ji
ij xxh ),(  (5) 

From Eq. (5) a large position deviation induces a greater distance in the metric space. The 
notion of position deviation is now used to construct the combinatorial optimisation PSO. 

6. Proposed Algorithm 
In Section 4.1, the concept of a syntactic operatorϕ  was discussed as a method of 
transforming one configuration ix to another )( i

i
j xx N∈ . In the following section, the 

parallel between a syntactic operator ϕ and the motion of a particle i in the combinatorial 



A Particle Swarm Optimisation Approach to Graph Permutations 

 

297 

space is described. Let Xxi ∈ encode a permutation of ][d  objects in D -dimensional space. 
The position Xxi ∈  of a particle i  in the D -dimensional space corresponds to a 
permutation of ][d  objects. Define ϕ  by a two-way perturbation (transformation) operator 

),(: 21 ddSO=ϕ  as the swap operator that exchanges elements 1d  and 2d  in solution ix , such 
that XX → , },2,1{, 21 Ddd K∈ , 21 dd ≠ . Applying the swap operator to the permutation ix , 
the following solution is derived: 

 ),( 211 ddSOxx i
k

i
k ⊕=+  (6) 

where adxdx ji == )()( 21 , and )(,, 1 i
ki

ji
k

j
k xxxx N∈+ , and the notation ⊕ is used to 

denote i
kx 1+ is obtained from i

kx by applying the perturbation ),( 21 ddSO . In the combinatorial 
optimisation PSO, i

kx  and Xxx i
ki

j
k ⊆∈ )(N , j

k
i
k xx ≠  encode two permutations in the 

combinatorial optimisation problem and represents positions in the combinatorial search 
space. Applying the notions of swap operator to PSO, the swap operator ),( 21 ddSO for a 
particle i  can be interpreted as a motion of the particle i

kx  to a position j
kx  displaced from i

kx  
by the deviation distance ),( j

k
i
kij xxh . Consider the case when )( i

ki
j

k xx N∉ . Then, the 

following transition j
k

i
k xx a is not possible by Eq. (6) alone. Define the following swap 

sequence (Knuth, 1998): 
 },,,{ 21 nSOSOSOSS K=  (7) 

where SS is the concatenation of swap operators and the order of the swap operators iSO , 
ni ,,1K=  is influential to the final position i

kx 1+ . The minimum number of swap operators 
required to move j

k
i
k xx a  is given by the Hamming distance and is referred to as the basic 

swap sequence (Knuth, 1998). 
Suppose particle i moves according to i

k
i
k px a . The basic swap sequence transforming i

kx  
to i

kp can be determined by moving along each dimension of the initial position i
kx  and 

applying the Partially Mapped Crossover function (PMX) (Goldberg and Lingle, 1985) to 
each dimension along i

kx . The PMX function maps each dimension in the current position 
i
kx  to the corresponding dimension in i

kp  (see Fig. 2). A swap operator is invoked if the 
object in the 1d -th dimension of the i

kp solution and the i
kx are inconsistent. The 1d -th 

element in i
kx  is then swapped with the 2d -th element in i

kx  such that )()( 12 dpdx i
k

i
k = . 

Algorithm 2 summarises the basic swap operator used to move i
k

i
k px a  

1: while 0),( ≠ji xxd  
2:  if )()( 11 dxdx j

k
i
k ≠  then 

3:   find 2d such that 112 )()( adxdx j
k

i
k == , and },,1{, 21 Ddd K∈  

4:    set ),( 21 ddSOj and store as j -th entry in SS  
5:  else, end if 
4: end while 
Algorithm 2. Basic Swap Operator 
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Note, applying the algorithm from left-right gives 12 dd > , },,2,1{, 21 Ddd K∈ . 
Example 2. 

Consider the following two solutions )(
54321
54321=ix and )(

45132
54321=jx represented in two-

line form. Applying Algorithm 2 from left to right, the first swap operator is invoked if 
)1()1( ji xx ≠ . Since 1)1( =ix and 2)1( =jx , the following mapping is observed between 

object 21→ . The first swap operator is then given by the exchange of elements 1 and 2 in 
ix , )2,1(1SO . Following )2,1(1SO , particle i is now at position )(

54312
54321=′x . 

Comparing x′ to jx , the following mapping 31 ↔  is now observed between object 

)2(x′ and )2(jx . The next mapping is then given by )3,2(2SO taking x′ to )(
54132
54321=′′x . 

Repeating this procedure, the swap sequence SS that takes ix to jx is then given by 
)}5,4(),3,2(),2,1({ 321 SOSOSOSS =  such that SSxx ij ⊕= . 

)5,4(
)1,3(
)3,2(
)2,1(

SO
SO
SO
SO

 

2 3 1 5 4

1 2 3 4 5=:ix  

=:jx  
 

Figure 2. Partially-mapped crossover (PMX) 

In traditional PSO, the motion of a particle is influenced by the personal best position i
kp  

and global best of the swarm g
kp . In the combinatorial optimisation PSO, each position 

encodes a permutation to the combinatorial optimisation problem. If the personal best and 
global best positions are not coincident, i.e. g

k
i
k pp ≠ , then the swap sequences 1SS and 

2SS that moves the i -th particle along the transformations i
k

i
k px a and g

k
i
k px a  

respectively, are not equivalent, i.e. 21 SSSS ≠ . Application of 1SS or 2SS will yield i
k

i
k px =+1  

or g
k

i
k px =+1  and will cause the particles to converge towards the personal best solution, or 

the global best solution respectively. This leads to rapid convergence and sub-optimal 
solution quality. The local search induced by the exclusive application of 1SS , and the global 
search induced by the exclusive application of 2SS  is now combined to develop a velocity 
update function with similar characteristics to the original PSO algorithm. 
In the traditional PSO algorithm, the velocity of a particle is composed of three parts; the 
momentum term, i.e. wv ⋅ , the cognitive velocity )(11

i
k

i
k xprc −⋅⋅ , and the social velocity 

)(22
i
k

g
k xprc −⋅⋅ . Using the notions of momentum, cognitive velocity, and social velocity, the 

following decoupled velocity update for a particle in the combinatorial space with deviation 
distance metric aΔ is defined: 

 )),((1
,,

1
i
k

i
ka

il
k

il
k pxcvwv Δ′⋅+⋅=+  (8a) 
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 )),((2
,,

1
g
k

i
ka

ig
k

ig
k pxcvwv Δ′⋅+⋅=+  (8b) 

where w , 1c , and 2c have the same meanings as the original PSO algorithm. For convenience, 
denote Eq. (8a) as the local velocity and Eq. (8b) as the global velocity. Equation (8a) and (8b) 
preserve the same tuning parameters as the original PSO without the random variables 

]1,0[, 21 ∈rr . The decision to omit the random variables is trivial, but will become apparent in 
the proceeding section. 
Recall, the position of each particle i

kx , Pi ∈∀  is a vector in the D -dimensional 
combinatorial space Xxi

k ∈ and moves along the dimensions of the D -dimensional 
hypercube by exchanging elements via the swap operator ),( 21 ddSO . The velocity of each 
particle i

kv , Pi ∈∀  is a vector in the D -dimensional continuous space Di
kv R∈  and describes 

the local gradient of the fitness landscape using the deviation distance metric. Using the 
velocity Di

kv R∈  , a probability mapping is described that invokes the swap operator and 
preserves the contributions of both the local velocity and global velocity. Let 

))(|)(Pr( dpdx ii  and ))(|)(Pr( dpdx gi  denote the sampling probability of the i -th particle for 
dimension d in the particle when the individual best is )(dpi and global best is )(dp g  
respectively. Then, the probability that )(dxi  moves to )(dpi and )(dp g is given by the 
following statements: 

 il
k

i
k

i
k vdpdx ,:))(|)(Pr( =  (9a) 

 ig
k

g
k

i
k vdpdx ,:))(|)(Pr( =  (9b) 

Since )(dpi and )(dp g  is a mapping for )()( dpdx ii a  and )()( dpdx gi a  respectively, the 
probability that the swap operator ),( 21 ddSOj is invoked by moving )()( dpdx ii a or 

)()( dpdx gi a  using Algorithm 2 is defined using the local and global velocities 
respectively: 

 il
kvddSO ,

21 :)),(Pr( =  (10a) 

 ig
kvddSO ,

21 :)),(Pr( =  (10b) 

where )()( 12 dpdx ii = or )()( 12 dpdx gi = for )()( dpdx ii a  and )()( dpdx gi a  respectively. 
Following Eq. (10a) and Eq. (10b), the velocity )(dvi

k describes the probability that an 
element in )(dxi

k will swap with the corresponding element in )(dx j
k  and invoke Algorithm 

2, then the velocity on each dimension Dd ∈ must be bounded over the interval 
]1,0[)( ∈dvi

k . The velocities described in Eq. (10a) and Eq. (10b) are normalised according to: 

 
},max{arg ,

1
,

1

,
1,

1 ig
k

il
k

il
kil

k vv
vv

++

+
+ =  (11a) 
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},max{arg ,

1
,

1

,
1,

1 ig
k

il
k

ig
kig

k vv
vv

++

+
+ =  (11b) 

Normalising the velocities with respect to both the personal best and global best velocity 
profiles is used to prioritise the order of swap operations and preserve the probability map. 
Once an element )( 1dxi

k has been swapped with the corresponding element )( 2dxi
k  in 

)( 1dpi
k , the associated velocity )( 2dvi

k  at element )( 2dxi
k is set to zero if )()( 22 dpdx i

k
i
k =  to 

prevent cyclic behaviour. 
Using the definition of the sample probability in Eq. (10a) and Eq. (10b) for the personal best 
and global best respectively, the swap sequence induced by the combinatorial optimisation 
PSO can now be described. From Eq. (8a) and Eq. (8b), large deviation distances incur a 
large velocity. This observation is complimentary to the original concepts of the traditional 
PSO algorithm. Following Eq. (10a) and Eq. (10b) a large velocity will induce a greater 
probability that a swap operation is invoked with either the personal best or global best. 
Using this concept, a swap sequence can be defined using the relative probabilities of the 
personal best and global best velocity profiles. Consider the case when )()( ,, dvdv ig

k
il

k > . Then, 
the probability of exchanging )()( dpdx i

k
i
k a is greater than the probability of exchanging 

)()( dpdx g
k

i
k a . In the swap sequence, the larger of the two probabilities will receive a 

higher priority in the swap sequence and take precedence over the lower probability swap 
operations. At a given iteration, particle i will move according to the following swap 
sequence: 

 SSxx i
k

i
k ⊕=+1  (12) 

where )))(),(()),(),((( 21 dpdxSOdpdxSOSS g
k

i
k

i
k

i
k=  if ig

k
il

k vv ,, > . Algorithm 3 describes the 
implementation of the swap sequence SS . 

0: for all Dd ∈ do 
1:  if )()( ,, dvdv ig

k
il

k > do 
2:   invoke swap operator ),( 21 ddSOj for i

k
i
k px a  using Algorithm 2 

3:    if )()( 22 dpdx i
k

i
k = do 

4:     set 0)( 2
, =dv il

k  
5:    else, end if 
6:   goto 8 
7:  otherwise if )()( ,, dvdv il

k
ig

k > do 
8:   invoke swap operator ),( 21 ddSOj for g

k
i
k px a  using Algorithm 2 

9:    if )()( 22 dpdx g
k

i
k = do 

10:     set 0)( 2 =dv g
k  

11:    else, end if 
12:   goto 2 
13:  end if 
14: end for 
Algorithm 3. Swap Sequence 
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Following the definition of the basic swap sequence and swap sequence in Algorithm 2 and 
Algorithm 3 respectively, the proposed combinatorial PSO algorithm can now be defined. 
Algorithm 4 describes the procedural implementation of the swap sequence within the 
context of the traditional PSO algorithm. 

7. Algorithmic Analysis 
The behaviour of each particle in the swarm can be viewed as a traditional line-search 
procedure dependent on a stochastic step size and a stochastic search direction. Both the 
stochastic step size and search direction depend on the selection of social and cognitive 
parameters. In addition, the stochastic search direction is driven by the best design space 
locations found by each particle and by the swarm as a whole. Unlike traditional line-search 
procedures however, PSO uses information from neighbouring particles to influence the 
search direction at each iteration. This exchange of information plays an important role in 
the stability and performance of the swarm. In the following section, the spectral properties 
of algebraic graph theory are used to show that for a fully interconnected swarm, the 
particles will reach a consensus on the equilibrium. The analysis begins by considering the 
original PSO algorithm with velocity and position update given by Eq. (1a) and Eq. (1b). 

0: for all particle i do 
1:  initialise position i

kx randomly in the search space 
2: end for 
3: while termination criteria not satisfied do 
4:  for all particle i do 
5:   set personal best i

kp as the best position found by the particle so far 
6:   set global best g

kp as the best position found by the swarm so far 
7:  end for 
8:  for all particle i do 
9:   update local velocity according to 
   )),((1

,,
1

i
k

i
kv

il
k

il
k pxcvwv Δ′⋅+⋅=+  

10:   update global velocity according to 
   )),((2

,,
1

g
k

i
kv

ig
k

ig
k pxcvwv Δ′⋅+⋅=+  

11:   normalise local velocity according to 
   },max{arg ,,,,

1
ig

k
il

k
il

k
il

k vvvv =+  
12:   normalise global velocity according to 
   },max{arg ,,,,

1
ig

k
il

k
ig

k
ig

k vvvv =+  
13:   update position according to 
   SSxx i

k
i
k ⊕=+1  

   where SS is determined from Algorithm 3 
14:  end for 
15: end while 
Algorithm 4. Combinatorial Optimisation PSO 
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Without loss of generality, consider the following objective function for the combinatorial 
optimisation problem:  

 )(minarg xfx Xx∈
∗ = Xx ∈∀   

Then, the personal best i
kp is the current best solution of the i -th particle found so far; i.e. 

ii
k xp ττminarg= , ],0( k∈∀τ ; and the global best g

kp is the current best solution of the global 
swarm found so far; i.e. ig

k xp ττminarg= , ],0( k∈∀τ , Ni ∈∀ . The swarm of particles is said 
to have reached an equilibria if and only if all the particles have reached a consensus on the 
value of g

kp , i.e., eg
k

l
k ppp == . For asymptotic convergence, all the particles in the swarm 

must globally asymptotically reach a consensus on the global best solution, such that 
i
kk

e xx +∞→= lim , and )min(,, Xxx je
k

ie
k == , Xji ∈∀ , , ji ≠ . For convenience, Eq. (1a) and Eq. 

(1b) are combined into compact matrix form: 

 ⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⋅⎥
⎦

⎤
⎢
⎣

⎡
+−
+−

=⎥
⎦

⎤
⎢
⎣

⎡

+

+
g
k

i
k

i
k

i
k

i
k

i
k

p
p

rcrc
rcrc

v
x

wrcrc
wrcrc

v
x

2211

2211

2211

2211

1

1

)(
)(

 (13) 

which can be considered as a discrete-dynamic system representation of the original PSO 
algorithm. 

7.1 Equilibrium of the PSO 
Before the main analysis results are presented, a brief introduction into algebraic graph 
modelling of swarms is presented. The information flow in the swarm of particles can be 
represented using an interconnected graph ),( EVG = , where V is the enumerated set of 
particles Vxi

k ∈ , },,1{ Ni K∈ in the swarm, and VVE ×⊆ is the set of edge relations between 
neighbouring particles. The order V and size E of the graph G physically represents the 
number of particles in the swarm and the number of edge connections. For a fully connected 
swarm, each particle communicates with every other particle in the population, and the 
graph is said to be complete. This is the case of the original PSO algorithm. The connectivity 
of a graph is described by the square matrix A , with size V , and elements ija  describing the 

connectivity of adjacent vertices ix and jx , such that: 

 
( )
otherwise

, if
,0
,1 Exx

a
ji

ij

∈

⎩
⎨
⎧

=  (14) 

The matrix A uniquely defines the connectivity of the graph G and is referred to as the 
adjacency matrix. Associated with the adjacency matrix A is the graph Laplacian L , and its 
Laplacian potential GΨ : 

 )(1 AL −ΛΛ= −  (15) 
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 LxxT
G 2

1=Ψ  (16) 

where Λ is the square matrix containing the out-degree of each vertex along the diagonal, 
and x is the concatenation of particles in the swarm. A well-known property of the 
Laplacian potential is that it is positive semi-definite and satisfies the following sum-of-
squares property (Godsil and Royle, 2001): 

 ( ) n

Eji

ij
ij

T xxxALxx R∈−= ∑
∈

,
,

2  (17) 

Using Eq. (17), the objective is to show that the personal best positions of each particle 
reaches a consensus (by way of equilibria) coincident to the global best of the swarm, i.e. 

g
k

i
k pp = , P∈∀ . Eq. (16) becomes: 
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where p is the concatenated states of the personal best of each of the particles in the swarm. 
The closed-loop dynamics of the global best position evolve according to the following 
continuous-time dynamic equation: 

 GLpp Ψ−∇=−=&  (19) 

The equilibrium points of Eq. (19) correspond to stationary points of GΨ and the region 
outside of these points, the potential is strictly decreasing (Moreau, 2004); i.e., if ex is an 
equilibrium of Eq. (18), then 0=eLx . From Eq. (16): 

 0)(
2
1)( ==Ψ eTee

G Lppp  (20) 

Following the connectivity of G , cpp e
j

e
i == , Nji ∈∀ , , i.e. Te ccp ),,( K= , Xc ∈ . Since the 

Laplacian potential equals zero at equilibrium, then )min( pp g = is an invariant quantity, 
Given the invariance property of )min( p , then ))0(min()min( ppe = , and cpe =)min( . This 
implies ))0(min(, pp ie

k = , Pi ∈∀ (Olfati-Saber and Murray, 2003). This leads to the following 
observations for the particle dynamics in Eq. (1a) and Eq. (1b) that are consistent with the 
works of (Clerc and Kennedy, 2002); (Trelea, 2003); and (Kadirkamanathan et al., 2006): 

1. The system dynamics are stochastic and order two; 
2. The system does not have an equilibrium point if l

k
g
k pp ≠ ; 

3. If eg
k

l
k ppp == is time invariant, there is a unique equilibrium at 0=ev , ee px = . 

An equilibrium point thus exists only for the best particle whose local best solution is the 
same as the global best solution (Kadirkamanathan et al., 2006).  
Consider the case for a given particle i when the external input is constant (as is the case 
when no personal or global better positions are found). From Eq. (15) the eigenvalues of L−  
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are negative in the complex plane. Then, for particle i , the position asymptotically 
converges to the point ex in the eigenspace associated to the global minimum found by the 
swarm of particles (Olfati-Saber and Murray, 2003). Such a position ex  is not necessarily a 
local or global minimiser of the combinatorial optimisation problem. Instead, it will improve 
towards the optimum ∗x  if a better individual or global position is found. Discovery of 
better individual or global positions can be improved by increasing the population diversity 
of the swarm through the introduction of chaos or turbulence (Kennedy and Eberhart, 1995). 
In the following section, a non-stationary Markov chain is constructed to integrate the 
discrete syntactic swap operators introduced in Section 5 to the continuous time-dynamics 
of the traditional PSO 

7.2 Non-Stationary Markov Model of combinatorial PSO 
Markov chains are important in the theoretical analysis of evolutionary algorithms 
operating on discrete search spaces (Poli et al., 2007) and have been used to model the 
probabilistic convergence of population-based meta-heuristic algorithms (see (Rudolph, 
1996); (Cao and Wu, 1997); (Poli and Langdon, 2007); and (Greenwood and Zhu, 2001) for 
examples of their implementation). While traditional PSO has operated on a continuous 
search space, the combinatorial PSO operates on a discrete combinatorial space. This makes 
Markov chains a suitable method of modelling and analysing the behaviour of the 
combinatorial PSO. The use of Markov chains on bare-bones PSO has previously been 
investigated by (Poli and Langdon, 2007) where the continuous search space was discretised 
using a hypercube sampling. In the following section, a non-stationary Markov chain is used 
to model the combinatorial PSO and account for the newly introduced swap operator. 
Let X denote the finite state space describing the set of permutation encodings with 

!nXr == possible solutions. Let XP ⊂ be a population of solutions from X with size 

NP = . Then a finite Markov chain X⊆Γ  describes a probabilistic trajectory over the finite 

state space X  (Rudolph, 1996) with )( 1!
1!

−+
−= nm

nN  possible populations as states; i.e.: 

 },,,{ 21 NSSSX K=  (21) 

The probability )(Pr: 1
,1 m

k
n

k
mn

mn
kk SSq =Γ=Γ= −

− of transitioning from state XSm ∈ to XSn ∈ , 

N∈nm, at step k is called the transition probability from m to n at step k . The transition 
probability of a finite Markov chain can be gathered into a transition matrix  }{ ,1

mn
kkk qQ −=  

(Rudolph, 1994), where each dimension ]1,0[,1 ∈−
mn

kkq . In a stationary Markov chain the 
probabilities remain fixed, and the Markov chain is said to be homogenous; i.e., 

}{ ,1
mn

kkk qQQ −== , K,2,1=∀k , and N,,2,1, K=nm . In the case of the combinatorial PSO, the 
probabilities of the swap operator are updated according to Eq. (8a) and Eq. (8b). This 
results in a non-stationary Markov chain. The transition probabilities of non-stationary 
Markov chains are calculated by considering how the population incidence vector 

jS describes the composition of the next iteration (Cao and Wu, 1997). Denote 
il

k
i
k

i
k

il
k vpxz ,, )Pr( == as the sampling probability when the personal best is i

kp ; likewise, 
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denote g
k

g
k

i
k

ig
k vpxz == )Pr(, as the sampling probability when the global best is g

kp . The 

probability that a particle i  will move according to i
k

i
k px a or g

k
i
k px a  i

kx  is given by 
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k ppz U= . From Algorithm 3, the dimension for )Pr(, i

k
i
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calculated independently using Eq. (8a) and Eq. (8b) and the probability of a particle 
sampling i

kp or g
kp is given by: 
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Since personal bests can only change if there is a fitness improvement, only certain state 
transitions can occur. That is, a transition from state nm SS a is possible only if the fitness of 
at least one particle in the swarm improves (Poli and Langdon, 2007). Because of the 
independence of the particles (over one time step), the state transition probability for the 
whole PSO is given by: 

 ∏=−
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mn
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From Sec. 6.1, the local velocity il
kv ,  and global velocity ig

kv , will tend to zero as +∞→k . This 
implies 0limlimlim ,,

,1 === ∞→∞→−∞→
ig

kk
il

kk
mn

kkk vvq , N,,2,1, K=nm . Therefore, the swap operator 
preserves the convergent behaviour of traditional PSO and the combinatorial PSO converges 
to the equilibrium pair ),( ee vx . 

8. Numerical Examples 
8.1 The Travelling Salesman Problem 
To test the efficiency of the proposed algorithm, the combinatorial optimisation PSO is 
tested on the travelling salesman problem (TSP). TSP is an invaluable test problem that 
belongs to the class of NP -hard combinatorial optimisation problems. The objective of 
TSP is to find a minimum-cost tour that visits a set of n cities and returns to an initial 
point (Applegate et al., 2006). Mathematically, TSP is a combinatorial optimisation 
problem on an undirected graph ),( EVG = . Each city ][nci ∈ , ni ,,2,1 K= ,  is represented 
by a vertex Vvi ∈  in the graph ),( EVG =  with cost of travel between adjacent cities given 
by Ehij ∈ . A solution to TSP can be represented as a sequence of cities encoded by a 
permutation Xx ∈ . Mathematically, the objective of TSP is given by the following 
optimisation problem: 

 ))1(),(())1(),((minarg 1

1
xnxhdxdxhxXx ij

n

d ijXx ++=⇔∈ ∑ −

=∈
∗∗  (24) 
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Various problems, including path-finding, routing, and scheduling, can be modelled as a 
TSP. A repository of test-instances (and their solutions) is available through the TSPLIB 
library (Reinelt, 1991). In the following section, the combinatorial PSO is tested on several 
instances of the TPSLIB library. Table 1 summarises the test instances of TSPLIB used to 
validate and compare the combinatorial PSO. 

Name Dimension Optimal )(xf  Optimal Solution 

burma 14 30.8785 

 

gr17 17 2085 

 

gr24 24 1272 

 

eil51 51 426 

 

Table 1. Test instances taken from TSPLIB (Reinelt, 1991) used for the validation of the 
combinatorial PSO 
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8.2 Optimisation Results and Discussion 
In the following experiments, the combinatorial PSO is applied to each case of the TSP in 
Table 1. The parameters used in each experiment are selected based on the findings reported 
in the literature (Zhang et al., 2005); (Shi and Eberhart, 1998a); (Zheng et al., 2003); (Clerc 
and Kennedy, 2002); and (Eberhart and Shi, 2000). While the inertia weight, cognitive and 
social parameters are sensitive to the problem domain in traditional PSO, a parametric 
analysis of their influence on the combinatorial PSO is beyond the scope of this chapter. For 
illustrative purposes, the parameters given in Table 2 are considered throughout the 
remainder of this chapter. The influence of these parameters on the performance of the 
combinatorial PSO remains the subject of future research. 

Parameter Value

w  0.8 

1c  2.025 

2c  2.025 

Table 2. Combinatorial PSO parameters 

To demonstrate the relative efficiency of the proposed algorithm, the performance of the 
combinatorial PSO is compared to a genetic algorithm. Each TSP experiment was trialled 
100 times using randomly generated individuals. In both algorithms, a population of 

30=P was maintained for each iteration. The fitness values obtained by the combinatorial 
PSO and the GA over the 100 trials are presented in Table 3. Table 4 compares the success 
rate of the PSO and GA for each of the problems. Figure 3 compares the percentage of the 
solution space explored by the combinatorial PSO and the GA. This is determined as the 
number of unique solutions tested Xxi

k ∈ , Pi ∈∀ , 1000,,1K=k by the PSO and GA versus 
the size of the solution space !nX = . 

Minimum Maximum Average 
Problem Optimal 

Solution PSO GA PSO GA PSO GA 

burma 30.87 30.87 30.87 30.87 34.62 30.87 31.20 

gr17 2085 2085 2085 2687 2489 2141.55 2175.02 

gr24 1272 1272 1282 1632 1810 1453.52 1488.68 

eil51 426 494.80 495.46 687.52 671.85 573.55 573.95 

Table 3. Performance of the proposed algorithm compared to a traditional genetic algorithm 
for combinatorial optimisation 

From Table 3, the combinatorial PSO outperformed the GA in all problem instances, except 
for the 51 variable eil51 problem. In this case, both the GA and combinatorial PSO failed to 
find the best solution over the 100 trials. Examination of Fig. 3 suggests that both the 
combinatorial PSO and GA were only able to search a small percentage ( %1<< ) of the total 
solution space over the 1000 iterations. This suggests, that both the combinatorial PSO and 
GA experience a loss of solution diversity over the optimisation procedure. Figure 3 also 
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indicates that the GA was able to cover a larger percentage of the solution space for each 
trial than the combinatorial PSO. This suggests that the combinatorial PSO suffers from the 
same rapid convergence and stagnation issues of traditional PSO. Loss of solution diversity 
and rapid convergence is a well-known problem in traditional PSO. In traditional PSO, the 
performance of the algorithm deteriorates as the number of iterations increases. Once the 
algorithm has slowed down (becomes stagnant), it is usually difficult to achieve a better 
fitness value; particularly for high-dimensionality problem spaces. 

Success Rate (%)
Problem

PSO GA 
burma 100 92 
gr17 36 17 
gr24 4 0 
eil51 0 0 

Table 4. Success rate of the combinatorial PSO and GA 

Recently, several methods have been proposed to improve solution diversity and avoid 
stagnation in traditional PSO. These methods include the use of chaos variables (Fieldsend 
and Singh, 2002); (Kennedy and Eberhart, 1995); and (He et al., 2004); variable 
neighbourhood topologies (Kennedy, 1999); and (Liu et al., 2007a); and mutation operators 
(Liu et al., 2007b); and (Andrews, 2006). Many of these techniques have had varying levels 
of success on the traditional PSO algorithm. It is expected, that these same strategies can be 
adapted to the combinatorial PSO. Future work aims to investigate the potential to 
implement these algorithmic improvements to the combinatorial PSO and solve for larger 
scale combinatorial optimisation problems. 
 
 

Average % Solution Space Searched
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Figure 3. Comparison of the solution space searched by the combinatorial PSO and the GA 
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9. Conclusion 
The PSO’s simplicity, robustness, and low computational costs, makes it an ideal method for 
continuous optimisation problems. Previous efforts to adapt the traditional PSO algorithm 
to combinatorial spaces have shown varying levels of success. In this chapter, a new 
combinatorial optimisation PSO that builds on previous works is introduced. A distance 
metric was introduced to define a metric space for the combinatorial optimisation problem 
and a syntactic swap operator introduced. Motion was induced by associating a probability 
sampling function to the velocity profile of a particle on the combinatorial space and 
invoking the defined swap operator. The proposed algorithm was tested on several 
instances of TSPLIB and compared to the performance of a GA. Preliminary test results 
demonstrated superior performance over the GA in all test cases. For larger set sizes, the 
proposed algorithm failed to converge to the optimal solution. Examination of the sampled 
solution space suggested that the proposed algorithm suffered from the same rapid 
convergence and stagnation issues observed in traditional PSO. Further research is needed 
to clarify the effect of the various tuning parameters on the performance of the proposed 
algorithm, and their influence on loss of solution diversity. The generalised approach to the 
algorithm’s development allows for the consideration of other metrics on discrete spaces, 
and the implementation of further algorithmic improvements. Future work aims to 
investigate methods to mitigate the stagnation issues of the proposed algorithm and 
extending the combinatorial optimisation PSO’s capabilities to other discrete optimisation 
problems. 
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1. Introduction     
Automatic text classification and clustering are still very challenging computational 
problems to the information retrieval (IR) communities both in academic and industrial 
contexts. Currently, a great effort of work on IR, one can find in the literature, is focused on 
classification and clustering of generic content of text documents. However, there are many 
other important applications to which little attention has hitherto been paid, which are as 
well very difficult to deal with. One example of these applications is the classification of 
companies based on the descriptions of their economic activities, also called mission 
statements, which represent the business context of the companies’ activities, in other 
words, the business economic activities from free text description by the company’s 
founders. 
The categorization of companies according to their economic activities constitute a very 
important step towards building tools for obtaining correct information for performing 
statistical analysis of the economic activities within a city or country. With this goal, the 
Brazilian government is creating a centralized digital library with the business economic 
activity descriptions of all companies in the country. This library will serve the three 
government levels: Federal; the 27 States; and more than 5.000 Brazilian counties. We 
estimate that the data related to nearly 1.5 million companies will have to be processed 
every year (DNRC, 2007) into more than 1.000 possible different activities. It is important to 
highlight that the large number of possible categories makes this problem particularly 
complex when compared with others presented in the literature (Jain et al., 1999; Sebastiani, 
2002). 
In this paper, we proposed a slightly modified version of the standard structure of the 
probabilistic neural network (PNN) (Specht, 1990) so that we could deal with the multi-label 
problem faced in this work. We compared the PNN performance trained by a canonical 
Particle Swarm Optimization (PSO) and a Bare Bones Particle Swarm Optimization 
(BBPSO). Our results show that, in the categorization of free text descriptions of economic 
activities, the PNN trained by BBPSO got slightly better results than the PNN trained by 
PSO. 
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This work is organized as follows. In Section 2, we detail more the characteristics of the 
problem and its importance for the government institutions in Brazil. Related works are 
mentioned in Section 3. We describe our probabilistic neural network algorithm in Section 4. 
Section 5 describes the Particle Swarm Optimization algorithm and a special version named 
Bare Bones Particle Swarm Optimization. In Section 6, the experimental results are 
discussed. Finally, we present our conclusions and indicate some future paths for future 
research in Section 7. 

2. The Problem of Multi-label Text Categorization 
In many countries, companies must have a contract (Articles of Incorporation or Corporate 
Charter, in USA) with the society where they can legally operate. In Brazil, this contract is 
called a social contract and must contain the statement of purpose of the company – this 
statement of purpose describe the business activities of the company and must be 
categorized into a legal business activity by Brazilian government officials. For that, all legal 
business activities are cataloged using a table called National Classification of Economic 
Activities, for short, CNAE (CNAE, 2003). 
To perform the categorization, the government officials (at the Federal, State and County 
levels) must find the semantic correspondence between the company economic activities 
description and one or more entries of the CNAE table. There is a numerical code for each 
entry of the CNAE table and, in the categorization task, the government official attributes 
one or more of such codes to the company at hand. This can happen on the foundation of 
the company or in a change of its social contract, if that modifies its economic activities. 
The work of finding the semantic correspondence between the company economic activities 
description and a set of entries into the CNAE table are both very difficult and labor-
intensive task. This is because of the subjectivity of each local government officials who can 
focus on their own particular interests so that some codes may be assigned to a company, 
whereas in other regions, similar companies, may have a totally different set of codes. 
Sometimes, even inside of the same state, different level of government officials may count 
on a different number of codes for the same company for performing their work of assessing 
that company. Having inhomogeneous ways of classifying any company everywhere in all 
the three levels of the governmental administrations can cause a serious distortion on the 
key information for the long time planning and taxation. Additionally, the continental size 
of Brazil makes this problem of classification even worse. 
In addition, the number of codes assigned by the human specialist to a company can vary 
greatly, in our dataset we have seen cases where the number of codes varied from 1 up to 
109. However, in the set of assigned codes, the first code is the main code of that company. 
The remaining codes have no order of importance. 
Due to this task is up to now decentralized, we might have the same job being performed 
many times by each of the three levels of the government officials. Nevertheless, it is known 
that there has been not enough staff to do this job properly. 
For all these reasons, the computational problem addressed by us is mainly that of 
automatically suggesting the human classifier the semantic correspondence between a 
textual description of the economic activities of a company and one or more items of the 
CNAE table. Or, depending on the level of certainty the algorithms have on the automatic 
classification, we may consider bypassing thus the human classifier. 
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2.1 Metrics for Evaluating of Multi-label Text Categorization 
Typically, text categorization is mainly evaluated by the Recall and Precision metrics in the 
single-labled cases (Baeza-Yates & Ribeiro-Neto, 1998). Nonetheless, other authors have 
already proposed different metrics for multi-label categorization problems (Schapire & 
Singer, 2000; Zhang & Zhou, 2007). 
Formalizing the problem we have at hand, text categorization may be defined as a task of 
assigning documents to a predefined set of categories, or classes (Sebastiani, 2002). In multi-
label text categorization a document may be assigned to one or more categories. Let D  be 
the domain of documents, { }CcccC ,,, 21 K=  a set of predefined categories, and 

{ }WdddW ,,, 21 K=  an initial set of documents previously categorized by some human 

specialists into subsets of categories of C . 
In multi-label learning, the training (-and validation) set { }TVdddTV ,,, 21 K=  is 

composed of a number of documents, each associated with a subset of categories in C . TV  
is used to train and validate (actually, to tune eventual parameters of) a categorization 
system that associates the appropriate combination of categories to the characteristics of 
each document in the TV . The test set { }WTVTV dddTe ,,, 21 K++= , on the other hand, 

consists of documents for which the categories are unknown to the automatic categorization 
systems. After being trained, as well as tuned, by the TV , the categorization systems are 
used to predict the set of categories of each document in Te . 
A multi-label categorization system typically implements a real-valued function of the form 

ℜ→×CDf :  that returns a value for each pair CDcd ij ×∈,  that, roughly speaking, 

represents the evidence for the fact that the test document jd  should be categorized under 

the category ii Cc ∈ , where CCi ⊂ . The real-valued function ( ).,.f  can be transformed into 

a ranking function ( ).,.r , which is an one-to-one mapping onto { }C,,2,1 K  such that, if 

( ) ( )21 ,, cdfcdf jj > , then ( ) ( )21 ,, cdrcdr jj < . If iC  is the set of proper categories for the test 

document jd , then a successful categorization system tends to rank categories in iC  higher 

than those not in iC . Additionally, we also use a threshold parameter so that those 
categories that are ranked above the threshold τ  (i.e., ( ) τ≥kjk cdfc ,| ) are the only ones to 

be assigned to the test document. 
We have used five multi-label metrics discussed by Zhang & Zhou (2007) to evaluate the 
categorization performance of PNN: hamming loss, one-error, coverage, ranking loss, and 
average precision. We now present each of these metrics: 
• Hamming Loss (hlossj) evaluates how many times the test document jd  is 

misclassified, i.e., a category not belonging to the document is predicted or a category 
belonging to the document is not predicted. 

 
ij CP

C
Δ= 1hlossj

 (1) 
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where C  is the number of categories and Δ  is the symmetric difference between the 

set of predicted categories jP  and the set of appropriate categories iC  of the test 

document jd . The predicted categories are those with rank higher than the threshold 

τ . 
• One-error (one-errorj) evaluates if the top ranked category is present in the set of 

proper categories iC  of the test document jd . 

 ( )
⎪⎩

⎪
⎨
⎧ ∈

= ∈

otherwise1

,max argif0
error-one Cc

j
ij Ccdf

 (2) 

where ( )cdf j ,max arg
Cc∈

 returns the top ranked category for the test document jd . 

• Coverage (coveragej) measures how far we need to go down the rank of categories in 
order to cover all the possible categories assigned to a test document. 

 ( ) 1,maxcoveragej −=
∈

cdr jCc i

 (3) 

where ( )cdr j ,max
iCc∈

 returns the maximum rank for the set of appropriate categories of 

the test document jd . 

• Ranking Loss (rlossj) evaluates the fraction of category pairs lk cc , , for which ik Cc ∈  

and il Cc ∈ , that are reversely ordered for the test document jd : 

 ( ) ( ) ( ){ }
ii

ljkjlk

CC

,cdf,cd|f,cc ≤
=jrloss  (4) 

where ( ) iilk CCcc ×∈, , and iC  is the complementary set of iC  in C . 
• Average Precision (avgprecj) evaluates the average of precisions computed after 

truncating the ranking of categories after each category ii Cc ∈  in turn: 

 ( )∑
=

=
iC

k
jk

i

R
C 1

jj precision1avgprec  (5) 

where jkR  is the set of ranked categories that goes from the top ranked category until a 

ranking position k  where there is a category ii Cc ∈  for jd , and ( )jkRjprecision  is the 

number of pertinent categories in jkR  divided by jkR . 

For p test documents, the overall performance is obtained by averaging each metric, that is, 

∑
=

=
p

jp 1
jhloss1hloss , ∑

=

=
p

jp 1
jerror-one1error-one , ∑

=

=
p

jp 1
jcoverage1coverage , 
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∑
=

=
p

jp 1
jrloss1rloss , ∑

=

=
p

jp 1
javgprec1avgprec . On the one hand, the smaller the value of 

hamming loss, one-error, coverage and ranking loss, the better the performance of the 
categorization system. On the other hand, for the average precision, the larger the value the 
better the performance. So, the problem can be formulated as an optimization problem, 
where the performance is optimal when hloss = one-error = rloss = 0 and avgprec = 1. 
In the next section are mentioned some related works regarding the problem of economic 
activities classification. 

3. Related Works 
The authors in (Souza et al., 2007) are among the first to tackle the problem of economic 
activities classification. In their work they compared the results achieved between a Nearly 
Neighbors algorithm approach and a Weightless Neural Network, called VG-RAM WNN, 
using a metric to evaluate the performance equivalent to 1 – one-error, defined in Section 
2.1. In the first algorithm they got the performance of 63.36%, while VG-RAM WNN showed 
to be slightly better, with a performance of 67.56%. However, the use of a single metric 
seemed to be not enough for evaluating multi-labled problems.  
A different approach was performed by (Oliveira et al., 2007). In this work were used 83 
arrays of small standard PNN for classification, whose main metrics used were Recall and 
Precision. However, it was noted to be very difficult to merge the results returned of each 
neural network array node. Thus the performance of the array as a whole was harmed. 
Although it has found a reasonable value for the Recall, the value for the Precision was very 
low, since almost every neural networks returned at least one class to each instance of test. 
A PNN with a slightly modified architecture to treat problems of multi-label classification   
was proposed in (Oliveira et al., 2008). Such neural network presents advantage over the 
array of small standard PNN approach, used in (Oliveira et al., 2007), because only one PNN 
is used to solve the problem of multi-label classification. Whereas, in the previous approach, 
we need to build many neural networks (83 in that case) which complicate the process of 
optimization.  
The results achieved in (Oliveira et al., 2008) using the proposed PNN were better than the 
achieved using the Multi-label k-Nearest Neighbors (ML-kNN) algorithm. The ML-kNN 
was considered to be the best algorithm for all the database used in (Zhang & Zhou, 2007). 
In order to evaluate the performance of the algorithms, the authors in that work used the 
metrics presented in the Section 2. Moreover, the parameters of these algorithms were 
optimized using a Genetic Algorithm (GA).   
The cited previous works used the same database that we present in this work, but the 
division of the database was performed in a different way for each work, making it difficult 
conducting a comparison of results among them. However, in this work we will divide the 
database in a similar way to used in (Oliveira et al., 2008), making possible a comparison 
among results. 
Another very close multi-label problem to one we are presenting in this paper, concern with 
the economic activities classification, is that of patent categorization (Li et al., 2007). Our 
problem and that are both based on free text descriptions of variety topics. So a large 
volume of patents documents, are usually, up to these days, manually classified by the 
patent offices, this is a labor-intensive and time-consuming task. A patent document may 
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cite another patent document, or articles, for comparing or contrasting reasons. Therefore, 
besides using the content categorization approach, the authors in (Li et al., 2007) proposed 
to extract and use the direct hyperlink citation relationships among patent documents in 
order to improve the quality of the whole process of classification. Hyperlink citation is a 
similar strategy some researchers have been widely applied to web page classification 
studies. The experiments were conducted on a nanotechnology-related patent dataset from 
the USPTO. The training dataset contained 13,913 instances, and the testing data set 4,358 
data instances. The average of category for document was 36, and the total of categories was 
up to 426. The results by the KGra kernel proposed approach yielded 86.67% accuracy 
overcome the 81% of manually processing and the results of previous work (Koster et al., 
2003). 
In the following, we describe a slightly modified Probabilistic Neural Network (PNN) used 
to solve the optimization problem of text categorization. 

4. Probabilistic Neural Network Architecture 
The Probabilistic Neural Network was first proposed by Donald Specht in 1990 (Specht, 
1990). This is an artificial neural network for nonlinear computing, which approaches the 
Bayes optimal decision boundaries. This is done by estimating the probability density function 
of the training dataset using the Parzen nonparametric estimator (Parzen, 1962). 
The literature has shown that this type of neural network can yield similar results, 
sometimes superior, in pattern recognition problems when compared with others 
techniques (Fung et al., 2005; Patra et al., 2002). 
The original Probabilistic Neural Network algorithm was designed for single-label 
problems. Thus, we slightly modified its standard architecture, so that it is now capable of 
solving multi-label problem addressed in this work. 
In our modified version, instead of four, the Probabilistic Neural Network is now composed 
of only three layers: the input layer, the pattern layer and the summation layer, as depicted in 
Figure 1. Thus like the original, this version of Probabilistic Neural Network needs only one 
training step, thus its training is very fast compared to the others feedforward neural 
networks (Duda et al., 2001; Haykin, 1998). The training consists in assigning each training 
sample iw  of class iC  to a neuron of pattern layer of class iC . Thus the weight vector of this 
neuron is the characteristics vector of the sample. 
For each pattern x  passed by the input layer to a neuron in the pattern layer, it computes 
the output for x . The computation is performed by Equation 6. 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −= 22

1exp
2

1
σπσ

ki
t

k,i
wxxF  (6) 

where x  is the pattern characteristics input vector, and the kiw  is the thk  sample for a 
neuron of class iC , iNk ∈ , whereas iN  is the number of neurons of iC . In addition, x  was 

normalized so that 1=xxt  and 1=ki
t

ki ww . The parameter σ  is the Gaussian standard 
deviation, which determines the receptive field of the Gaussian curve. 
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Figure 1. The modified Probabilistic Neural Network architecture 

The next step is the summation layer. In this layer, all weight vectors are summed according 
to Equation 7, in each cluster iC  producing ( )xpi  values, where C  is the total number of 

classes. 

 ( ) ( )
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Finally, for the selection of the classes, which will be assigned by neural network to each 
sample, we consider the most likely classes pointed out by the summation layer based on a 
chosen threshold. 
Differently from other types of neural networks, such as the feedforward one (Haykin, 
1998), the probabilistic neural network proposed needs few parameters to be configured: the 
σ , (see Equation 6) and the determination of threshold value. The σ  is used to narrow the 
receptive field of the Gaussian curve in order to strictly select only the more likely inputs for 
a given class. Other advantages of the probabilistic neural networks is that it is easy to add 
new classes, or new training inputs, into the already running structure, which is good for 
on-line applications (Duda et al., 2001). Moreover, it is reported in the literature (Duda et al., 
2001) that it is also easy to implement this type of neural network in parallel. On the other 
hand, one of its drawbacks is the great number of neurons in the pattern layer, which can be, 
nevertheless, mitigated by an optimization on the number of the neuron (Georgiou et al., 
2004; Mao et al., 2000). 
Next, we propose a PSO algorithm to find out the σ  parameters and tune the PNN 
automatically. 

5. The Canonical and the Bare Bones Particle Swarm Optimization 
Particle Swarm Optimisation (PSO) has its origins in the simulation of bird flocking 
developed by Reynolds (1987) and was further developed in the context of optimization by 
Eberhart and Kennedy (Eberhart & Kennedy, 1995; Kennedy & Eberhart, 1995). PSO is 
initialised with a population of random solutions. Each potential solution in PSO is also 



Particle Swarm Optimization 

 

320 

associated with a randomised velocity, and the potential solutions, are called particles, that 
move in the search space. Each particle keeps track of its coordinates in the problem space, 
which are associated with the best solution (fitness) it has achieved so far. This value is 
called pbest. Another best value that is tracked by the global version of the particle swarm 
optimizer is the overall best value, and its location, obtained so far by any particle in the 
population. This location is called gbest. 
The particle swarm optimization concept consists of, at each time step, changing the velocity 
of each particle moving toward its pbest and gbest locations (global version of PSO). 
Acceleration is weighted by random terms, with separate random numbers being generated 
for acceleration toward pbest and gbest locations, respectively. The PSO algorithm consists 
basically in updating the velocities and positions of the particle, respectively as follows in 
Equations 8 and 9 (Clerc & Kennedy, 2002): 

 ( ) ( ) ( )( ) ( )( )[ ]txgrandctxprandctvtv ibestibestii i
−+−+=+ 22111 λ  (8) 

 ( ) ( ) ( )11 ++=+ tvtxtx iii  (9) 

4,where,
42

2with 21
2

>+=
−−−

= ϕϕ
ϕϕϕ

λ cc  

where: 
• [ ]Tiniii xxxx ,,, 21 K=  is the position of the thi  particle in the n-dimensional search space; 

• [ ]Tiniii vvvv ,,, 21 K=  is the velocity of the thi  particle; 

• 
ibestp  is the best previous thi  particle position; 

• bestg  is the best particle among all particles; 
• λ  is the constriction factor; 
• 1c  and 2c  are positive constants; 
• 1rand  and 2rand  are random numbers in the range [0;1] generated using the uniform 

probability distribution. 
Usually, when the constriction factor is used, ϕ  is set to 4.1 ( 05.221 == cc ), and the 
constriction factor λ  is 0.729. In this paper, it is assumed minimization problems unless 
stated otherwise. 
In the meantime different versions of PSO have been proposed by (Krohling & Coelho, 
2006). In this work we focus on the Bare Bones PSO (Kennedy, 2003). The Bare Bones PSO 
(BBPSO) eliminates the velocity item and the Gaussian distribution is used to sampling the 
search space based on the global best (gbest) and the personal best (pbest) particle. So, the 
Equations 8 and 9 are replaced by Equation 10: 

 ( )2, iiN σμ=  (10) 

( )
i

i
bestbesti

bestbest
i pg

pg
−=

+
= σμ ,

2
with  

where N  denotes the Gaussian distribution.    
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This version of PSO presents some advantages over other versions because its reduced 
numbers of parameters of the algorithms to be tuned. The BBPSO is described in the Listing 
1. 

PSO and BBPSO Algorithms 
Input parameters: swarm size P  
FOR each particle i  
// random initialization of a population of particles with positions ix  using uniform 

// probability distribution. 

    ( ) iiiii uxxxx ⋅−+=  // 
ix  and ix  stands for the lower and upper bound, 

//respectively, and iu  is a random number.  

    
ibest xp

i
=  

    compute ( )ixf  // fitness evaluation. 

    ( ){ }igbest xfp min arg:=  // global best particle. 

END FOR 
DO 
    FOR each particle i  
        update the position ix  according to Equations 8 and 9 if PSO 

        update the position ix  according to Equation 10 if BBPSO 

        compute ( )ixf  // fitness evaluation 

        IF ( ) ( )
ibesti pfxf <  THEN // update of the personal best. 

            
ibest xp

i
=  

        IF ( ) ( )gbesti pfxf <  THEN // update the global best. 

            
ibestgbest pp =  

    END FOR 
WHILE termination condition not met. 
Output: 

gbestp , ( )gbestpf . 

 

Listing 1 PSO and BBPSO Algorithms. 

6. Experimental Results 
We employed a series of experiments to compare PNNs optimized using canonical PSO and 
BBPSO. We used a dataset containing 3264 documents of free text business descriptions of 
Brazilian companies categorized into a subset of 764 CNAE categories. This dataset was 
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obtained from real companies placed in Vitoria County in Brazil. The CNAE codes of each 
company in this dataset were assigned by Brazilian government officials trained for this 
task. Then we evenly partitioned the whole dataset into four subsets of equal size of 816 
documents. We joined to this categorizing dataset the brief description of each one of the 764 
CNAE categories, totalizing 4028 documents. Hence, in all training (-and validation) set, we 
adopted the 764 descriptions of CNAE categories and a subset of 816 business description 
documents, and, as the test set, the other three subsets of business descriptions totalizing 
2448 documents. 

6.1 Categorization of Free-text Descriptions of Economic Activities 
We pre-processed the dataset via term selection – a total of 1001 terms were found in the 
database after removing stop words and trivial cases of gender and plural; only words 
appearing in the CNAE table were considered. After that, each document in the dataset was 
described as a multidimensional vector using the Bag-of-Words representation (Dumais et 
al., 1998), i.e., each dimension of the vector corresponds to the number of times a term of the 
vocabulary appears in the corresponding document. Table 1 summarizes the characteristics 
of this dataset (dataset available at http://www.inf.ufes.br/~elias/vitoria.tar.gz). 

#C      #t Training set 
NTD      DC      CD      RC 

Test/validation set 
NTD      DC      CD      RC 

 764     1001 4.65       0.00     1.00    100.00 10.92    74.48    4.27    85.21 

Table 1. Characteristics of the CNAE dataset 

In this Table #C denotes the number of categories, #t denotes the number of terms in the 
vocabulary, NTD denotes the average number of terms per document, DC denotes the 
percentage of documents belonging to more than one category, CD denotes the average 
number of categories for each document, and RC denotes the percentage of rare categories, 
i.e., those categories associated with less than 1% of the documents of the dataset. The 
training set is composed by 764 categories descriptions belonging at CNAE table, where 
each description is concerning just one category and there is only one description by 
category (one to one relationship), resulting in CD equal 1 and DC equal 0. As there are 764 
instances of training and just one instance for category, the index RC is equal 100%. On the 
other hand, the test/validation set is composed by 3264 instances, where 74.48% of instances 
are assigned to more than one category and the average number of categories of each 
instance is more than 4 per document. However, like we said in Section 2, this number vary 
greatly. Moreover, we can note that RC value is high since there are few instances by 
category. 
The PNNs parameters σ , in Equation 6, were optimized for each class of the dataset and 
just one threshold τ  value for the whole neural network, resulting in 765 parameters, i. e., 
each particle is represented by a 765-dimensional vector. This is a quite huge amount of 
parameters for optimization. 
To tune these parameters we divided the training set (-and validation) set into a training set, 
which was used to inductively build the categorizer, and a validation set, which was used to 
evaluate the performance of the categorizer in the series of experiments aimed at parameter 
optimization. The training set is composed of 764 descriptions of CNAE classes and the 
validation set of 816 business description documents described previously. As a result, we 
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carried out a sequence of experiments with PSO and BBPSO. For each one of these 
algorithms was carried out 48 experiments: 
• 4 experiments each using algorithm with 100 particles and 500 iterations; 
• 4 experiments each using algorithm with 50 particles and 500 iterations; 
• 40 experiments each using algorithm with 50 particles and 100 iterations. 
The two first experiments set were used to evaluate the performance of the algorithms for 
different population sizes. The last 40 experiments were used for a statistical analysis. 
In Figures 2 and 3 are shown the performance of the PNN optimized in function of the 
number of iterations for 100 and 50 particles, respectively. Where is written in the legend 1st 
subset means that the first subset was used for validation and the 764 descriptions were 
used for training, in a similar way this is valid for others cases. The continuous lines are the 
results of the canonical PSO algorithm and the dotted lines are the results of the BBPSO 
algorithm. Here, the performance value is a linear combination of the several metrics, where 
these metrics were described in the Section 2. Thus, performance is the sum of the hamming 
loss, one error, coverage, ranking loss and precision  average , where precision  average  = 1 - 
average precision. The coverage value was divided by the factor 1−C  to normalize it and 

keep it in the same scale of the others metrics. A strategy for optimization could be the use 
of weighted metrics, however in this work was regarded the same value of importance for 
every metrics.  
In both figures the smaller the value of the performance, the better the performance of the 
neural network. We can observe in both figures that the BBPSO algorithm presented better 
results than the canonical PSO algorithm. Although the determination of the optimal swarm 
size is beyond the scope of this work, can be noted that exist no big differences between the 
results obtained with 100 particles and 50 particles. Moreover, there is a large gain of 
performance until the 100th iteration and a gain slower in the next iterations. Because of this 
and since the experiments require substantial amount of run time, we carry out others 
experiments using 50 particles and 100 iterations for statistical analysis purposes. 
In the Table 2 are shown the best, mean, median, standard deviation and worst results 
obtained in the validation with PSO and BBPSO. The results in bold indicate the best results 
found for each subset. We can observe in Table 2 that BBPSO finds slightly better results 
than the canonical PSO. 
After tuning, the multi-label categorizers were trained with the 764 descriptions of CNAE 
categories and tested with the 2448 documents of the test set. The Table 3 shows the best, 
mean, median, standard deviation and worst results found in the validation with PSO and 
BBPSO. In this table, where is written 1st means the 1st subset for validation and the others 
subsets for test, in a similar way this is valid for the other subsets. Again, the results in bold 
are the best results found for each subset. Similarly as occurred in Table 2, Table 3 also 
shows that the BBPSO performs slightly better than the PSO. 
The mean of results achieved for each metric are shown in Table 4 and 5 for the PNN trained 
by canonical PSO and BBPSO, respectively. Comparing the results found in this tables we 
noticed that there weren’t significant differences among them, this indicates that the 
proposed PNN presents certain robustness on the dataset used for training/validation.  
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Figure 2. Experimental results of validation of the PNN using PSO and BBPSO with 100 
particles and 500 iterations 

 

 

 
Figure 3. Experimental results of validation of the PNN using PSO and BBPSO with 50 
particles and 500 iterations 
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Subset Algorithm Best Mean Median Std. Deviation Worst 

1st PSO 
BBPSO 

1.1334 
1.0789 

1.1744 
1.1107 

1.1617 
1.1163 

0.0292 
0.0187 

1.2194 
1.1344 

2nd PSO 
BBPSO 

1.0596 
1.0334 

1.0971 
1.0652 

1.1003 
1.0671 

0.0176 
0.0192 

1.1241 
1.0864 

3rd PSO 
BBPSO 

1.0320 
0.9622 

1.0475 
0.9902 

1.0488 
0.9842 

0.0087 
0.0217 

1.0608 
1.0257 

4th PSO 
BBPSO 

0.9741 
0.9363 

1.0060 
0.9553 

1.0072 
0.9558 

0.0202 
0.0110 

1.0435 
0.9746 

Table 2. Information about the validation phase 

Subset Algorithm Best Mean Median Std. Deviation Worst 

1st PSO 
BBPSO 

1.1465 
1.1204 

1.1766 
1.1361 

1.1671 
1.1358 

0.0284 
0.0146 

1.2332 
1.1689 

2nd PSO 
BBPSO 

1.1190 
1.1107 

1.1632 
1.1429 

1.1679 
1.1432 

0.0217 
0.0209 

1.1853 
1.1798 

3rd PSO 
BBPSO 

1.1537 
1.1375 

1.1873 
1.1632 

1.1912 
1.1633 

0.0203 
0.0184 

1.2202 
1.2026 

4th PSO 
BBPSO 

1.1841 
1.1555 

1.2260 
1.1810 

1.2260 
1.1826 

0.0345 
0.0167 

1.3057 
1.2094 

Table 3. Information about the test phase 

Subeset Hamming loss One-error Coverage Ranking loss Average precision 
1st 
2nd 
3rd 
4th 

0.0056 
0.0056 
0.0055 
0.0056 

0.3708 
0.3688 
0.3756 
0.3857 

144.3723 
142.2521 
143.9365 
154.7565 

0.0835 
0.0874 
0.0912 
0.0937 

0.4725 
0.4850 
0.4737 
0.4619 

Table 4. Results achieved with PNN trained by canonical PSO 

Subeset Hamming loss One-error Coverage Ranking loss Average precision 
1st 
2nd 
3rd 
4th 

0.0056 
0.0056 
0.0055 
0.0056 

0.3544 
0.3592 
0.3648 
0.3634 

143.9079 
145.8953 
147.5607 
155.6463 

0.0749 
0.0805 
0.0842 
0.0874 

0.4875 
0.4937 
0.4847 
0.4794 

Table 5. Results achieved with PNN trained by BBPSO 

A comparison among the results obtained in this work with the found in (Oliveira et al., 
2008) is done in Table 6. The results mentioned are the mean of the four subsets for each 
metric, and for those in bold are the best results found for each one of the metrics. It is 
important to highlight that such comparison is a little unfair, since the GA algorithm was 
executed with 80 individuals and 100 generations whereas the PSO and BBPSO were 
simulated with 50 particles and 100 iterations. Nevertheless, the results achieved to PNNs 
are similar. Furthermore, the approach using PSO and BBPSO got the best value of coverage 
and one-error, respectively. We can note that there is a discrepant difference among the 
performance of MLkNN and the performance obtained with the PNNs.  
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Again we can note a certain robustness of the PNN, because its performance didn’t change 
significantly when trained by a PSO, BBPSO or GA algorithm.  

Metrics PNN-PSO PNN-BBPSO PNN-GA ML-kNN-GA 
Hamming loss 
One-error 
Coverage 
Ranking loss 
Average precision 

0.0055 
0.3752 

146.3293 
0.0889 
0.4732 

0.0055 
0.3604 

148.2525 
0.0817 
0.4863 

0.0055 
0.3736 

156.4150 
0.0798 
0.4880 

0.0055 
0.4952 

303.9029 
0.1966 
0.3813 

Table 6. Comparison among different approaches of classification 

7. Conclusions 
The problem of classifying a large number of economic activities descriptions from free text 
format every day is a huge challenge for the Brazilian governmental administration. This 
problem is crucial for the long term planning in all three levels of the administration in 
Brazil. Therefore, an either automatic or semi-automatic manner of doing that is needed for 
making it possible and also for avoiding the problem of subjectivity introduced by the 
human classifier. 
In this work, we presented an experimental evaluation of the performance of Probabilistic 
Neural Network on multi-label text classification. We performed a comparative study of 
probabilistic neural network trained by PSO and BBPSO, using a multi-label dataset for the 
categorization of free-text descriptions of economic activities. The approach using PSO and 
BBPSO were compared with GA and it was noted that there weren’t significant differences 
among them.     
To our knowledge, this is one of the first few initiatives on using probabilistic neural 
network for text categorization into a large number of classes as that used in this work and 
the results are very promising. One of the advantages of probabilistic neural network is that 
it needs only one parameter to be configured. In addition, the BBPSO employed is an almost 
parameter free algorithm, just the number of particles needs to be specified. 
A direction for future work is to boldly compare the probabilistic neural network 
performance against other multi-label text categorization methods. Examining the 
correlation on assigning codes to a set of descriptions of economic activities may further 
improve the performance of the multi-label text categorization methods. We are planning on 
doing that in future work. 
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1. Introduction     
Multi-robotics systems are currently subject of major interest in the robotics literature. In the 
leading journals can be found hundreds of articles, published in the last few years, 
concerning applications and theoretical studies of small groups maintaining in fixed 
formation (Fua et al., 2007; Kaminka et al., 2008) as well as swarms of thousands robots 
(Derenick & Spletzet, 2007; Daigle et. al, 2008). 
The large systems can be moreover represented by work published in (Peasgood et al., 2008) 
where collision free trajectories to reach individual goals are designed for 100 robots. The 
method using graph and spanning tree representation is developed for utilization in 
underground mine environment. In another example (Kloetzer & Belta,2007), a large swarm 
of robots is controlled using hierarchical abstractions. Inter-robot collision avoidance and 
environment containment are there guaranteed applying centralized communication 
architecture. Finally work presented in (Milutinovi & Lima, 2006) applies a Stochastic 
Hybrid Automation model for modeling and control of multi-agent population composed of 
a large number of agents. In this method probabilistic description of task allocation as well 
as distribution of the population over the work space is considered. As an example of 
common multi-robots application highway traffic coordination can be mentioned. In 
(Pallotino et al., 2007) is presented decentralized approach using traffic rules for control of 
tens vehicles. The method enables dynamically adding and removing of the vehicles and is 
based only on local communication which makes the algorithm scalable.  
Algorithms designed for smaller groups of robots are usually aimed at maintaining of 
vehicles in a predefined formation for the purpose of cooperative tasks accomplishing (as 
can be e.g. box pushing (Vig & Adams, 2006), load carrying (Tanner et al., 2003), snow 
shoveling (Saska et al., 2008) or aircraft as well as satellites cooperative mapping (Ren & 
Beard, 2003; Kang & Sparks, 2000). Another interesting application of formation driving is 
presented in (Fahimi, 2007) where autonomous boats are maintained in formations under 
sliding mode, which provides faster movement. The hot research topics in formations of 
autonomous robots, investigated nowadays, include e.g. data fusion: (Kaminka et al., 2008) 
represents the sensing capabilities using a monitoring multigraph. This approach allows the 
robots to adjust to sensory failures by switching of control graphs on-line. An application of 
data fusion can be cooperative localization of mobile formations: (Mourikis & Roumeliotis, 
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2006b) addresses a problem of resource allocation which provides the sensing frequencies, 
for each sensor on very robot, required in order to maximize the positioning accuracy of the 
group. This work is extended by a performance analysis providing upper bound on the 
robots' expected positioning uncertainty which is determined as a function of the sensors' 
noise covariance and relative position measurements (Moutikis & Roumeliotis, 2006a). 
Another separate branch of the research relevant to the formations of mobile robots is 
solving how to achieve the desired formation. An approach considering this task without 
assigning specific configuration to specific robots is published in (Kloder & Hutchinson, 
2006) where a new representation for the configuration space of permutation-invariant 
multi-robot groups is described.  
This chapter is focussed on the path planning and formation driving of autonomous car-like 
robots. In the literature formation driving approaches are divided into the three main 
groups: virtual structure, behavioral techniques, and leader-following methods. In the 
virtual structure approaches is the entire formation regarded as a single structure where to 
each vehicle is given a set of control to follow the desired trajectory of formation as a rigid 
body (Beard et al., 2001; Lalish et al., 2006). In behavior based methods the desired behaviors 
are designated for each agent and the final control is derived as a weighted sum with 
respect to the importance of each task (for basic ideas see (Langer et al., 1994; Parker, 1998). 
These classical methods have been extended for maintaining of shape of formations using 
desired patterns (Lawton et al., 2003; Balch & Arkin, 1998). In the leader-following 
approaches, a robot or even several robots are designated as leaders, while the others are 
following them (Desai et al., 2001; Das et al., 2003). Example of the methods using multiple 
leaders is presented in (Fredslund & Mataric, 2002) where due to limited communication the 
followers are leaded by their closest neighbors. Unfortunately all these results are focused 
on the following of a leader's trajectory which is assumed as an input of the methods. It is 
supposed that the trajectory is designed by a human operator or by a standard path 
planning method modified for formation requirements. In the literature there is no adequate 
method providing flexible control inputs for the followers as well as designing an optimal 
path for the leader of formation responding to the environment which is necessary for fully 
autonomous systems. 
This chapter proposes a path planning approach developed for leader-following formations 
of car-like robots which is an extension of work (published by the authors' team in (Saska et 
al., 2006)) designed for single robot. In this extended method a reference path calculated by 
the leader should be feasible for all following robots without changing a relative distance in 
the formation. This requirement can be satisfied using a solution which is composed of 
smoothly connected cubic splines and can be calculated on-line. Qualities of the result like 
the length and minimal radius of the resulting path as well as the distance to obstacles are 
merged into a discontinuous penalty function.  
The resulting global minimization problem is solved with Particle Swarm Optimization 
(PSO). Since the original PSO scheme has been developed, many various modifications were 
proposed that more or less improve the method. In context of our optimization problem, we 
are strongly limited by the requirement on low time complexity. Therefore, every 
modification that could be used here must not lead to any slow down of the convergence. 
This fact suspend some sequential hybridization of PSO and any other optimization 
technique. Also, any sub-swarm based and multi-start algorithms are not suitable. It will be 
shown that the original global-best PSO performs well and even significantly better than 
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genetic algorithms. Nevertheless, the chapter shows some comparison of PSO with limited 
maximum velocity and constricted PSO that can improve the result in case of small swarm 
and number of iterations.  

2. Formation Control 
The formation driving method described in this section is based on a leader-follower 
approach, in which the followers should follow a leader's trajectory. The method was 
developed by Barfoot and Clark (Barfoot et al., 2002; Barfoot & Clark, 2004) and later 
improved for following of trajectories with arbitrary shape within our team (Saska et al., 
2006; Hess et al., 2007). In this chapter there will be published only the parts of formation 
control necessary for understanding of restrictions applied in the path planning while a 
detailed description of control inputs for each vehicle can be found in (Saska et al., 2006; 
Hess et al., 2007). 
In the description of the method as well as in the final experiments, known map of 
environment and utilization of car-like robots with limits for maximum velocity rv  and 

minimum turning radius rR  will be assumed. Furthermore, around each vehicle will be 

considered distance rd  from its center in which the obstacles have to be avoided ( rd  is 
usually a function of robot’s width). 

 

 
Figure 1. Two subsequence snapshots of formation driving using fixed position of followers 
in Cartesian (a) and Curvelinear (b) coordinates. Solid lines denote path of leader while 
paths of followers are denoted by dashed lines 
Important fact of the formation driving of car-like robots that needs to be considered is 
caused by impossibility to change heading of the robot on spot. Due to this feature 
formations with fixed relative distance in Cartesian coordinates cannot be used, because 
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such structure makes smooth movement of the followers impossible (simple example is 
shown in Fig. 1. Therefore we utilized an approach in which the followers are maintained in 
relative distance to the leader in curvelinear coordinates with two axes p and q, where p 
traces movement of leader and q is perpendicular to p as is demonstrated in Fig. 1b. The 
positive direction of p is defined from actual position of the leader back to the origin of its 
movement and the positive direction of q is defined in the left half plane in direction of 
forward movement. 
The shape of formation is then uniquely determined by states )( )(tpL i

tψ  in travelled distance 

pi(t) from actual position of the leader along its trajectory and by offset distance )( )(tpi i
tq  

between positions of the leader and the ith  follower in perpendicular direction from the 
leaders' trajectory. The parameters )(tpi and )(tqi  defined for each follower i  can be 

varying during the mission and )(tpi
t is time when the leader was at the travelled distance 

)(tpi  behind the actual position. )}(),(),({)( ttytxt LLLL Θ=ψ  denotes the 

configuration of a leader robot at time t , and similarly )}(),(),({ ttytx iiii Θ=ψ , with 

},,1{ rni …∈ , denote the configuration for each of the rn  follower robots at time t . The 

Cartesian coordinates tt yx ,  for an arbitrary configuration )(tψ  define the position of a 

robot and )(tΘ  denotes its heading. 
To convert the state of the followers in curvelinear coordinates to the state in rectangular 
coordinates )(tiψ the following equations can be applied: 

  

(1)

 

where )}(),(),({)( )()()()( tpLtpLtpLtpL iiii
ttytxt Θ=ψ is state of the leader in time )(tpi

t . 

Applying the leader following approach using qp,  coordinates we can easily determine 

inadmissible interval of turning radius for the leader of formation as )();( tRtR ff
+− , where 

  
(2)

 

These restrictions must be applied due to the different turning radius of the robots on the 
different position in the formation during turning. It is obvious that the robot following 
inner track should go slower and with smaller turning radius than the robot further from 
the centre of turning.  
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Since the leader trajectory has to be collision free for the leader but also for the followers, the 
shape of the formation should be included to the avoidance behaviour. The extended 
obstacle free distance for the leaders' planning can be then expressed as 

  (3) 

Remark 2.1 Time dependence and asymmetry of the formation will be for simplification of 
the algorithm description omitted and the variables will be considered as constants: 

  
(4) 

where T is total time of the formation movement. 

3. Path Description and Evaluation  
The path planning for the leader of formation can be realized by a search in the space of 
functions. In this approach the space is reduced to a sub-space which only contains strings 
of cubic splines. The mathematic notation of a cubic spline (Ye & Qu, 1999)  is 

  (5) 

where s is within the interval >< 1;0  and DCBA ,,, are constants. The whole string of 
the splines is then in 2D case uniquely determined by n8  variables ( n  denotes the amount 
of splines in the string). The initial and desired state (position and orientation) of the 
formation is specified by 8 equations, while continuity of first and second derivative in the 
whole path, which is important for the formation driving as is shown in (Saska et al., 2006), 
is guaranteed by )1(6 −n  equations.  
 

 

 
Figure 2. Path representation 
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Therefore, only )1(2 −n  degree of freedom define the whole path, which conforms to 
positions of the points in the spline connections. The whole path representation used in our 
method is shown in Fig. 2. 
Each solution achieved by the global optimization method is evaluated by a cost function. 
The global minimum of this function corresponds to a smooth and short path that is safe 
(there is sufficient distance to obstacles). The cost function was in introduced method used 
in the form 

  (6) 

where part lengthf  corresponds to the length of the path which in 2D case can be computed 

by 

  (7) 

The component cedisf tan  (Fig. 3a) penalizes the paths close to an obstacle and it is defined 
by equation 

  

(8)

 

where dfp  penalizes solutions with a collision that can be avoided by a change in the 

formation and drp  penalizes paths with a collision of the leader. Parameter d  denotes 
minimal distance of the path to the closest obstacle and can be expressed as 

  (9) 

where O is set of all obstacles in the workspace of the robots. 
The part of the cost function radiusf  (Fig. 3b), that is necessary because of using the car-like 
robots as well as due to presented formation driving approach, is computed according 

  
(10)
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where solutions penalized only by rfp  can be repaired by a formation changing, while 

paths with radius smaller than rR  do not meet even requirements for a single robot. 
Parameter r is minimal radius along the whole path and it is defined by  

  
(11)

 

 

 

 

Figure 3. (a) cedisf tan , (b) radiusf  - components of cost function with denoted penalizations  

4. Particle Swarm Optimization 

Each particle i is represented as aD-dimensional position vector )(txi
G

and has a 

corresponding instantaneous velocity vector )(tvi
G

. The position vector encodes robot path 
according to the schema depicted in Fig. 2. In our simple case of three splines (two spline 
connections), the position vector is 4-dimensional and },,,{)( ,2,2,1,1 yxyxi PPPPtx =G

. 

Furthermore, each particle remembers its individual best value of fitness function and 
position )(tpi

G
 that has resulted in that value. During each iteration t, the velocity update 

rule (12) is applied on each particle in the swarm: 

  
(12)
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The )(tpg
G

 is the best position of the entire swarm and represents the social knowledge. 

Another alternative can be "local best PSO", where the best position from a local 
neighborhood is used instead of )(tpg

G
. We chose the "global-best PSO" because of faster 

convergence that is consistent with our requirement on low time complexity. The parameter 
w is called inertia weight and during all iterations decreases linearly from wstart=0.8 to 
wend=0. The symbols R1 and R2 represent the diagonal matrices with random diagonal 
elements drawn from a uniform distribution between 0 and 1. The parameters 1ϕ  and 2ϕ  
are scalar constants that weight influence of particles' own experience and the social 
knowledge. The parameters were set 221 == ϕϕ  in compliance with literature 
recommendation. 
Next, the position update rule (13) is applied: 

  (13) 

If any component of )(tvi
G

 is less than maxV−  or greater than maxV+ , the corresponding 

value is replaced by maxV−  or maxV+ , respectively. The maxV  is maximum velocity 
parameter. This parameter (as well as the velocity and position vectors) is related to the 
spatial dimensions of the planning area. For the area with 4000080000 ×  pixels, some 
preliminary tests showed that 3000max =V was suitable setting. 

The update formulas (12) and (13) are applied during each iteration and the )(tpi
G

 and 

)(tpg
G

 values are updated simultaneously. The algorithm stops if maximum number of 

iterations is achieved. 
There are some specific moments in our application. The swarm initialization is the most 
important one. The particular components of the particle positions have the direct 
interpretations. They are coordinates of 2-D points in the robot workspace. Therefore, it is 
suitable to initialize the position vectors into a rectangle with one corner in the start position 
and the opposite corner in the goal position. However, there can be some different 
initialization strategies (e.g. initializing the spline connection points over the whole 
workspace or on the line connecting the start and the goal position. 
For our particular scenarios, we choose the initial position to be uniform random numbers 
from <30000;40000>. The same initialization was used for genetic algorithm described 
below. 

5. Genetic Algorithm 
The PSO has been compared to the most commonly used nature-inspired method - genetic 
algorithm (GA). In all experiments, the same GA scheme with stochastic uniform selection, 
scattered crossover and gaussian mutation was used (Vose, 1999). The particular settings 
have been chosen experimentally. 
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In the stochastic uniform selection a line is laid out in which each parent corresponds to a 
section of the line of length proportional to its scaled value. The algorithm moves along the 
line in equal sized steps and allocates a parent from the section it lands on. The "scattered" 
crossover selects randomly the genes to be recombined. The Gaussian mutation adds a 
random number drawn from Gaussian distribution with zero mean and variance linearly 
decreasing from 05.0 r  to 0125.0 r , where 0r  is the the initial range (for our experiments, 

1000030000400000 =−=r ). Moreover, elitism has been used that copies two best 
individuals from the previous generation into the new generation if a better individual was 
not created in the new generation. This prevents the loss of best solution and accelerates the 
convergence.  

6. Implementation Details 
Great number of evaluations is required by available optimization methods and therefore 
computational complexity of the cost function is key factor for real time applications. The 
most calculation-intensive part of the equation (6) is cedisf tan . It is done by big amount and 
complexity of obstacles from which the distance needs to be computed. In the presented 
method a distance grid map of the environment is pre-computed. Each cell in such matrix 
denotes minimum distance of relevant place to the closest obstacle according to equation (8). 
The regions outside the polygon denoting walls of the building or inside the obstacles could 
be signed by infinite value, because they are infeasible for the formation movement. 
Nevertheless due to the simple initialization used in this chapter all particles in the initial 
swarm can be intersecting an obstacle and therefore evaluated by the same value 

∞=cedisf tan .  

 
Figure 4. Map of utilized workspace with denoted zoomed areas of the scenarios: Situation 1 
and Situation 2 
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Figure 5. Distance map used for computing of the cost function. Black color denotes the 
regions where 0tan =cedisf  and white color denotes the region with maximum values of 

cedisf tan  

In such case even the smartest optimization method degrades to a random search. A 
solution could be to artificially add a rising of cedisf tan  outside the polygon from the walls 
of building (similarly inside the circular obstacles the increase will be from the borders to 
the center of obstacle) which enables the optimization method to reach the feasible space. 
Big advantage of such grid-map approach is possibility to use obstacles with arbitrarily 
complicated shape, that is usually done be autonomous mapping technique. An occupancy 
grid that is obtained by a range finder can be used as well. An example of the robot 
workspace with obstacles that was used for experiments is depicted on the Fig. 4 and the 
appropriate distance map is drawn in the Fig. 5.  

7. Experiments 
This section summarizes various types of experiments in static environment for two scenarios 
(Situation 1 and Situation 2) depicted in Fig. 4. First, the results obtained by PSO are discussed 
and further, the PSO is compared to genetic algorithm. The presented tests have been realized 
in the environment of computer science building in Wuerzburg (map is depicted in Fig. 4) 
which is frequently used for hardware experiments of indoor mobile robots. 

7.1 PSO Results 
Parameters of the PSO method were adjusted in agreement with (Saska et al., 2006), where 
the algorithm was used in similar application. As the test scenario were chosen situations 
with several local extremes corresponding to feasible as well as unfeasible paths for the 
leader. In Fig. 6 are presented two solutions of the Situation 1 designed by PSO method. The 
path evaluated by cost f=13.02 is close to the global optimal solution and is feasible for the 
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formation maintaining fixed shape. Contrariwise the second path (f=28.71) is close to one of 
the local optimal solutions and it is feasible only for a single robot. For the formation driving 
it means that the shape of the formation must be temporarily changed during the passage 
around the obstacles as well as in the loop replacing sharp unfeasible curve next to the 
corner of the room. We should note that the loop was created automatically by the path 
planning method. Such manoeuvres could be useful e.g. in crossroads of narrow corridors 
where straightforward movement is impossible due to the restriction of turning radius. 
 

 
Figure 6. Two different solutions of Situation 1 obtained by PSO 

Results of the second scenario, Situation 2, are shown in Fig. 7 where the solution with 
f=13.82 is feasible for the complete formation whereas the second solution (f=18.31) requires 
small changes of the positions of outer followers. The second path is shorter than the first 
solution, which is close to the global minimum of the cost function (6). Therefore the second 
solution could be preferred in the application where the shape of formation can be easily 
modified. 
 

 
Figure 7. Two different solutions of Situation 2 obtained by PSO 
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7.2 Comparison with GA 
The two scenarios described above were used for the comparison of PSO and GA. For both 
methods, the swarm (population) size was 30 and the number of iterations (generations) 
was 300. Such an excessive number of cost function evaluations enables better evaluation of 
results and the chance of the algorithm to converge into an optimum. 

 

 
Table 1. The minimum, mean, standard deviation and maximum of the set of minimum cost 
values found by particular runs for Situation 1. Set of results from 100 repeated runs was 
used 

 

 

Table 2. Situation 1 - absolute occurrences of different values of final minf  in the set of 100 
results of independent runs 

Because of statistical purposes, 100 runs of each method (with different random 
initialization) has been launched. The main quality criterion used is the minimum cost 
function minf  found at a particular moment. First, we took final values of the minimum 
cost value found in particular runs. Basic statistical properties computed from the 100 runs 
are depicted in Table 1. Although the mean best PSO solutions is lower than the mean best 
GA solution, the difference is not statistically significant (two-sample t-test with significance 
level 0.05 was used to investigate the significance of difference between the methods). 
However, high standard deviation and high maximum (worst result) obtained for GA 
results shows that in some runs, the genetic algorithm found extremely poor result that do 
not belong to any of the two optima shown in Fig. 6. This is especially evident from the 
Table 2, where the histogram of best solutions is depicted. The second column corresponds 
to the global minimum of cost function that lies under the value f=14. The numbers are 
absolute occurrences (of totally 100 runs) of the final minimum fitness values that are lower 
than 14. The third column describes hits to the local optima (that lies somewhere around 28). 
The other two columns correspond to quite poor (probably unusable) solutions. One can 
observe that for the Situation 1 the GA finds these bad solutions in 4 of totally 100 cases. On 
the other hand the PSO always finds at least the local minimum and is more susceptible to 
getting stuck in the local optimum. This fact is probably a tax on the faster convergence. The 
higher convergence rate of PSO can be observed from Fig. 8b, where the mean temporal 
evolution of minf  is depicted. One can see that the curve for PSO decreases and reaches 
minimum much more rapidly than the curve measured for GA. 
The results for Situation 2 are similar. This time, the mean result for GA is significantly 
worse (Table 3). In histogram (Table 4 and Fig. 9a), one can observe that GA again was 
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unable to find neither the global optimum (f<16) nor the local optimum ( )19;16(∈f )in 5 
of totally 100 cases. Moreover, it found the global optima fewer times than the PSO. Again, 
the convergence of PSO is much faster for the Situation 2. 

 

Figure 8. The results for Situation 1. The histogram of final minf values obtained from 100 

runs (a) and the temporal evolution of minf  values averaged over 100 runs (b) 

 

Figure 9. The results for Situation 2. The histogram of final minf  values obtained from 100 

runs (a) and the temporal evolution of minf  values averaged over 100 runs (b) 

 
Table. 3 The minimum, mean, standard deviation and maximum of the set of minimum cost 
values found by particular runs for Situation 2. Set of results from 100 repeated runs was 
used 
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Table 4. Situation 2 - absolute occurrences of different values of final fmin in the set of 100 
results of independent runs 

The conclusion of this section is that the PSO finds the solution much faster than GA . 
Moreover, the GA sometimes produces unusable poor solution. Both the PSO and GA 
parameters were tuned experimentally in some preliminary testing. 

7.3 Constriction and Dynamic Inertia Weight 
It has been already mentioned above that an acceptable modification of the PSO method 
must be very simple and should lead to improvement of algorithm's convergence rate. In 
this section, two very simple modifications are compared to the basic PSO described in 
Section 4. The first modification is the PSO with constriction coefficient (CCPSO) and the 
second is PSO with adaptive dynamic inertia weight (AIWPSO) (Fan & Chang, 2007). 
The constriction coefficient was derived from an eigenvalue analysis of swarm dynamics 
(Clerk, 1999). The method is used to balance exploration and exploitation trade-off. The  
velocity update Equation (12) is modified: 

  
(14)

 

where χ  is the constriction coefficient, which is computed from values of 1ϕ  and 2ϕ . We 

used 1.221 == ϕϕ  and  

  
(14)

 

where 21 ϕϕϕ += . The advantage is that the velocity clamping does not need to be used. 
The second modification - PSO with adaptive dynamic inertia weight (AIWPSO) (Fan & 
Chang, 2007) is based on dynamically changing inertia weight )(tww = . The principal 
modification is the nonlinear modification of the inertia weight. The nonlinear function is 
given by: w=(d)rwstart, where d  is the decrease rate and has been set experimentally to 

95.0=d  and r  changes through time according to the following rules: 1. 1+← rr  if 
the best cost function value (minimal value in the swarm) decreased (improved) and 2. 

1−← rr  if the best cost function value increased or remained the same. This mechanism 
wishes to make particles fly more quickly toward the potential optimal solution, and then 
through decreasing inertia weight to perform local refinement around the neighbourhood of 
the optimal solution.  
The comparison has been done using the Situation 2 described above. The results of 100 
runs are depicted on Fig. 10. For all runs, only 15 particles and 100 iterations were used. The 
results show that in average, better results are obtained by CCPSO, although the CCPSO has 
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slower convergence than PSO. On the other hand, the difference of the final best solutions is 
not significant. The PSO reached the global optimum area (f<20) in 73 runs and the final 
minimum cost value averaged over 100 runs was 73.25. The CCPSO reached the global 
optimum area in 71 runs and the final minimum cost value averaged over 100 runs was 
117.62. One can also see that the AIWPSO did not perform well. It found the global 
optimum area in 54 runs and the final minimum cost value averaged over 100 runs was 
1159.00. 

 

Figure 10. Comparison of three PSO modifcations. The temporal evolution of minf values 
averaged over 100 runs 

7.4 Simulation of Formation Driving 

 
Figure 11. Simulation of formation movement 
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For demonstration of the formation movement was chosen the feasible solution designed by 
PSO in situation 1. The path planning as well as the formation driving were adjusted for the 
formation of three robots in the line that is perpendicular to the leader's path. In the Fig. 11 
is zoomed part of the workspace with delineated positions of the robots during task 
execution. Robots were controlled by an approach that was presented by our team in (Hess 
et al. 2007). 

8. Conclusion and Future Work 
This chapter gave concrete recommendations about the use of PSO based spline-planner. 
Namely, a suitable PSO method with recommended parameter values is resumed and its 
main advantages and disadvantages are critically discussed. The original PSO with velocity 
clamping and linearly decreasing inertia weight performed well and was able to find better 
solution in shorter time than genetic algorithm. Because of strong limitations on time 
consumption, we do not recommend any complex modification. Among the two tested 
modification, the PSO with constriction coefficient could compete with the original PSO 
version. Finally, it was shown, how problematic is the use of PSO for formation path 
planning. In our cases, the only feasible paths corresponded to global optima of the cost 
function. A promising future direction is the modified random initialization of the swarm 
that can be adjusted in number of ways. The good initialization is simple instrument for 
improving the speed of the planning process that is for real time planning and dynamical 
environment response crucial.   
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1. Introduction 
The particle swarm optimization technique is one of the promising tools to find a proper 
optimum for an unknown function optimization. Especially, global search capability of the 
method is very powerful. The particle swarm optimization utilizes common knowledge of 
the group and individual experiences effectively. That is, direction for the best estimator 
that a particle has ever reached, direction for the best one that all particles have ever found 
and momentum are successfully combined to determine the next direction. At the same 
time, the method does not utilize gradient of the objective function. Only values of the 
objective function are used. In many applications, it is difficult or impossible to obtain the 
gradient of an objective function. Then, the particle swarm optimization can take advantage 
of the merit. 
However, this means that the method does not use local information of the function. Even if 
a particle is close to a global optimal, the particle moves based on three factors described 
above. In this case, it seems better to search neighbour area carefully. To do so, local 
information such as gradient is necessary. 
On the other hand, the simultaneous perturbation method is a kind of stochastic gradient 
method. The scheme can obtain the local information of the gradient without direct 
calculation of the gradient. The simultaneous perturbation estimates the gradient using a 
kind of finite difference technique. However, even if dimension of the parameters are large, 
the simultaneous perturbation requires only two values of the target function. Therefore, we 
can apply this to high dimensional optimization problems in effect. 
As mentioned now, since the simultaneous perturbation is a stochastic gradient method, we 
cannot expect global search capability. That is, this method cannot give a global optimal but 
a local one. 
Combination of the particle swarm optimization and the simultaneous perturbation 
optimization will yield interesting algorithms which have advantages of these two 
approaches. There are some ways to combine the particle swarm optimization and the 
simultaneous perturbation method. In this paper, we propose four new algorithms based on 
combinations of the particle swarm optimization and the simultaneous perturbation. Some 
results for test functions are also shown. 
Moreover, hardware implementation of these kinds of algorithms is interesting research 
target. Especially, the particle swarm optimization has plural search points which are 
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candidates of optimum. If we can evaluate these search points in parallel processing system, 
we can realize intriguing optimization scheme as a hardware system. From this point of 
view, we implemented the particle swarm optimization using the simultaneous 
perturbation by using field programmable gate array (FPGA). This paper presents detailed 
description on the implementation of the simultaneous perturbation particle swarm 
optimization. 

2. Particle swarm optimization and simultaneous perturbation 
2.1 Particle swarm optimization 
The particle swarm optimization is proposed by Eberhart and Kennedy (Kennedy & 
Eberhart, 1995). This scheme realizes an intelligent interesting computational technique. 
Intelligence come out swarm behaviour of creatures are successfully modelled as an 
optimization scheme (Bonabeau et al., 1999)(Engelbrecht, 2006). Many applications of the 
particle swarm optimization for some fields are reported (Juang, 2004)(Parsopoulos & 
Vrahatis, 2004)(Bo et al., 2007)( Fernandez et al., 2007)( Nanbo, 2007)(del Valle et al., 2008). 
Our problem is to find a minimum point of an objective function 1( )f x ∈ℜ  with an 
adjustable n-dimensional parameter vector nx∈ℜ . The algorithm of the particle swarm 
optimization is described as follows; 

  (1) 

  (2) 

where, the parameter vector tx  denote an estimator of the minimum point at the t-th 
iteration. txΔ  is called a velocity vector, that is, a modifying vector for the parameter vector. 
This term becomes so-called momentum for the next iteration. 

tp  is the best estimator that this particle has ever reached, tn  is the best one that all the 
particles have ever found until the t-th iteration. The coefficients 1φ  and 2φ  are two positive 
random numbers in a certain range to decide a balance between the individual best 
estimator and the swarm best one. Uniform distribution with upper limitation is used in this 
work. ω  denotes a coefficient to adjust the effect of the inertia, χ  is a gain coefficient for the 
update. 
As shown in Eq.(2), in the particle swarm optimization algorithm, each individual changes 
their position based on the balance of three factors; velocity, the individual best estimator 
and the group best estimator. All the particle change their position using Eq.(2). 

2.2 Simultaneous perturbation 
The simultaneous perturbation optimization method is very simple stochastic gradient 
method which does not require the gradient of an objective function but only two values of 
the function. The simultaneous perturbation was introduced by J.C.Spall in 1987 (Spall, 
1987). Convergence of the algorithm was proved in the framework of the stochastic 
approximation method (Spall, 1992). Y.Maeda also have independently proposed a learning 
rule of neural networks based on the simultaneous perturbation method and reported a 
comparison between the simultaneous perturbation type of learning rule of neural 
networks, the simple finite difference type of learning rule and the ordinary back-
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propagation method (Maeda et al.,1995). J.AIespector et al. and G.Cauwenberghs also 
individually proposed a parallel gradient descent method and stochastic error descent 
algorithm, respectively, which are identical to the simultaneous perturbation learning rule 
(Cauwenberghs, 1993) (Alespector et al., 1993). Many applications of the simultaneous 
perturbation are reported in the fields of neural networks (Maeda, 1997) and their hardware 
implementation (Maeda, 2003) (Maeda, 2005). The simultaneous perturbation method is 
described as follows; 

  (3) 

  (4) 

Where, a is a positive constant, c  and i
tc  are a perturbation vector and its i-th element 

which is determined randomly. i
tgΔ  represents the i-th element of tgΔ . i

tc  is independent 
with different element and different iteration. For example, the segmented uniform 
distribution or the Bernoulli distribution is applicable to generate the perturbation. tgΔ  
becomes an estimator of the gradient of the function. 
As is shown in Eq.(4), this method requires only two values of the target function despite of 
dimension of the function. That is, even if the dimension n of the evaluation function is so 
large, two value of the function gives the partial derivative of the function with respect to all 
the parameters, although ordinary finite difference requires many values of the function. 
Combination with the particle swarm optimization is very promising approach to improve 
performance of the particle swarm optimization. 

3. Combination of particle swarm optimization and simultaneous perturbation 
We can obtain a global optimal using the particle swarm optimization. However, 
unfortunately, since the particle swarm optimization itself does not have a capability 
searching the neighbor of the position, and it may miss the optimal point near the present 
position. As a result, efficiency of the particle swarm optimization may be limited in some 
cases. 
On the other hand, the simultaneous perturbation estimates gradient of the position. The 
simultaneous perturbation method searches only local area based on the estimated gradient. 
If we can add the local search capability of the simultaneous perturbation to global search 
one of the particle swarm optimization, we will have a useful optimization method with 
good global search capability and efficient local search ability at the same time. Therefore, 
combination of the particle swarm optimization and the simultaneous perturbation is 
promising and interesting approach. 
Combined methods of the particle swarm optimization and the simultaneous perturbation is 
proposed by Maeda (Maeda, 2006). In this work, the update algorithm which is a 
combination of particle swarm optimization and the simultaneous perturbation is applied 
for all the particles uniformly. In other words, the same update algorithm is used for all 
particles. 
In population, there are plural particles and we know the best one. The best individual is the 
best candidate for a global optimal at that iteration. A possibility that the particle is close to 
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the global optimal is high. We change the movement rule depending on a situation of the 
particles. Especially, the best particle has a specific meaning; 
From this point of view, we propose some schemes which are combinations of the particle 
swarm optimization and the simultaneous perturbation. 

3.1 Scheme 1 
We directly combine the idea of the particle swarm optimization and the simultaneous 
perturbation. In this method, the momentum term of Eq.(2) is replaced by the simultaneous 
perturbation term. The estimated gradient generated by Eq.(4) is used to change the 
direction of modification. The main equation is shown as follows; 

  (5) 

Where the i-th element of tgΔ  is defined by Eq.(4). a is a coefficient to adjust the effect of the 
estimated gradient. 
Since the information is estimated by the simultaneous perturbation method, the algorithm 
does not use the gradient of the function directly but utilizes only two values of the objective 
function. Therefore, this scheme contains twice observations or calculations for the objective 
function. However, this number of the observations does not depend on the dimension n of 
the function. Local information of the gradient of the function is added to the ordinary 
particle swarm optimization effectively. Fig.l shows elements to generate modifying 
quantity in the first algorithm. 

 
Figure 1. Modifying vector of the algorithm 1 

3.2 Scheme 2 
In the algorithm 1, all individuals have the same characteristics. That is, Eq.(5) is applied for 
all particles. However, if the best particle is close to the global minimum, and this is likely, 
the best particle had better search neighbor of the present point carefully. Then, 
modification based on the original particle swarm optimization is not suitable for this 
particle. The gradient type of method is suitable. 
Therefore, in this algorithm 2, the simultaneous perturbation method of Eqs.(3) and (4) are 
applied only to the best particle. All the other individuals are updated by the ordinary 
particle swarm optimization shown in Eqs.(l) and (2). 

3.3 Scheme 3 
In this algorithm 3, the particle swarm optimization and the simultaneous perturbation are 
mixed. That is, in every iteration, half of individuals in the population are updated by the 
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particle swarm optimization, left half particles are modified only by the simultaneous 
perturbation. 
All the individuals select the particle swarm optimization or the simultaneous perturbation 
randomly with probability of 0.5 in every iteration. 
It is interesting what level of performance does such a simple mixture of the particle swarm 
optimization and the simultaneous perturbation has. Changing ratio of the particle swarm 
optimization and the simultaneous perturbation is another option. 

3.4 Scheme 4 
We have another option to construct new algorithm. Basically, we use the algorithm 3. 
However, the best individual is updated only by the simultaneous perturbation. The reason 
is as same as that of the algorithm 2. The best particle has a good chance to be a neighbor of 
a global minimum. Therefore, we always use the simultaneous perturbation for the best 
particle. 

4. Comparison 
In order to evaluate performance of these algorithms, we use the following test functions. 
These functions have their inherent characteristics about local minimum or slope. 
• Rastrigin function 
• Rosenbrock function 
• 2n-minima function 
Comparisons are carried out for ten-dimensional case, that is, n=10 for all test functions. 
Average of 50 trials is shown. 30 particles are included in the population. Change of average 
means that an average of the best particle in 30 particles at the iteration for 50 trials are 
shown. For the simultaneous perturbation term, the perturbation c is generated by uniform 
distribution in the interval [0.01 0.5] for the scheme 1 to 4. These setting are common for the 
following test functions. 
1. Rastrigin function 
The function is described as follows; 

  
(6)

 
The shape of this function is shown in Fig.2 for two-dimensional case. The value of the 
global minimum of the function is 0. Searched area is -5 up to +5 for the function. We found 
the best setting of the particle swarm optimization for the function χ =1.0 and ω =0.9. 
Upper limitation of 1φ  and 2φ  are 2.0 and 1.0, respectively. Using the setting (See Table 1), 
we compare these four methods and the ordinary particle swarm optimization.  
As shown in the figure, this function contains many local minimum points. It is generally 
difficult to find a global minimum using the gradient type of the method. It is difficult also 
for the particle swarm optimization to cope with the function. The past experiences will not 
give any clue to find the global minimum. This is one of difficult functions to obtain the 
global minimum. 
Change of the best particle is also depicted in Fig.3. The horizontal axis is number of 
observations for the function. The ordinary particle swarm optimization requires the same 
number of observations with the number of particles in the population. Since the scheme 1 
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contains the simultaneous perturbation procedure, the scheme uses twice number of the 
observations. However, this does not change, even if the dimension of the parameters 
increases. 

 
Figure 2. Rastrigin function 

 
Figure 3. Change of the best particle for Rastrigin function 

 
Table 1. Parameters setting for Rastrigin function 
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The scheme 2 has the number of the observations of the ordinary particle swarm 
optimization plus one, because only the best particle uses the simultaneous perturbation. 
The scheme 3 requires 1.5 times of number of the observation of the particle swarm 
optimization, because half of the particles in the population utilize the simultaneous 
perturbation. The scheme 4 basically uses the same number of the observations with the 
scheme 3. In our work, we take these different situations into account. For this function, 
scheme 1,3 and 4 have relatively good performance. 
2. Rosenbrock function 
Shape of the function is shown in Fig.4 for two-dimensional case. The value of the global 
minimum of the function is 0. Searched area is -2 up to +2. Parameters are shown in Table 2. 
Since the Rosenbrock has gradual descent, the gradient method with suitable gain 
coefficient will easily find the global minimum. However, we do not know the suitable gain 
coefficient so that the gradient method will be inefficient in many cases. On the other hand, 
the particle swarm optimization is beneficial for this kind of shape, because the momentum 
term accelerates moving speed and plural particles will be able to find the global minimum 
efficiently. 
Change of the best particle is depicted in Fig.5. From Fig.5, we can see that the scheme 2 and 
the ordinary particle swarm optimization have relatively good performance for this 
function. As we mentioned, the ordinary gradient method has not good performance, the 
particle swarm optimization is suitable. If we add local search for the best particle, the 
performance will increase. The results illustrate this. The scheme 1 does not have the 
momentum term, it is replaced by the estimated gradient term by the simultaneous 
perturbation. The momentum term accelerates convergence and the gradient term does not 
work well for flat slope. It seems that this results in this slow convergence. 

  (7) 
 
 

 
Figure 4. Rosenbrock function 
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Figure 5. Change of the best particle for Rosenbrock function  

 

 
Table 2. Parameters setting for Rosenbrock function 
3. 2n-minima function  
The 2n-minima function is 

  
(8)

 

Shape of the function is shown in Fig.6. Searched area is -5 up to +5. Table  3  shows 
parameters setting. The value of the global minimum of the function is -783.32. 
The function has some local minimum points and relatively flat bottom. This deteriorates 
search capability of the gradient method. Change of the best particle is also depicted in 
Fig.7. The scheme 4 has relatively good performance for this case. The function has flat 
bottom including a global minimum. In order to search the global minimum, it seems that 
the swarm search is useful. Searching the global minimum using many particles is efficient. 
Simultaneously, local search is necessary to find exact position of the global minimum. It 
seems that the scheme 4 matched for the case. 
As a result, we can say that the gradient search is important and combination with the 
particle swarm optimization will give us a powerful tool. 
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Figure 6. 2n-minima function 

 

 
Figure 7. Change of the best particle for 2n-minima function  

 

 
Table 3. Parameters setting for 2n-minima function 
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5. FPGA implementation 
Now, we implement the simultaneous perturbation particle swarm optimization using 
FPGA. Then we can realize one feature of parallel operation of the particle swarm 
optimization. This results in higher operation speed for optimization problems. 
We adopted VHDL (VHSIC Hardware Description Language) in basic circuit design for 
FPGA.   The   design  result  by  VHDL  is  configured   on  MU200 - SX60  board  with 
EP1S60F1020C6 (Altera) (see Fig.8). This FPGA contains 57,120 LEs with 5,215,104 bit user 
memory. 

 
Figure 8. FPGA board MU200-SX60 (MMS) 

 
Figure 9. Configuration of the SP particle swarm optimization system 
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Visual Elite (Summit) is used for the basic deign. Synplify Pro (Synplicity) carried out the 
logical synthesis for the VHDL. QuartusII (Altera) is used for wiring.Overall system 
configuration is shown in Fig.9. Basically, the system consists of three units; swarm unit, 
detection unit and simultaneous perturbation unit. 
In this system, we prepared three particles. These particles works parallel to obtain values of 
a target function, and are updated their positions and velocity. Therefore, even if the system 
has many particles, this does not effect on the overall operation speed. Number of the 
particles in this system is restricted by the scale of target FPGA. We should economize the 
design, if we would like to contain many particles. 
The target function with two parameters x1 and x2 is defined as follow; 

  
(9)

 

Based on Rastrigin function, we assume this test function with optimal value of 0 and 8th 
order. We would like to find the optimal point (0.0 0.0) in the range [-5.5 5.5]. Then optimal 
value of the function is 0. Fig. 10 shows shape of the function. 

 
 

 
Figure 10. Shape of the target function 

5.1 Swarm unit 
Swarm unit includes some particles which are candidate of the optimum point. Candidate 
values are memorized and updated in these particle parts. 
Configuration of the particle part is shown in Fig. 11. This part holds its position value and 
velocity. At the same time, modifying quantities for all particles are sent by the 
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simultaneous perturbation unit. The particle part updates its position and velocity based on 
these modifying quantities. 

 

 
Figure 11. Particle part 

5.2 Detection unit 
The detection unit finds and holds the best estimated value for each particle. We refer this 
estimator as individual best. And based on the individual best values of the each particle, 
the unit searches the best one that all the particles have ever found. We call it the group best. 
The individual best values and the group best value are stored in RAM. For iteration, new 
positions for all particles are compared with corresponding values stored in RAM. If new 
position is better, it is stored, that is, the individual best value is updated. Moreover, these 
are used to determine the group best value. 
These individual best values and the group best value are used in the swarm unit to update 
the velocity. 

5.3 Simultaneous perturbation unit 
The simultaneous perturbation unit realizes calculation of evaluation function for each 
particle, estimation of the gradient of the function based on the simultaneous perturbation. 
As a result, the unit produces estimated gradient for all the particles. The results are sent to 
the swarm unit. 

5.4 Implementation result 
Single precision floating point expression IEEE 574 is adopted to express all values in the 
system. Ordinary floating point operations are used to realize the simultaneous perturbation 
particle swarm optimization algorithm. 
We searched the area of [-5.5 5.5]. Initial positions of the particles were determined 
randomly from (2.401, 2.551), (-4.238, 4.026) or (-3.506, 1.753). Initial velocity was all zero. 
Then we defined value of χ  is 1. Coefficients 1φ  and 2φ  in the algorithm were selected from 
2i(=2),  2°(=1),  2-i(=0.5), 2-2(=0.25), 2-3(=0.125), 2-4(=0.0625), 2-5(=0.03125) or 2-6(=0.015625). 
This simplifies multiplication of these coefficients. The multiplication can be carried out by 
addition for exponent component. 
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Design result is depicted in Fig.12. 84% of LE is used for all this system design. We should 
economize the scale of the design, if we would like to implement much more particles in the 
system. Or, we can also adopt time-sharing usage of the single particle part. Then total 
operation speed will deteriorate. 

 

 
Figure 12. Design result 

 

 
Figure 13. Simulation result 
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Fig.13 shows a simulation result by Visual Elite. Upper six signals xi_l_l upto xi_3_2 denote 
values of parameters x1 and x2 of three particles, respectively. Lower three signals HI upto 
Pi3 are individual best values of three particles at the present iteration. x1 and x2 values are 
consecutively memorized. Between these, the best one becomes group best shown in Pg 
signal. f_Pg is the corresponding function value. In Fig.13 between three particle, the second 
particle of Pi2 became the group best value of Pg. We can find END flag of "LED" at 75th 
iteration. 

 

 
Figure 14. Operation result 

Fig.14 shows a change of the evaluation function of the best of the swarm for iteration. The 
system easily finds the optimum point with three particles. About 50 iteration, the best 
particle is very close to global optimum. As mentioned before, after 75 iteration, the system 
stoped with an end condition. 

6. Conclusion 
In this paper, we presented hardware implementation of the particle swarm optimization 
algorithm which is combination of the ordinary particle swarm optimization and the 
simultaneous perturbation method. FPGA is used to realize the system. This algorithm 
utilizes local information of objective function effectively without lack of advantage of the 
original particle swarm optimization. Moreover, the FPGA implementation gives higher 
operation speed effectively using parallelism of the particle swarm optimization. We 
confirmed viability of the system. 
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1. Introduction     
In general nonlinear programming problems to find a solution which minimizes an 
objective function under given constraints, one whose objective function and constraint 
region are convex is called a convex programming problem. For such convex programming 
problems, there have been proposed many efficient solution method as the successive 
quadratic programming method and the general gradient method. Unfortunately, there 
have not been proposed any decisive solution method for nonconvex programming 
problems. As practical solution methods, meta-heuristic optimization methods as the 
simulated annealing method and the genetic algorithm have been proposed.  
In recent years, however, more speedy and more accurate optimization methods have been 
desired because the size of actual problems has been increasing.  
As a new optimization method, particle swarm optimization (PSO) was proposed (Kennedy 
& Eberhart, 1995). PSO is a search method simulating the social behavior that each 
individual in the population acts by using both the knowledge owned by it and that owned 
by the population, and they search better points by constituting the population. The authors 
proposed a revised PSO (rPSO) by incorporating the homomorphous mapping and the 
multiple stretching technique in order to deal with shortcomings of the original PSO as the 
concentration to local solution and the inapplicability of constrained problems (Matsui et al., 
2008).  
In recent years, with the diversification of social requirements, the demand for the programs 
with multiple objective functions, which may be conflicting with each other, rather than a 
single-objective function, has been increasing (e.g. maximizing the total profit and 
minimizing the amount of pollution in a production planning). Since there does not always 
exist a complete optimal solution which optimizes all objectives simultaneously for 
multiobjective programming problems, the Pareto optimal solution or non-inferior solution, 
is defined, where a solution is Pareto optimal if any improvement of one objective function 
can be achieved only at the expense of at least one of the other objective functions. For such 
multiobjective optimization problems, fuzzy programming approaches (e.g. (Zimmermann, 
1983), (Rommelfanger, 1996), considering the imprecise nature of the DM's judgments in 
multiobjective optimization problems, seem to be very applicable and promising. In the 
application of the fuzzy set theory into multiobjective linear programming problems started 
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(Zimmermann, 1978), it has been implicitly assumed that the fuzzy decision or the 
minimum-operator of (Bellman & Zadeh ,1970) is the proper representation of the DM's 
fuzzy preferences. Thereby, M. Sakawa et al. have proposed interactive fuzzy satisficing 
methods to derive satisficing solutions for the decision maker along with checking the local 
preference of the decision maker through interactions for various multiobjective 
programming problems (Sakawa et al, 2002). 
In this paper, focusing on multiobjective nonlinear programming problems, we attempt to 
derive satisficing solutions through the interactive fuzzy satisficing method. Since problems 
solved in the interactive fuzzy satificing method for multiobjective nonlinear programming 
problems are nonlinear programming problems, we adopt rPSO (Matsui et al, 2008) as 
solution methods to them.  In particular, we consider measures to improve the performance 
of rPSO in applying it to solving the augmented minimax problem. 

2. Multiobjective nonlinear programming problems 
In this paper, we consider multiobjective nonlinear programming problem as follows: 

minimize fl(x), l=1, 2, …, k  

subject to gi(x) ≤0, i=1, 2, …, m (1) 

 lj ≤ xj ≤ uj, j=1, 2, …, n  

 x = (x1, x2, …, xn)T ∈ Rn  

where fl(⋅), gi(⋅) are linear or nonlinear functions, lj and uj are the lower limit and the upper 
limit of each decision variable xj. In addition, we denote the feasible region of (1) by X.  

3. An interactive fuzzy satisficing method 
In order to consider the imprecise nature of the decision maker's judgments for each 
objective function in (1), if we introduce the fuzzy goals such as ``fl(x) should be 
substantially less than or equal to a certain value'', (1) can be rewritten as: 

maximize 
x∈X (μ1(f1(x)), …, μk(fk(x))) (2) 

where μl(⋅) is the membership function to quantify the fuzzy goal for the l th objective 
function in (1). 
Since (2) is regarded as a fuzzy multiobjective decision making problem, there rarely exists a 
complete optimal solution that simultaneously optimizes all objective functions. As a 
reasonable solution concept for the fuzzy multiobjective decision making problem, M. 
Sakawa defined M-Pareto optimality on the basis of membership function values by directly 
extending the Pareto optimality in the ordinary multiobjective programming problem 
(Sakawa, 1993). In the interactive fuzzy satisficing method, in order to generate a candidate  
for the satisficing solution which is also M-Pareto optimal, the decision maker is asked to 
specify the aspiration levels of achievement for all membership functions, called the 
reference membership levels (Sakawa, 1993). For the decision maker's reference membership 

levels 
_

lμ , l=1, …, k, the corresponding M-Pareto optimal solution, which is nearest to the 
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requirements in the minimax sense or better than it if the reference membership levels are 
attainable, is obtained by solving the following augmented minimax problem (3). 

minimize max 
x∈X l=1, …, k 
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where ρ is a sufficiently small positive number.  
We can now construct the interactive algorithm in order to derive the satisficing solution for 
the decision maker from the M-Pareto optimal solution set. The procedure of an interactive 
fuzzy satisficing method is summarized as follows. 
Step 1: 

Under a given constraint, minimal value and maximum one of each objective function 
are calculated by solving following problems. 

minimize 
x∈X fl(x), l=1, 2, …, k (4) 

maximize
x∈X fl(x), l=1, 2, …, k (5) 

Step 2: 
In consideration of individual minimal value and maximum one of each objective 
function, the decision maker subjectively specifies membership functions μl(fl(x)), l=1, 
…, k to quantify fuzzy goals for objective functions. Next, the decision maker sets initial 

reference membership function values 
_

lμ , l=1, …, k.  
Step 3: 

We solve the following augmented minimax problem corresponding to current 
reference membership function values (3).  

Step 4: 
If the decision maker is satisfied with the solution obtained in Step 3, the interactive 
procedure is finished. Otherwise, the decision maker updates reference membership 

function values 
_

lμ , l=1, 2, …, k based on current membership function values and 
objective function values, and return to Step 3. 

4. Particle swarm optimization 
Particle swarm optimization (Kennedy & Eberhart, 1995) is based on the social behavior that 
a population of individuals adapts to its environment by returning to promising regions that 
were previously discovered (Kennedy & Spears, 1998). This adaptation to the environment 
is a stochastic process that depends on both the memory of each individual, called particle, 
and the knowledge gained by the population, called swarm. In the numerical 
implementation of this simplified social model, each particle has four attributes: the position 
vector in the search space, the velocity vector and the best position in its track and the best 
position of the swarm. The process can be outlined as follows.  
Step 1: 

Generate the initial swarm involving N particles at random. 
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Step 2: 
Calculate the new velocity vector of each particle, based on its attributes. 

Step 3: 
Calculate the new position of each particle from the current positon and its new 
velocity vector. 

Step 4: 
If the termination condition is satisfied, stop. Otherwise, go to Step 2. 

To be more specific, the new velocity vector of the i-th particle at time t, 1+t
iv  is calculated 

by the following scheme introduced by (Shi & Eberhart, 1998). 
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In (6), tR1  and tR2  are random numbers between 0 and 1, t
ip  is the best position of the i-th 

particle in its track and t
gp is the best position of the swarm. There are three problem 

dependent parameters, the inertia of the particle ωt, and two trust parameters c1, c2. Then, 

the new position of the i-th particle at time t, 1+t
ix , is calculated from (7). 

 11 : ++ += t
i

t
i

t
i vxx  (7) 

where t
ix  is the current position of the i-th particle at time t. The i-th particle calculates the 

next search direction vector 1+t
iv  by (6) in consideration of the current search direction 

vector t
iv , the direction vector going from the current search position t

ix  to the best 

position in its track t
ip  and the direction vector going from the current search position t

ix  

to the best position of the swarm t
gp , moves from the current position t

ix  to the next search 

position 1+t
ix  calculated by (7). The parameter ω t controls the amount of the move to search 

globally in early stage and to search localy by decreasing ω t gradually.  
The searching procedure of PSO is shown in Fig. 1.  

Comparing the evaluation value of a particle after movement, )( 1+t
if x , with that of the 

best position in its track, )( t
ipf , if )( 1+t

if x  is better than )( t
ipf , then the best position 

in its track is updated as t
ip  := 1+t

ix . Futhermore, if )( 1+t
ipf  is better than )( t

gpf  , then 

the best position in the swarm is updated as 1+t
gp := 1+t

ip . 
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Figure 1. Movement of a particle in PSO 

In the original PSO method, however, there are drawbacks that it is not directly applicable 
to constrained problems and it is liable to stopping around local optimal solutions. 
To deal with these drawbacks of the original PSO method, we incorporate the bisection 
method and a homomorphous mapping to carry out the search considering constraints. 
In addition, we proposed the multiple stretching technique and modified move schemes of 
particles to restrain the stopping around local optimal solutions (Matsui et al., 2008). 
Thus, we applied rPSO for interactive fuzzy multiobjective nonlinear programming 
problems and proposed multiobjective revised PSO (MOrPSO) method incorporating move 
scheme to the nondominated particle in order to search effectively for the augmented 
minimax problmes (Matsui et al., 2007). In the application of large-scale augmented 
minimax problem, MOrPSO method is superior than rPSO method on efficiency. On the 
other hand, MOrPSO method is inferior on accuracy. 

5. Improvement of MOrPSO 
We show the results of the applicaltion of the original rPSO (Matsui et al., 2008) and 
MOrPSO (Matsui et al., 2007) to the augmented minimax problem for multiobjective 
nonlinear programming problem with l = 2, n = 55 and m = 100 in Table 1. In these 
experiments we set the swarm size N = 70, the maximal search generation number Tmax = 

5000. In addition, we use the following membership functions: 
_

1μ  = 1.0, 
_

2μ  = 1.0. 

objective function value (minimize) 
method 

best average worst 

computational 
time (sec) 

rPSO 0.3464 0.4471 0.5632 144.45 

MOrPSO 0.3614 0.4095 0.4526 129.17 

Table 1. Results of the application to the augmented minimax problem 

From Table 1, MOrPSO method is superior than rPSO method  on efficiency in the average 
value, the worst one and computational time. However, the best value of MOrPSO method 
is worse than that of rPSO method, MOrPSO method is inferior on accuracy. We consider 



Particle Swarm Optimization 

 

368 

the case that the search accuracy turns worse incorporating the direction to nondominated 
particle (approximate M-Pareto optimal solution) in MOrPSO method. 
In this paper, we improve the search accuracy incorporating external archives to record 
nondominated particles in the swarm. Here, as recorded nondominated particle increases in 
archives, computational time increases in order to judge whether a particle is 
nondominated. 
Therefore, there is many computational time that we record all the nondominated particles 
to archives. Thus we divide membership function space with hypercube shown in Fig. 2 and 
record a number of nondominated particle included in each hypercube. 

 

New Solution

New

Solution

delete

 
Figure 2. reduction of archives with grid (l=2) 

When a number of nondominated particle recorded in archives is greater than a fixed 
number, we delete one particle from hypercube with many numbers of nondominated 
particle and record new solution (particle). We consider that can reduce computational time 
and express approximate M-Pareto optimal front by a few particles incorporating reduction 
of archives. We show the results of the application of MOrPSO method incorporating 
reduction of archives (MOrPSO-1) to the above same problem in Table 2. 

 
objective function value (minimize) 

method 
best average worst 

computational 
time (sec) 

MOrPSO-1 0.4379 0.4708 0.5030 166.78 

Table 2. Results of the application to the augmented minimax problem 

From Table 2, it is clear that all of the best, average, worst value and computational time 
obtained by MOrPSO-1 are worse than those obtained by MOrPSO. We consider that a 
particle moves using nondominated particle which is not useful since all nondominated 
particles in archives are used in search. Thus, in the membership function space, we 
consider that information of a particle exsiting far from the reference membership value is 
hard to contribute to search and introduce threshold value for selection of nondominated 
particle as shown in Fig. 3. 
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not used in search
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Figure 3. Limit of nondominated particle by threshold value (l=2) 

We show the results of the application of MOrPSO method incorporating limitation by 
threshold value (MOrPSO-2) to the above same problem in Table 3. 

objective function value (minimize) 
method 

best average worst 
computational 

time (sec) 

MOrPSO-2 0.2993 0.3430 0.3777 165.71 

Table 3. Results of the application to the augmented minimax problem 

From Table 3, in the application of MOrPSO method incorporating limitation by threshold 
value (MOrPSO-2), we can get better solutions in the sense of best, average and worst than 
those obtained by rPSO and MOrPSO. 
In order to show the efficiency of the proposed PSO, we consider the multiobjective 
nonlinear programming problem with l = 2 and n = 100. In these experiments, we set the 
swarm size N = 100, the maximal search generation number Tmax = 5000. In addition, we use 

the following reference membership function values: 
_

1μ  = 1.0, 
_

2μ  = 1.0. 

objective function value (minimize) 
method 

best average worst 
computational 

time (sec) 

rPSO [6] 0.2547 0.2783 0.3251 26.91 

MOrPSO [7] 0.1950 0.2033 0.2208 32.58 

MOrPSO-2 0.2018 0.2320 0.2711 28.11 

Table 4. Results of the application to the augmented minimax problem 

From Table 4, it is clear that all of the best, average, worst value and computational time 
obtained by MOrPSO-2 are worse than those obtained by MOrPSO. We consider that it 
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occurs to make no use of the information of nondominiated particle in search since there is a 
few nondominiated particle information stored in archives of MOrPSO-2 and only the best 
value of each objective function and the best value limb of the augmented minimax problem 
are saved. Therefore, we propose MOrPSO with external archives (MOrPSO-EA) using 
nondominated particle in the swarm same as MOrPSO in order to store various 
nondominated particle as possible in normal search. And the results of the application are 
shown in Table 5. 

objective function value (minimize) 
method 

best average worst 
computational 

time (sec) 

MOrPSO 0.1950 0.2033 0.2208 32.58 

MOrPSO-EA 0.1746 0.1787 0.1842 29.01 

Table 5. Results of the application to the augmented minimax problem 

From Table 5, in the application of MOrPSO-EA, we can get better solutions in the sense of 
best, average and worst than those obtained by MOrPSO. 

6. Numerical examples 

In MOrPSO, it searches globaly in the early generation and localy decreasing tω . However, 
we consider that necessity to search globaly in the early generation is low after the second 
time since the information of nondominated particle to current generation is stored in 
archives in proposed MOrPSO. Therefore, we consider that the proposed MOrPSO can 
search localy in the early generation. 
In order to show the efficiency of the proposed MOrPSO, we consider the multiobjective 
nonlinear programming problem with l = 2 and n = 100 and m = 55. In these experiments, 
we set the maximal search generation number of MOrPSO and the proposed MOrPSO 
(MOrPSO-EA) in the 1st interactive Tmax = 5000 and in the 2nd and 3rd interactive Tmax = 
3000. We show the results of the application are shown in Table 6 and 7. 

interactive 1st 2nd 3rd 

_

1μ  1.0 1.0 0.85 

_

2μ  1.0 0.7 0.7 

μ1(x) 0.6157 0.8003 0.7575 

μ2(x) 0.6157 0.5003 0.6075 

minimax value 0.3844 0.1997 0.0925 

time (sec) 127.20 128.89 131.25 

Table 6. Interactive fuzzy programming through MOrPSO 
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interactive 1st 2nd 3rd 
_

1μ  1.0 1.0 0.85 

_

2μ  1.0 0.7 0.7 

μ1(x) 0.7183 0.8458 0.8042 

μ2(x) 0.7183 0.5458 0.6542 

minimax value 0.2817 0.1542 0.0458 

time (sec) 157.37 98.58 101.16 

Table 7. Interactive fuzzy programming through MOrPSO-EA (proposed) 

From Table 6 and 7, MOrPSO-EA is superior than MOrPSO on accuracy. In addition, we can 
decrease total computational time by reducing the maximal search generation number. 

6. Conclusion 
In this research, we focused on multiobjective nonlinear programming problems and 
proposed a new MOrPSO technique which is accuracy for in applying the interactive fuzzy 
satisficing method. In particular, considering the features of augmented minimax problems 
solved in the interactive fuzzy satisficing method, we incorporated use of external archives, 
reduction of archives and the limitation of threshold value. Finally, we showed the 
efficiency of the proposed MOrPSO by applying it to numerical examples. 
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Using Opposition-based Learning with Particle 
Swarm Optimization and Barebones Differential 

Evolution  
Mahamed G.H. Omran 

Gulf University for Science and Technology 
Kuwait  

1. Introduction    
Particle swarm optimization (PSO) (Kennedy & Eberhart, 1995) and differential evolution 
(DE) (Storn & Price, 1995) are two stochastic, population-based optimization methods, 
which have been applied successfully to a wide range of problems as summarized in 
Engelbrecht (2005) and Price et al. (2005). 
A number of variations of both PSO and DE have been developed in the past decade to 
improve the performance of these algorithms (Engelbrecht, 2005; Price et al. 2005). One class of 
variations includes hybrids between PSO and DE, where the advantages of the two 
approaches are combined. The barebones DE (BBDE) is a PSO-DE hybrid algorithm proposed 
by Omran et al. (2007) which combines concepts from the barebones PSO (Kennedy 2003) and 
the recombination operator of DE. The resulting algorithm eliminates the control parameters 
of PSO and replaces the static DE control parameters with dynamically changing parameters 
to produce an almost parameter-free, self-adaptive, optimization algorithm. 
Recently, opposition-based learning (OBL) was proposed by Tizhoosh (2005) and was 
successfully applied to several problems (Rahnamayan et al., 2008). The basic concept of 
OBL is the consideration of an estimate and its corresponding opposite estimate 
simultaneously to approximate the current candidate solution. Opposite numbers were used 
by Rahnamayan et al. (2008) to enhance the performance of Differential Evolution. In 
addition, Han and He (2007) and Wang et al. (2007) used OBL to improve the performance 
of PSO. However, in both cases, several parameters were added to the PSO that are difficult 
to tune. Wang et al. (2007) used OBL during swarm initialization and in each iteration with a 
user-specified probability. In addition, Cauchy mutation is applied to the best particle to 
avoid being trapping in local optima. Similarly, Han and He (2007) used OBL in the 
initialization phase and also during each iteration. However, a constriction factor is used to 
enhance the convergence speed.  
In this chapter, OBL is used to improve the performance of PSO and BBDE without adding 
any extra parameter. The performance of the proposed methods is investigated when 
applied to several benchmark functions. The experiments conducted show that OBL 
improves the performance of both PSO and BBDE. 
The remainder of the chapter is organized as follows: PSO is summarized in Section 2. DE is 
presented in Section 3. Section 4 provides an overview of BBDE. OBL is briefly reviewed in 
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Section 5. The proposed methods are presented in Section 6. Section 7 presents and 
discusses the results of the experiments. Finally, Section 8 concludes the chaper. 

2. Particle Swarm Optimization 
Particle swarm optimization (PSO) is a stochastic, population-based optimization algorithm 
modeled after the simulation of social behavior of bird flocks. In a PSO system, a swarm of 
individuals (called particles) fly through the search space. Each particle represents a candidate 
solution to the optimization problem. The position of a particle is influenced by the best position 
visited by itself (i.e. its own experience) and the position of the best particle in its neighborhood 
(i.e. the experience of neighboring particles). Particle position, xi, are adjusted using 

 )1()()1( ++=+ ttt iii vxx  (1) 

where the velocity component, vi, represents the step size. For the basic PSO, 

 vi, j(t +1) = wvi, j(t) +c1r1, j(t)(yi, j(t)− xi, j(t))+c2r2, j(t)(ˆ y j(t)− xi, j(t)) (2) 

where w is the inertia weight (Shi & Eberhart, 1998), c1 and c2 are the acceleration 
coefficients, 

jr1,
, (0,1)~2, Ur j

, yi is the personal best position of particle i, and iŷ  is the 

neighborhood best position of particle i. 
The neighborhood best position iŷ , of particle i depends on the neighborhood topology 
used (Kennedy, 1999; Kenedy & Mendes, 2002). If a fully-connected topology is used, then 

iŷ  refers to the best position found by the entire swarm. That is, 

 }{ { }0 1 0 1 sˆ ( ), ( ),..., ( ) ( ( )), ( ( )),..., ( ( ))i sy (t) y t y t y t min f y t f y t f y t∈ =  (3) 

where s is the swarm size. 
The resulting algorithm is referred to as the global best (gbest) PSO. A pseudo-code for PSO 
is shown in Alg. 1. 

for each particle i ∈ 1,...,s do 
   Randomly initialize xi 
   Set vi to zero 
   Set yi = xi 
endfor 
Repeat 
   for each particle i ∈ 1,...,s do 
      Evaluate the fitness of particle i, f(xi) 
      Update yi  
      Update ŷ  using equation (3) 
      for each dimension  j ∈ 1,...,Nd do 
         Apply velocity update using equation (2) 
      endloop 
      Apply position update using equation (1) 
   endloop 
Until some convergence criteria is satisfied 

Algorithm 1. General pseudo-code for PSO 
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Van den Bergh and Engelbrecht (2006) and Clerc and Kennedy (2002) proved that each 
particle converges to a weighted average of its personal best and neighborhood best 
position, that is, 

21

ji,2ji,1
ji,t cc

ŷcyc
tx

+
+

=
+∞→

)(lim  

This theoretically derived behavior provides support for the barebones PSO developed by 
Kennedy (2003). It replaces Eqs. 1 and 2 with 
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Particle positions are therefore randomly selected from a Gaussian distribution with the 
mean given as the weighted average of the personal best and global best positions, i.e. the 
swarm attractor. Note that exploration is facilitated via the deviation, yi, j (t )- ŷ j ( t ) , which 

approaches zero as t increases. In the limit, all particles will converge on the attractor point. 
Kennedy (2003) also proposed an alternative version of the barebones PSO where Eqs. 1 and 
2  are replaced with 
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Based on the above equation, there is a 50% chance that the j-th dimension of the particle 
dimension changes to the corresponding personal best position. This version of PSO biases 
towards exploiting personal best positions. 

3. Differential Evolution 
Differential evolution (DE) is an evolutionary algorithm proposed by Storn and Price (1995). 
While DE shares similarities with other evolutionary algorithms (EA), it differs significantly 
in the sense that distance and direction information from the current population is used to 
guide the search process. DE uses the differences between randomly selected vectors 
(individuals) as the source of random variations for a third vector (individual), referred to as 
the target vector. Trial solutions are generated by adding weighted difference vectors to the 
target vector. This process is referred to as the mutation operator where the target vector is 
mutated. A recombination, or crossover step is then applied to produce an offspring which 
is only accepted if it improves on the fitness of the parent individual.  
The basic DE algorithm is described in more detail below with reference to the three 
evolution operators: mutation, crossover, and selection. 
Mutation: For each parent, )(tix , of generation t, a trial vector, )(tiv , is created by mutating 
a target vector. The target vector, )(

3
tix , is randomly selected, with i ≠ i3. Then, two 
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individuals )(
1

tix , and )(
2

tix  are randomly selected with i1 ≠ i2 ≠ i3 ≠ i, and the difference 

vector, 
1i

x  - 
2i

x , is calculated. The trial vector is then calculated as   

 ))(-)(()()(
213

ttFtt iiii xxxv +=  (4) 

where the last term represents the mutation step size. In the above, F is a scale factor used to 
control the amplification of the differential variation. Note that F ∈ (0, ∞). 
Crossover: DE follows a discrete recombination approach where elements from the parent 
vector, )(tix , are combined with elements from the trial vector, )(tiv , to produce the 

offspring, )(tiμ . Using the binomial  crossover, 

μij ( t ) =
vij (t ) if U (0,1) <P or j = rr

xij (t ) otherwise
⎧ 
⎨ 
⎩ 

 

where j = 1, ..., Nd refers to a specific dimension, Nd is the number of genes (parameters) of a 
single chromosome, and r ~ U(1,…, Nd). In the above, pr is the probability of reproduction 
(with pr ∈ [0, 1]). 
Thus, each offspring is a stochastic linear combination of three randomly chosen individuals 
when U(0, 1) < pr; otherwise the offspring inherits directly from the parent. Even when pr = 
0, at least one of the parameters of the offspring will differ from the parent (forced by the 
condition j = r). 
Selection: DE evolution implements a very simple selection procedure. The generated 
offspring, )(tiμ , replaces the parent, )(tix , only if the fitness of the offspring is better than 
that of the parent. 

4. Barebones Differential Evolution 
Both PSO and DE have their strengths and weaknesses. PSO has the advantage that formal 
proofs exist to show that particles will converge to a single attractor. The barebones PSO 
utilizes this information by sampling candidate solutions, normally distributed around the 
formally derived attractor point. Additionally, the barebones PSO has no parameters to be 
tuned. On the other hand, DE has the advantage of not being biased towards any prior 
defined distribution for sampling mutational step sizes and its selection operator follows a 
hill-climbing process. Mutational step sizes are determined as differences between 
individuals in the current population. One of the problems which both PSO and DE share is 
that control parameters need to be optimized for each new problem. 

The barebones DE combines the strengths of both the barebones PSO and DE to form a 
new, efficient hybrid optimization algorithm. For the barebones DE, position updates are 
done as follows:  
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where 

 )())(1()()()( 11 tŷtrtytrtp ji,j,ji,j,ji, −+=  (6) 

with i1, i2, i3~ U(1,…,s), i1 ≠ i2 ≠ i, jr1, , (0,1)~2, Ur j  and pr is the probability of 

recombination. 
Referring to Eq. 6, pi ( t )  represents the particle attractor as a stochastic weighted average of 
personal best and global best positions, borrowing from the barebones PSO (Kennedy 2003). 
Referring to Eq. 5, the mutation operator of DE is used to explore around the current 
attractor,  pi ( t ) , by adding a difference vector to the attractor. Crossover is done with a 
randomly selected personal best, 

3i
y , as these personal bests represent a memory of best 

solutions found by individuals since the start of the search process. Also note that the scale 
factor is a random variable. Using the position update in Eq. 6, for a proportion of (1- pr) of 
the updates, information from a randomly selected personal best, 

3i
y , is used (facilitating 

exploitation), while for a proportion of pr of the updates step sizes are mutations of the 
attractor point, pi (facilitating exploration). Mutation step sizes are based on the difference 

vector between randomly selected particles, 
1i

x  and 
2i

x . Using the above, the BBDE 

achieves a good balance between exploration and exploitation. It should also be noted that 
the exploitation of personal best positions does not focus on a specific position. The personal 
best position, 

3i
y , is randomly selected for each application of the position update. 

5. Opposition-based Learning 
Opposition-based learning (OBL) was first proposed by Tizhoosh (2005) and was 
successfully applied to several problems (Rahnamayan et al., 2008). Opposite numbers are 
defined as follows: 
Let x ∈[a,b], then the opposite number x’ is defined as 

x' = a + b − x  

The above definition can be extended to higher dimensions as follows: 
Let ( )1 2 n, , ,P x x x"  be an n-dimensional vector, where xi ∈[ai,bi] and i=1, 2, …, n. The 

opposite vector of P is defined by ( )1 2, , , nP x x x′ ′ ′ ′"  where 

xi
' = ai + bi − xi  

6. Proposed Methods 
In this chapter, OBL is used to enhance the performance of PSO and BBDE without adding 
any extra parameter. Two variants are proposed as follows: 
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6.1 Improved PSO (iPSO) 
An improved version of PSO is proposed such that in each iteration the particle with the 
lowest fitness, xb, is replaced by its opposite (the anti-particle) as follows, 

xb,j = LBj + UBj – xb,j 

where xb,j∈[LBj, UBj], j=1,2,…,Nd and Nd is the dimension of the problem. 
The velocity and personal experience of the anti-particle are reset. The global best solution is 
also updated. A pseudo-code for iPSO is shown in Alg. 2.  
The rationale behind this approach is the basic idea of opposition-based learning: if we 
begin with a random guess, which is very far away from the existing solution, let say in 
worst case it is in the opposite location, then we should look in the opposite direction. In our 
case, the guess that is “very far away from the existing solution” is the particle with the 
lowest fitness. 
The main difference between iPSO on one side and the approaches proposed by Han and 
He (2007) and Wang et al. (2007) on the other side, is that we did not introduce any extra 
parameter to the original PSO. In addition, iPSO uses only OBL to enhance the performance 
of PSO while (Han & He, 2007; Wang et al. 2007) use OBL combined with other techniques 
(e.g. Cauchy mutation). 

 

 

for each particle i ∈ 1,...,s do 
 for each dimension  j ∈ 1,...,Nd do 
      xi,j = LBj + rj× (UBj – LBj) 
   endloop 
endfor 
for each particle i ∈ 1,...,s do 
   Set vi to zero 
   Set yi = xi 
endfor 
Repeat 
   for each particle i ∈ 1,...,s do 
      Evaluate the fitness of particle i, f(xi) 
      Update yi  
      Update ŷ  using equation (3) 

      for each dimension  j ∈ 1,...,Nd do 
         Apply velocity update using Eq. (2) 
      endloop 

      Apply position update using equation (1) 
   endloop 
Let xb be the particle with the lowest fitness 
for each dimension  j ∈ 1,...,Nd do 
   xb,j = LBj + UBj – xb,j 

endloop 
vb = 0 
yb = xb 
if f(xb) < f( ŷ )   

 ŷ  = xb 

endif 
Until some convergence criteria is satisfied 

Algorithm 2. General pseudo-code for iPSO 
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6.2 Improved BBDE (iBBDE) 
Similar to iPSO, BBDE is modified such that in each iteration the particle with the lowest 
fitness, xb, is replaced by its opposite. The personal experience of the anti-particle is also 
reset. The global best solution is updated.  

7. Experimental Results 
This section compares the performance of the proposed methods with that of gbest PSO and 
BBDE discussed in Section 2 and 4, respectively. For the PSO algorithms, w = 0.72 and c1 = c2 
= 1.49. These values have been shown to provide very good results (van den Berg, 2002). In 
addition s = 50 for all methods. All functions were implemented in 30 dimensions. 
The following functions have been used to compare the performance of the different 
approaches. These benchmark functions provide a balance of unimodal, multimodal, 
separable and non-separable functions. 
For each of these functions, the goal is to find the global minimizer, formally defined as 

Given f: dNℜ   ℜ 

find dNℜ∈∗x  such that dNff ℜ∈∀≤∗  x xx  ),()(   

The following functions were used: 
A. Sphere function, defined as 

∑
=

=
dN

i
ixf

1

2)(x  

where 0=∗x  and 0 )( =∗xf  for 100100 ≤≤− ix . 
B. Rosenbrock function, defined as 

f (x) = 100 xi − xi−1
2( )2

+ xi−1 − 1( )2( )
i=1

N d −1

∑    

where )111( ,,, …=∗x  and 0 )( =∗xf  for −2 ≤ xi ≤ 2 . 
C. Rotated hyper-ellipsoid function, defined as 
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where 0=∗x  and 0 )( =∗xf  for 100100 ≤≤− ix . 
D. Rastrigin function, defined as 
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2 10)π2cos(10)(x     

where 0=∗x  and 0 )( =∗xf  for 125125 .x. i ≤≤− . 
E. Ackley's function, defined as 

f (x) = −20exp -0.2
1
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where 0=∗x  and 0 )( =∗xf  for 3232 ≤≤− ix . 
F. Griewank function, defined as 
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where 0=∗x  and 0 )( =∗xf  for 600600 ≤≤− ix . 
G. Salomon function, defined as 

f (x) = −cos 2π xi
2

i=1

Nd

∑
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

+ 0.1 xi
2

i=1

Nd

∑ +1 

where 0=∗x  and 0 )( =∗xf  for 100100 ≤≤− ix . 
Sphere, Rosenbrock and Rotated hyper-ellipsoid are unimodal, while Rastrigin, Ackley, 
Griewank and Salomon are difficult multimodal functions where the number of local 
optima increases exponentially with the problem dimension.  
The results reported in this section are averages and standard deviations over 30 
simulations. In order to have a fair comparison, each simulation was allowed to run for 
50,000 evaluations of the objective function. 
Table 1 summarizes the results obtained by applying the two PSO approaches to the 
benchmark functions. In general, the results show that iPSO performed better than (or equal 
to) gbest PSO. Figure 1 illustrates results for selected functions. The figure shows that iPSO 
generally reached good solutions faster than PSO. Similarly, Table 2 shows that iBBDE 
generally outperformed BBDE. Figure 2 illustrates results for selected functions. Thus, 
Tables 1 and 2 suggest that using the simple idea of replacing the worst particle is the main 
reason for improving the performance of PSO and BBDE. In additon, we can conclude that 
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opposition-based learning improved the performance of both PSO and BBDE without 
requiring any extra parameter. 

 PSO  iPSO 

Sphere 0(0) 0(0) 

Rosenbrock 22.191441 
(1.741527) 

20.645323 
(0.426212) 

Rotated hyper-
ellipsoid 

2.021006 
(1.675313) 

0.355572 
(0.890755) 

Rastrigin 48.487584 
(14.599249) 

27.460845 
(11.966896) 

Ackley 1.096863 
(0.953266) 0(0) 

Griewank 0.015806 
(0.022757) 

0.006163 
(0.009966) 

Salomon 0.446540 
(0.122428) 

0.113207 
(0.034575) 

Table 1. Mean and standard deviation (±SD) of the function optimization results 

 BBDE iBBDE 

Sphere 0(0) 0(0) 

Rosenbrock 25.826400 
(0.216660) 

25.942146 
(0.209437) 

Rotated hyper-
ellipsoid 

15.409460 
(20.873456) 

0.905987 
(1.199178) 

Rastrigin 34.761833 
(28.598884) 0(0) 

Ackley 0(0) 0(0) 

Griewank 0.000329 
(0.001800) 0(0) 

Salomon 0.166540 
(0.047946) 

0.149917 
(0.050826) 

Table 2. Mean and standard deviation (±SD) of the function optimization results 
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Figure 1. Performance Comparison of PSO and iPSO when applied to selected functions 

7. Conclusion 
Opposition-based learning was used in this chapter to improve the performance of PSO and 
BBDE. Two opposition-based variants were proposed (namely, iPSO and iBBDE). The iPSO 
and iBBDE algorithms replace the least-fit particle with its anti-particle. The results show 
that, in general, iPSO and iBBDE outperformed PSO and BBDE, respectively. In addition, 
the results show that using OBL enhances the performance of PSO and BBDE without 
requiring additional parameters. The ideas introduced in this chapter could also be used 
with any PSO/BBDE variant. 
Future research will investigate the effect of noise on the performance of the proposed 
approaches. Furthermore, a scalability study will be conducted. Finally, applying the 
proposed approaches to real-world problem will be investigated. 
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Figure 2. Performance Comparison of BBDE and iBBDE when applied to selected functions 
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1. Introduction 
This chapter considers the particle swarm optimization algorithm as a system, whose 
dynamics is studied from the point of view of fractional calculus.   In this study some initial 
swarm particles are randomly changed, for the system stimulation, and its response is 
compared with a non-perturbed reference response. The perturbation effect in the PSO 
evolution is observed in the perspective of the fitness time behaviour of the best particle. 
The dynamics is represented through the median of a sample of experiments, while 
adopting the Fourier analysis for describing the phenomena. The influence upon the global 
dynamics is also analyzed. Two main issues are reported: the PSO dynamics when the 
system is subjected to random perturbations, and its modelling with fractional order 
transfer functions. 

2. Particle Swarm Optimization Basics 
Evolutionary algorithms have been successfully applied to solve complex optimization 
engineering problems. Together with genetic algorithms, the particle swarm optimization 
(PSO) algorithm, proposed by (Kennedy & Eberhart, 1995), has achieved considerable 
success in solving optimization problems. While PSO algorithms and related variants have 
been extensively studied (Clerk & Kennedy, 2002), the influence of perturbations signals 
over the operation conditions is not yet well known. 
The PSO algorithm was proposed originally by Kennedy and Eberhart (1995). This 
optimization technique is inspired in the way swarms behave and its elements move in a 
synchronized way, both as a defensive tactic and for searching food. An analogy is 
established between a particle and a swarm element. The particle movement is characterized 
by two vectors, representing its current position x and velocity v. Since 1995, many 
techniques were proposed to refine and/or complement the original canonical PSO 
algorithm, namely regarding it’s tuning parameters (Shi and Eberhat, 1999) and by 
considering hybridization with other evolutionary techniques (Lovbjerg et al., 2001). 
In this study a standard elementary PSO algorithm is considered (see Fig. 1). The basic 
algorithm begins by initializing the swarm randomly in the search space. As it can be seen in 
Fig. 1, where t and t + 1 represent two consecutive iterations, the position x of each particle 
is changed during the iterations by adding a new velocity v. This velocity is evaluated by 
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summing an increment to the previous velocity value. The increment is a function of two 
components representing the cognitive and the social knowledge.  
The cognitive knowledge of each particle is included by evaluating the difference between 
the current position x and its best position so far b. The social knowledge of each particle is 
incorporated through the difference between its current position x and the best swarm 
global position achieved so far g. The cognitive and social knowledge factors are multiplied 
by randomly uniformly generated terms ϕ1 and ϕ2, respectively. The particles velocity is 
restricted, in order to keep velocities from exploding, through the inertia term I (Clerk and 
Kennedy, 2002). 
 
Initialize Swarm 
  forAll particles  
    calculate fitness f 
  endfor 
Repeat 
  forAll particles 
    vt+1=Ivt+ϕ1(b-xt)+ ϕ2(g-xt) 
    xt+1=xt+vt+1 
  endfor 
  forAll particles  
    calculate fitness f 
  endfor 
until Stopping criteria 

Figure 1. Particle swarm optimization algorithm 

3. Fractional Calculus 
Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. 
Nevertheless, the application of FC just emerged in the last two decades, due to the progress 
in the area of chaos that revealed subtle relationships with the FC concepts. In the field of 
dynamical systems theory some work has been carried out but the proposed models and 
algorithms are still in a preliminary stage of establishment. 
The fundamentals aspects of FC theory are addressed in (Gement, 1938; Méhauté, 1991; 
Oustaloup, 1991; Podlubny, 1999). Concerning FC applications research efforts can be 
mentioned in the area of viscoelasticity, chaos, fractals, biology, electronics, signal 
processing, diffusion, wave propagation, percolation, modelling, control and irreversibility 
(Ross, 1974; Tenreiro Machado, 2001; Torvik, 1984; Vinagre, 2002; Westerlund, 2002). 
The FC is a generalization of the classical differential calculus to a non-integer order α ∈ C. 
Since its foundation has been the subject of distinct approaches. Due to this reason there are 
several alternative definitions of fractional derivatives. For example, the Laplace definition 
of a derivative of order α ∈ C of the signal x(t), Dα[x(t)], is a ‘direct’ generalization of the 
classic integer-order scheme yielding equation (1): 

 [ ] )(})({ sXstxDL αα =  (1) 

for zero initial conditions, where s represents the Laplace operator. This means that 
frequency-based analysis methods have a straightforward adaptation. 
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An alternative approach, based on the concept of fractional differential, is the Grünwald-
Letnikov definition given by equation (2) where h represents the time increment.  
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An important property revealed by equation (2) is that while an integer-order derivative 
implies just a finite series, the fractional-order derivative requires an infinite number of 
terms. This means that integer derivatives are ‘local’ operators in opposition with fractional 
derivatives which have, implicitly, a ‘memory’ of all past events.  
The characteristics revealed by fractional-order models make this mathematical tool well 
suited to describe phenomena such as irreversibility and chaos, because of its inherent 
memory property. In this line of thought, the propagation of perturbations and the 
appearance of long-term dynamic phenomena in a population of individuals subjected to an 
evolutionary process seems to be a case where FC tools fit adequately, as shown in (Solteiro 
Pires et al.; 2003, Solteiro Pires et al., 2006) for genetic algorithms. 

4. PSO Swarm Optimization Dynamic analysis 
4.1 Problem statement 
This section introduces the problem formulation adopted in the study of the PSO dynamic 
systems. Moreover, the dynamical phenomena involved in the signal propagation within 
the PSO population is analyzed. For a statistical sample of n independent cases, a particle is 
randomly initialized, in every experiment, and replaces the corresponding particle of the 
initial reference population. The experiments reveal a fractional dynamics of the 
perturbation propagation during the evolution which can be described by system theory 
tools. 
The PSO algorithm, called in this report the ‘system’, is applied in the optimization of: a 
quadratic function, the Eason function and the Bohachevsky function.  

 
Figure 2. Perturbation of the PSO system 

In the first test function case, the objective function consists in minimizing the quadratic 
function (3) which is adopted as a case study due to it’s simplicity. 

 2)f( xx =  (3) 

This function has only one parameter and its global optimum value is located at f(x)|opt = 0. 
The variable interval is x ∈ [-100,100] and the algorithm uses an encoding scheme with real 
numbers to codify the particles. A PSO is executed during a period of Tm = 10000 iterations 
with {ϕ1, ϕ2} ~ U[0, 1.5]. 
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The influence of several factors can be analyzed in order to study the dynamics of the PSO 
system, particularly the inertia factor I or the ϕi factors, i = {1, 2}. This effect can vary 
according to the population size, fitness function and iteration number used. As mentioned 
previously, one particle of the initial population is changed randomly. The inertia parameter 
influence is studied to analyze the effect of the perturbation for the values of 
I = {0.50, 0.55,..., 0.80} versus the swarm population size pop = {6, 8,..., 12}. The variation of 
the best global particle fitness evolution is taken as the system output signal as illustrated in 
Fig. 2. 

4.2 The PSO dynamics 
Initially, the PSO system is executed without any initial perturbation signal, during 
Tm = 10000 iterations, for a predefined inertia weight value I and swarm population size. 
The data regarding this test is stored, namely the global particle fitness and the stochastic 
parameters. This experiment will serve as a reference test. The optimization system 
perturbation consists in replacing the first initial particle of the stored reference swarm 
population, in every algorithm execution, by another particle randomly generated. Indeed, 
this stimulus to the system, results in a swarm fitness modification δf which is evaluated. 
This perturbation test is repeated for n = 10000 cases. It is important to state that the 
remaining test conditions, namely the stochastic reference stored values, remain unchanged 
along the n experiments. Therefore, the variation of the resulting PSO swarm fitness 
perturbation, during the evolution, can be viewed as the output signal which varies during 
the successive iterations. 
The output signal consists in the difference between the population fitness with and without 
the initial perturbation, that is, δf(T) = fpert(T) − f(T). Figure 3a) shows the output signal 
δ f(T), for one particle replacement, in the iteration domain. In each experiment the Fourier 
transform of the signal perturbation, F[δ f(T)] (see Fig. 3b)) is evaluated in order to analyze 
the dynamics. 
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a) Iteration domain b) Polar diagram 

Figure 3. Output signal for an initial perturbation. Experiment with I = 0.7 and a swarm 
population size of pop = 12 elements.  

With the output signal Fourier description it is possible to evaluate the corresponding 
normalized transfer function (4): 
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where w represents the frequency, T the discrete time evolution (number of iterations used) 
and 1j −= . The transfer function H(jw) for this experiment is depicted in Figure 3b). 
Finally it is obtained a ‘representative’ transfer function, by using the median of the 
statistical sample (Tenreiro Machado & Galhano, 1998) of n experiments (see Figure 4).  
Figure 5 shows the archieved results for inertial values of I = {0.50, 0.55,..., 0.80}. The medians 
of the transfer functions calculated previously (i.e., for the real and the imaginary parts for each 
frequency) are taken as the final result of the numerical transfer function H(jw). 
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Figure 4. Median transfer function H(jw) of n = 10000 experiments for an inertial term I = 0.7 
and pop = 12 elements. 
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Figure 5. Median transfer function H(jw), of the n experiments for  I = {0.50, 0.55,…, 0.80} for 
a population swarm of pop = 12 elements. 
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Varying the swarm population number of elements in the interval pop ∈ [6, 12] results in a 
family of transfer functions. For a swarm size greater than 12 elements there is no difference 
between the reference test and the perturbation tests. It can be concluded that with large 
swarms an element has a negligible impact upon the search and, consequently, the 
performance of the algorithm is independent of the initial swarm. On the other hand, in 
small swarms, an element has a large impact on the evolution; therefore, it is necessary a 
large number of perturbation tests to lead to a convergence towards the statistical sample 
median. From the tests it can be observed that for I = 0.8 the median is very irregular 
because the system is close to the instability region (den Bergh and Engelbrecht, 2006). 

4.3 Dynamical analysis 
In this section the median of the numerical transfer functions is approximated by analytical 
expressions with gain k = 1 and one pole a ∈ R+ of fractional order α ∈ R+, given by equation 
(5): 
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Since the normalized Fourier transform (H) is used, it yields k = 1. In order to estimate the 
transfer function parameters {a, α} another PSO algorithm is used, which is named the 
identification PSO. The identification PSO is executed during Tide = 200 iterations with a 100 
particle swarm size. The PSO parameters are: {ϕ1, ϕ2}~U[0, 1.5], I = 0.6, and the transfer 
function parameters intervals are a ∈ [4 × 10-3, 50] and α ∈ [0, 100]. 
To guide the PSO search, the fitness function fide is used to measure the distance between the 
numerical median H(jwk) and the analytical expression G(jwk): 

 ∑
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−=
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k
kk

1
ide )G(j)H(j)(jf ωωω  (6) 

where nf is the total number of sampling points and wk, k = {1,...,nf}, is the corresponding 
vector of frequencies. 
As explained previously, the optimization PSO has stochastic dynamics. Therefore, every 
time the PSO system is executed with a different initial particle replacement, it leads to a 
slightly different transfer function. Consequently, in order to obtain numerical convergence 
(Tenreiro Machado & Galhano, 1998) n = 10000 perturbation experiments are performed 
with different replacement particles, while all the other particles remain unchanged. The 
optimization PSO dynamics transfer function is evaluated by computing the normalized 
signals Fourier transform (FT) (equation 4). The transfer functions medians determined 
previously (i.e., for the real and the imaginary parts, and for each frequency) are taken as the 
final result of the numerical transfer function H(jw). 
Figure 6 and 7 show, superimposed, the normalized median transfer function H(jw) and the 
corresponding identified transfer function G(jw), both as polar and amplitude diagrams, 
respectively. As it can be observed from these figures the fractional order transfer function, 
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identified by the PSO, captures the optimization PSO dynamics quite well, apart from the 
high frequency range (not represented). 
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Figure 6. Polar Diagram of H(jw) and G(jw) for I = 0.70 and a swarm size of pop = 12 
elements 
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Figure 7. Amplitude Diagram of H(jw) and G(jw) for I = 0.7 and pop = 12 elements 

For evaluating the influence of the inertia parameter I and the swarm size, several 
simulations are performed ranging from I = 0.50 up to I = 0.80 and the number of swarm 
elements from pop = 6 up to pop = 12, respectively. The estimated parameters for {a, α} are 
depicted in Figure 8 and 9, respectively. 
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Figure 8. Parameter a versus {I, pop} 

0.5 0.55 0.6 0.65 0.7 0.75 0.8
6

8

10

12

I

pop

6-7
5-6
4-5
3-4
2-3
1-2
0-1

 
Figure 9. Parameter α versus {I, pop} 

The results reveal that the transfer function parameters {a, α} have some dependence with 
the inertia coefficient I and the swarm size pop. It can be observed that the transfer function 
parameters have maximum values at I = 0.65 and for pop = 10 elements. Moreover, it can be 
seen that there is a correlation between parameters a and α.  
In what concerns the transfer function, by enabling the zero/pole order to vary freely we get 
non-integer values for α. The alternative adoption of integer-order transfer functions would 
lead to a larger number of zero and poles to get the same quality in the fitting of curves. 

5. Other illustrative examples 
In this section additional experiments are presented, in which the PSO system is deployed to 
optimize: the Easom function (7) and the Bohachevsky function (8). 
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These functions (7,8) are more complex than the quadratic function used in previous section. 
In these cases, a swarm of pop = 20 elements was used in the experimental tests while 
varying the inertial parameter in the set I = {0.5, 0.6,…, 0.8}. The polar diagrams illustrated 
by Figures 10 and 11 were obtained for the Easom and the Bohachevsky fitness functions, 
respectively.  
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Figure 10. Median transfer function H(jw) of the n experiments for the Easom function and 
pop = 20 elements 
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Figure 11. Median transfer function H(jw), of the n experiments for the Bohachevsky 
function and pop = 20 elements 
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The approximations are carried out by the same identification PSO described previously. 
However, in these experiments, the medians of the numerical transfer functions are 
approximated by analytical expressions incorporating a time delay Td (9). 
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The polar diagrams confirm the existence of a time delay Td, which represents the 
perturbation propagation in the swarm evolution. Moreover, in these experiments the 
dynamics follows the behavior of a low-pass filter too. The parameters obtained by the 
identification PSO can be observed in Figure 12. The results reveal that the transfer function 
parameters {a, α, Td} have some dependence with the inertia coefficient I. 
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a) Easom function 
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Figure 12. Parameters {a, α, Td} of G(jw) 
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6. Conclusion 
This work analyzed the signal propagation and the phenomena involved in the discrete time 
evolution of a particle swarm optimization algorithm. The particle swarm algorithm was 
deployed as an optimization tool using three different functions as tests cases. The 
optimization PSO system was subjected to a statistical sample of tests. In each test a particle 
of a reference swarm was replaced by a randomly generated particle and the global 
population fitness perturbation effect measured. A second PSO algorithm was used to 
identify the parameters of a fractional order transfer function. The results indicate that the 
fractional calculus provides a good understanding of the effects corresponding to the 
propagation of the perturbations signals over the operating conditions. 
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1. Introduction 
 In the context of manufacturing systems, scheduling refers to allocation of resources over 
time to perform a set of operations. Manufacturing systems scheduling has many 
applications ranging from manufacturing, computer processing, transportation, 
communication, health care, space exploration, education, distribution networks, etc. 
Scheduling is a process by which limited resources are allocated over time among parallel or 
sequential activities. Solving such a problem amounts to making discrete choices such that 
an optimal solution is found among a finite or a countably infinite number of alternatives. 
Such problems are called combinatorial optimization problems. Typically, the task is 
complex, limiting the practical utility of combinatorial, mathematical programming and 
other analytical methods in solving scheduling problems effectively. Manufacturing system 
entails the acquisition and allocation of limited resources to production activities so as to 
reduce the manufacturing cycle time and in-process inventory and to satisfy customer 
demand in specified time. Successful achievement of these objectives lies in efficient 
scheduling of the system. Scheduling plays an important role in shop floor planning. A 
schedule shows the planned time when processing of a specific job will start on a machine. 
It also indicates when a job will get completed on a machine. Scheduling is a decision-
making process of sequencing a set of operations on different machines in a manufacturing 
unit. The objective of scheduling is generally to improve the utilization of resources and 
profitability of production lines. Scheduling problem is characterized by three components 
namely:  
1. Number of machines, number of jobs and the processing time for each job using 

appropriate machine  
2. A set of constraints such as operation precedence constraint for a given job and 

operation non-overlapping constraint for a given machine  
3. A target function called objective function consisting of single or multiple criteria that 

must be optimized. 
Traditionally, scheduling researchers has shown interest in optimizing a single-objective or 
performance measure while scheduling, which is not a reality. Practical scheduling 
problems acquire consideration of several objectives as desired by the scheduler. When 
multiple criteria are considered, scheduler may wish to generate a schedule which performs 



Particle Swarm Optimization 

 

398 

better with respect to all the measures under study, such solution does not exist. This 
chapter presents the application of Discrete Particle Swarm Optimisation Algorithm for 
solving flowshop scheduling problem (FSP) under single and multiple objective criteria.  

2. Flowshop Scheduling 
2.1 Description of FSP 
In discrete parts manufacturing industries, jobs with multiple operations use machines in 
the same order. In such case, machines are installed in series. Raw materials initially enter 
the first machine and when a job has finished its processing on the first machine, it goes to 
the next machine. When the next machine is not immediately available, job has to wait till 
the machine becomes available for processing. Such a manufacturing system is called a 
flowshop, where the machines are arranged in the order in which operations are to be 
performed on jobs. A flowshop is a conventional manufacturing system where machines are 
arranged in the order of performing operations on jobs. The technological order, in which 
the jobs are processed on different machines, is unidirectional. In a flowshop, a job i  with a 
set of m operations m3,21 i...,,ii,i  is to be completed in a predetermined sequence. In short, 
each operation except the first has exactly one direct predecessor and each operation except 
the last one has exactly one direct successor as shown in Figure 1. Thus each job requires a 
specific immutable sequence of operations to be carried out for it to be complete. This type 
of structure is sometimes referred as linear precedence structure (Baker, 1974). Further, once 
started, an operation on a machine cannot be interrupted. 
 

  
 

 

Figure 1. Work Flow in Flowshop 

2.2 Characteristics of FSP 
Flowshop consists of m machines and there are n different jobs to be optimally sequenced 
through these machines. The common assumptions used in modelling the flowshop 
problems are as follows:  
• All n jobs are available for processing at time zero and each job follows identical routing 

through the machines. 
• Unlimited storage exists between the machines. Each job requires m operations and 

each operation requires a different machine. 
• Every machine processes only one job at a time and every job is processed by one 

machine at a time.  
• Setup-times for the operations are sequence-independent and are included in 

processing times. 
• The machines are continuously available. 
• Individual operations cannot be pre-empted. 
Further it is assumed that: 
• Each job must be processed to completion. 
• In-process inventory is allowed when necessary. 

i1 i2 im 
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• There is only one machine of each type in the shop. 
• Machines are available throughout the scheduling period. 
• There is no randomness and the scheduling problem under study is a deterministic 

scheduling problem. In particular 
• The number of jobs is known and fixed. 
• The number of machines is known and fixed. 
• The processing times are known and fixed, and  
• All other quantities needed to define a particular problem are known and fixed. 

The general structure of typical n  job m machine FSP is shown in Figure 2. 
 

            Job  Processing order 
M1 M2 M3 ………Mm 

 
J1 Pt1 Pt2 Pt3 ………Ptm 

J2 Pt1 Pt2 Pt3 ………Ptm 

J3 Pt1 Pt2 Pt3 ………Ptm 

.. .. .. ..      .. 

.. .. .. ..      .. 
Jn Pt1 Pt2 Pt3 ………Ptm 

 

 
where Pt - processing time of job J in machine M 

Figure 2. General Structure of Flowshop  

2.3 Solution approaches for FSP 
Computational complexity of a problem is the maximum number of computational steps 
needed to obtain an optimal solution. For example if there are n jobs and m available 
machines, the available number of schedule to be evaluated to get an optimal solution is 
(n!)m. In a permutation flow based manufacturing system, the number of available schedules 
is n!. Based on the complexity of the problem, all problems can be classified into two classes, 
called P and NP  in the literature. Class P consists of problems for which the execution 
time of the solution algorithms grows polynomially with the size of the problem. Thus, a 
problem of size m  would be solvable in time proportional to km , when k is an exponent. 
The time taken to solve a problem belonging to the NP class grows exponentially, thus this 
time would grow in proportion to mt , where t  is some constant. In practice, algorithms for 
which the execution time grows polynomially are preferred. However, a widely held 
conjecture of modern mathematics is that there are problems in NP class for which 
algorithms with polynomial time complexity will never be found (French, 1982). These 
problems are classified as hardNP −  problems. Unfortunately, most of the practical 
scheduling problems belong to the hardNP − class (Rinnooy Kan, 1976). Many scheduling 
problems are polynomially solvable, or NP-hard in that it is impossible to find an optimal 
solution here without the use of an essentially enumerative algorithm. FSP is a widely 
researched combinatorial optimization problem, for which the computational effort 
increases exponentially with problem size (Jiyin Liu & Colin Reeves, 2001; Brucker, 1998; 
Sridhar & Rajendran, 1996; French, 1982). In FSP, the computational complexity increases 
with increase in problem size due to increase in number of jobs and/or number of machines. 
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To find exact solution for such combinatorial problems, a branch and bound or dynamic 
programming algorithm is often used when the problem size is small. Exact solution 
methods are impractical for solving FSP with large number of jobs and/or machines. For the 
large-sized problems, application of heuristic procedures provides simple and quick method 
of finding best solutions for the FSP instead of finding optimal solutions. A heuristic is a 
technique which seeks (and hopefully finds) good solutions at a reasonable computational 
cost. A heuristic is approximate in the sense that it provides a good solution for relatively 
little effort, but it does not guarantee optimally. A heuristic can be a rule of thumb that is 
used to guide one’s action. Heuristics for the FSP can be a constructive heuristics or 
improvement heuristics. Various constructive heuristics methods have been proposed by 
Johnson, 1954; Palmer, 1965; Campbell et al., 1970; Dannenbring 1977 and Nawaz et al. 1983. 
Literature shows that constructive heuristic methods give very good results for NP-hard 
combinatorial optimization problems. This builds a feasible schedule from scratch and the 
improvement heuristics try to improve a previously generated schedule by applying some 
form of specific improvement methods. An application of heuristics provides simple and 
quick method of finding best solutions for the FSPs instead of finding optimal solutions 
(Ruiz & Maroto, 2005; Dudek et al. 1992). Johnson’s algorithm (1954) is the earliest known 
heuristic for the FSP, which provides an optimal solution for two-machine problem to 
minimize makespan. Palmer (1965) developed a very simple heuristic in which for every job a 
‘‘slope index’’ is calculated and then the jobs are scheduled by non-increasing order of this 
index. Ignall & Schrage (1965) applied the branch and bound technique to the flowshop sequencing 
problem. Campbell et al. (1970) developed a heuristic algorithm known as CDS algorithm 
and it builds 1m −  schedules by clustering the m original machines into two virtual 
machines and solving the generated two machine problem by repeatedly using Johnson’s 
rule. Dannenbring’s (1977) Rapid Access heuristic is a mixture of the previous ideas of 
Johnson’s algorithm and Palmer’s slope index. Nawaz et al.’s (1983) NEH heuristic is based 
on the idea that jobs with high processing times on all the machines should be scheduled as 
early in the sequence as possible. NEH heuristics seems to be the performing better 
compared to others. Heuristic algorithms are conspicuously preferable in practical 
applications. Among the most studied heuristics are those based on applying some sort of 
greediness or applying priority based procedures including, e.g., insertion and dispatching 
rules. The main drawback of these approaches, their inability to continue the search upon 
becoming trapped in a local optimum, leads to consideration of techniques for guiding 
known heuristics to overcome local optimality (Jose Framinan et al. 2003). And also the 
heuristics has the problems like  

1. Lack of comprehensiveness 
2. Little robustness of conclusions  
3. Weak/partial experimental design  

For these reasons, one can investigate the application of metaheuristic search methods for 
solving optimization problems. It is a set of algorithmic concepts that can be used to define 
heuristic methods applicable to wide set of varied problems. The use of metaheuristics has 
significantly produced good quality solutions to hard combinatorial problems in a 
reasonable time. It is defined as an iterative generation process which guides a subordinate 
heuristic by combining intelligently different concepts for exploring and exploiting the 
search space, learning strategies are used to structure information in order to find efficiently 
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near-optimal solutions (Osman & Laporte, 1996). The fundamental properties which 
characterize metaheuristics are as follows (Christian Blum & Andrea Roli, 2003):  
• The goal is to efficiently explore the search space in order to find (near-) optimal 

solutions. 
• Techniques which constitute metaheuristic algorithms range from simple local search 

procedures to complex learning processes. 
• Metaheuristic algorithms are approximate and usually non-deterministic. 
• They may incorporate mechanisms to avoid getting trapped in confined areas of the 

search space. 
• The basic concepts of metaheuristics permit an abstract level description. 
• Metaheuristics are not problem-specific. 
• Metaheuristics may make use of domain-specific knowledge in the form of heuristics 

that are controlled by the upper level strategy. 
• Today’s more advanced metaheuristics use search experience (embodied in some form 

of memory) to guide the search. 
Metaheuristics or Improvement heuristics are extensively employed by researchers to solve 
scheduling problems (Chandrasekaran et al. 2006; Suresh & Mohanasundaram, 2004; Hisao 
Ishibuchi et al. 2003; Lixin Tang & Jiyin Liu, 2002; Eberhart & Kennedy, 1995). Improvement 
methods such as Genetic Algorithm (Chan et al. 2005; Ruiz et al. 2004; Sridhar & Rajendran, 
1996), Simulated Annealing algorithm (Ogbu & Smith, 1990), Tabu Search algorithm 
(Moccellin & Nagamo, 1998) and Particle Swarm Optimization algorithm (Rameshkumar et 
al. 2005; Prabhaharan et al. 2005; Faith Tasgetiren et al. 2004) have been widely used by 
researchers to solve FSPs. Metaheuristic algorithms such as Simulated Annealing (SA) and 
Tabu Search (TS) methods are single point local search procedures where, a single solution 
is improved continuously by an improvement procedure. Algorithms such as Genetic 
Algorithm (GA), Ant Colony Optimization (ACO) algorithm and Particle Swarm 
Optimization (PSO) algorithm belongs to population based search algorithms. These are 
designed to maintain a set of solution transiting from a generation to the next. The family of 
metaheuristics includes, but is not limited to, GA, SA, ACO, TS, PSO, evolutionary methods, 
and their hybrids.  

2.4 Performance measures considered 
Measures of schedule performance are usually functions of the set of completion times in a 
schedule. Performance measures can be classified as regular and non-regular. A regular 
measure is one in which the penalty function is non-decreasing in terms of job completion 
times. Some examples of regular performance measures are makespan, mean flowtime, total 
flowtime, and number of tardy jobs. Performance measures, which are not regular, are 
termed non-regular. That is, such measures are not an increasing function with respect to 
job completion times. Some examples of non-regular measures are earliness, tardiness, and 
completion time variance. In this chapter, the performance measures namely minimization 
of makespan, total flowtime and completion time variance is considered for solving 
flowshop scheduling problems. Makespan )C( max has been considered by many scheduling 
researchers (Ignall & Scharge, 1965; Campbell et al. 1970; Nawaz et al.1983; Framinan et al. 
2002; Ruiz & Maroto, 2005). Makespan is defined as the time required for processing all the 
jobs or the maximum time required for completing a given set of jobs. Minimization of 
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makespan ensures better utilization of the machines and leads to a high throughput               
(Framinan et al. 2002; Ruiz & Maroto, 2005). Makespan is computed using equation (1).  

 =maxC { }n,........,2,1i,Cmax i =   (1) 

The time spend by a job in the system has been defined as its flow time. Total flowtime is 
defined as the sum of completion time of every job or total time taken by all the jobs. Total 
flowtime )F( ∑ of the schedule is computed using equation (2). Minimizing total flowtime 
results in minimum work-in-process inventory (Chandrasekharan Rajendran & Hans 
Ziegler, 2005). 

 ∑
=

∑ =
n

1i
iCF   (2) 

Completion time variance is defined as the variance about the mean flowtime and is 
computed using equation (3). Minimizing completion time variance )( TV  serves to 
minimize variations in resource consumption and utilization (Gowrishankar et al. 2001; 
Gajpal & Rajendran, 2006; Viswanath Kumar Ganesan et al. 2006).  

 ∑
=

−=
n

1i

2
iT )FC(

n
1V   (3) 

where 
n
FF T=  is the mean flowtime. 

3. Particle Swarm Optimization Algorithm 
3.1 Features of PSO 
Particle Swarm Optimization (PSO) algorithm is an evolutionary computation technique 
developed by Eberhart & Kennedy in 1995 inspired by social behavior of bird flocking or 
fish schooling. PSO is a stochastic, population-based approach for solving problems 
(Kennedy & Eberhart, 1995). It is a kind of swarm intelligence that is based on social-
psychological principles and provides insights into social behavior, as well as contributing 
to engineering applications. PSO algorithm has been successfully used to solve many 
difficult combinatorial optimization problems. PSO algorithm is problem-independent, 
which means little specific knowledge relevant to a given problem is required. All we have 
to know is the fitness evaluation of each solution. This advantage makes PSO more robust 
than many search algorithms. In the last couple of years the particle swarm optimization 
algorithm has reached the level of maturity necessary to be interesting from an engineering 
point of view. It is a potent alternative optimizer for complex problems and possesses many 
attractive features such as:  
• Ease of implementation: The PSO is implemented with just a few lines of code, using 

only basic mathematical operations. 
• Flexibility: Often no major adjustments have to be made when adapting the PSO to a 

new problem. 
• Robustness: The solutions of the PSO are almost independent of the initialization of the 

swarm. Additionally, very few parameters have to be tuned to obtain quality solutions. 
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• Possibility to combine discrete and continuous variables. Although some authors 
present this as a special feature of the PSO (Sensarma et al., 2002), others point out that 
there are potential dangers associated with the relaxation process necessary for 
handling the discrete variables (Abido, 2002). Simple round-off calculations may lead to 
significant errors. 

• Possibility to easily tune the balance between local and global exploration. 
• Parallelism: The PSO is inherently well suited for parallel computing. The swarm 

population can be divided between many processors to reduce computation time. 

3.2 Applications of PSO 
In recent years, PSO has been successfully applied in many areas. Currently, PSO has been 
implemented in a wide range of research areas such as functional optimization, pattern 
recognition, neural network training, fuzzy system control etc. and obtained significant 
success. PSO is widely applied and focused by researchers due to its profound intelligence 
background and simple algorithm structure. Many proposals indicate that PSO is relatively 
more capable for global exploration and converges more quickly than many other heuristic 
algorithms. It solves a variety of optimization problems in a faster and cheaper way than the 
evolutionary algorithms in the early iterations. One of the reasons that PSO is attractive is 
that there are very few parameters to adjust. One version, with very slight variation (or none 
at all) works well in a wide variety of applications. PSO has been used for approaches that 
can be used across a wide rage of applications, as well as for specific applications focused on 
a specific requirement. PSO has been applied to the analysis of human tremor. The diagnosis 
of human tremor, including Parkinson’s disease and essential tremor, is a very challenging 
area. PSO has been used to evolve a neural network that distinguishes between normal 
subjects and those with tremor. Inputs to the network are normalized movement amplitudes 
obtained from an actigraph system. The method is fast and accurate (Eberhart & Hu, 1999). 
While development of computer numerically controlled machine tools has significantly 
improved productivity, there operation is far from optimized. None of the methods 
previously developed is sufficiently general to be applied in numerous situations with high 
accuracy. A new and successful approach involves using artificial neural networks for 
process simulation and PSO for multi-dimensional optimization. The application was 
implanted using computer-aided design and computer-aided manufacturing (CAD/CAM) 
and other standard engineering development tools as the platform (Tandon, 2000). Another 
application is the use of particle swarm optimization for reactive power and voltage control 
by a Japanese electric utility (Yoshida et al., 1999). PSO has also been used in conjunction 
with a back propagation algorithm to train a neural network as a state-of-charge estimator 
for a battery pack for electric vehicle use. Determination of the battery pack state of charge is 
an important issue in the development of electric and hybrid / electric vehicle technology. 
The state of charge is basically the fuel gauge of an electric vehicle. A strategy was 
developed to train the neural network based on a combination of particle swarm 
optimization and the back propagation algorithm. Finally, one of the most exciting 
applications of PSO is that by a major American corporation to ingredient mix optimization. 
In this work, “ingredient mix” refers to the mixture of ingredients that are used to grow 
production strains of microorganisms that naturally secrete of manufacture something of 
interest. Here, PSO was used in parallel with traditional industrial optimization methods. 
PSO provided an optimized ingredient mix that provided over twice the fitness as the mix 
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found using traditional methods, at a very different location in ingredient space. PSO was 
shown to be robust: the occurrence of an ingredient becoming contaminated hampered the 
search for a few iterations but in the end did not result in poor final results. PSO, by its 
nature, searched a much larger portion of the problem space than the traditional method. 
Generally speaking, particle swarm optimization, like the other evolutionary computation 
algorithms, can be applied to solve most optimization problems and problems that can be 
converted to optimization problems. Among the application areas with the most potential 
are system design, multi-objective optimization, classification, pattern recognition, 
biological system modelling, scheduling (planning), signal processing, games, robotic 
applications, decision making, simulation and identification. Examples include fuzzy 
controller design, job shop scheduling, real time robot path planning, image segmentation, 
EEG signal simulation, speaker verification, time-frequency analysis, modelling of the 
spread of antibiotic resistance, burn diagnosing, gesture recognition and automatic target 
detection, to name a few (Eberhart & Shi, 2001). 

3.3 Working of PSO 
PSO is initialized with a swarm of random feasible solutions and searches for optima by 
updating velocities and positions. PSO algorithm is initialized with a set of several random 
particles called a swarm. A set of moving particles (the swarm) is initially thrown inside the 
multi-dimensional search space. Each particle is a potential solution, which has the ability to 
remember its previous best position and current position, and it survives from generation to 
generation. Each particle has the following features: 
• It has a position and a velocity  
• It knows its neighbours, best previous position and objective function value. 
• It remembers its best previous position. 
At each time step, the behavior of a given particle is a compromise between three possible 
choices 
• To follow its own way  
• To go towards its best previous position  
• To go towards the best neighbour’s best previous position, or forwards the best 

neighbour. 
The swarm is typically modelled by particles in multi-dimensional space that have a 
position and a velocity. These particles fly through hyperspace and have two essential 
reasoning capabilities: their memory of their own best position and knowledge of their 
neighborhood's best, "best" simply meaning the position with the smallest objective value. 
Members of a swarm communicate good positions to each other and adjust their own 
position and velocity based on these good positions. PSO shares many similarities with 
evolutionary computation techniques such as GA, SA, TS and ACO algorithms. The PSO 
system is initialized with a swarm of random solutions and searches for optima by updating 
generations. The advantages of PSO are that PSO is easy to implement and there are few 
parameters to adjust. PSO has been successfully applied in many areas: function 
optimization, artificial neural network training, fuzzy system control, and other areas where 
GA can be applied. Most of evolutionary techniques have the following procedure: 
1.  Random generation of an initial population 
2.  Reckoning of a fitness value for each subject. It will directly depend on the distance to 

the optimum.  
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3.  Reproduction of the population based on fitness values.  
4.  If requirements are met, then stop. Otherwise go back to step 2. 
Evolutionary Algorithms use a population of potential solutions (points) of the search space. 
These solutions (initially randomly generated) are evolved using different specific operators 
which are inspired from biology. Through cooperation and competition among the potential 
solutions, these techniques often can find near-optimal solutions quickly when applied to 
complex optimization problems. There are some similarities between PSO and Evolutionary 
Algorithms: 
1. Both techniques use a population (which is called swarm in the PSO case) of solutions 

from the search space which are initially random generated; 
2. Solutions belonging to the same population interact with each other during the search 

process; 
3. Solutions are evolved using techniques inspired from the real world. 
PSO shares many common points with GA. Both algorithms start with a group of a randomly 
generated population; both have fitness values to evaluate the population. Both update the 
population and search for the optimum with random techniques. Both systems do not 
guarantee success. However, PSO does not have genetic operators like crossover and 
mutation. Particles update themselves with the internal velocity. The information sharing 
mechanism in PSO is significantly different. In GA, chromosomes share information with 
each other. So the whole population moves like one group towards an optimal area. In PSO, 
only global or local best particle gives out the information to others. It is a one-way 
information sharing mechanism. Compared with GA, all the particles tend to converge to the 
best solution quickly even in the local version in most cases/ PSO optimization algorithm 
uses a set of particles called a swarm, similar to chromosomes in a binary-coded Genetic 
Algorithm (GA). PSO and ACO are optimization algorithms based on the behavior of swarms 
(birds, fishes) and ants respectfully. However, the particles are multidimensional points in 
real space during the optimization. The PSO optimization run starts with a user-specified 
swarm size and objective function used to evaluate objection function values, called fitness in 
GA terminology. The particles are initialized randomly within the variable bounds and they 
search for the optimum (maximum or minimum) in the search space with some 
communication between particles. For a maximization (or minimization) problem, the 
particles will move towards the particle with the highest (or least) objective function value 
using a position update equation, that is stochastic. This is how randomness in introduced to 
PSO algorithm. This position update method is similar to the use of crossover and mutation 
operations used to generate new individuals in a new generation in the GA. However, the 
PSO differs in that, updates of particle position usually involve the best particles (global or in 
the neighborhood) of each particle. The position updating tends to always exploit the best 
solution found so far. While this may lead to premature convergence, when all particles 
positions become equal to that of the best particle (i.e., no diversity), there are schemes 
designed to prevent such premature convergence. In the PSO literature, several 
neighborhood schemes have been developed for the particle updating (Merkle and 
Middendorf, 2000). This chapter aims to develop a metaheuristic algorithm called PSO 
algorithm which is suitable for solving FSPs with the objective of minimising three 
performance measures namely makespan, total flowtime and completion time variance. 
Firstly, a single objective PSO is proposed and the above performance measures are 
considered individually. Performance of the proposed single objective PSO is tested by 
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solving a large set of benchmark FSPs available in the literature having number of jobs 
varying from 5 to 500 and number of machines from 5 to 20.  

3.4 Structure of PSO Algorithm 
The pseudo-code of the simple PSO algorithm and its general framework are given in 
Figures 3 and 4 respectively. 
The basic elements of PSO algorithm are summarized below: 
Particle: t

iX denotes the ith particle in the swarm at iteration t and is represented by n 

number of dimensions as [ ]t
in

t
2i

t
1i

t
i x,..,x,xX = , where t

ijx  is the position value of the ith 
particle with respect to the jth dimension ( n,...,2,1j = ).  

Population: tpop  is the set of NP  particles in the swarm at iteration t, i.e., 

[ ]t
NP

t
2

t
1

t X,...,X,Xpop =  . 

Sequence: We introduce a new variable t
iπ , which is a permutation of jobs implied by the 

particle t
iX . It can be described as [ ]t

in
t
2i

t
1i

t
i ,..,, ππππ = , where t

ijπ  is the assignment of job j of 
the particle i in the permutation at iteration t. 

 
Figure 3. Pseudocode of the PSO Algorithm 

Particle velocity: t
iV  is the velocity of particle i at iteration t. It can be defined as 

[ ]t
in

t
2i

t
1i

t
i v,...,v,vV = , where t

ijv  is the velocity of particle i at iteration t with respect to the jth 
dimension. 
Local best: t

iP  represents the best position of the particle i with the best fitness until 
iteration t, so the best position associated with the best fitness value of the particle i obtained 
so far is called the local best. For each particle in the swarm, t

iP  can be determined and 

updated at each iteration t. In a minimization problem with the objective function ( )t
if π  

where t
iπ  is the corresponding sequence of particle t

iX , the local best t
iP  of the ith particle is 

obtained such that ( ) ( )1t
i

t
i ff −≤ ππ  where t

iπ  is the corresponding permutation of local best t
iP  

Initialize swarm 
Initialize velocity 
Initialize position 
Initialize parameters  

Evaluate particles 
Find the local best  
Find the global best   

Do  
{  
              Update velocity 
             Update position 
               Evaluate 
              Update local best 

Update global best  
}   ( until termination)
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and 1t
i

−π  is the corresponding sequence of local best 1t
iP − . To simplify, we denote the fitness 

function of the local best as ( )t
i

pb
i ff π= . For each particle, the local best is defined as 

[ ]t
in

t
2i

t
1i

t
i p,...,p,pP =  where t

ijp is the position value of the ith local best with respect to the jth 
dimension ( n,...,2,1j = ). 
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Figure 4. The Framework of PSO Algorithm 

4. Discrete PSO Algorithm for Single-Objective FSP 
4.1 Pseudocode of the proposed discrete PSO algorithm 
Particle Swarm Optimization algorithm starts with a population of randomly generated initial 
solutions called particles (swarm). It is to be noted that the particle structure is taken as a 
string, which consists of job numbers in certain order. The order of jobs in the string represents 
a sequence. After the swarm is initialized, each potential solution is assigned a velocity 
randomly. The length of the velocity of each particle v  is generated randomly between 0 and 
n (Rameshkumar et al. 2005; Chandrasekaran et al. 2006) and the corresponding lists of 
transpositions ( ) kqq v,1q;j,i =  are generated randomly for each particle. The above 
formulation permits exchange of jobs )j,i(......)j,i(),j,i( vv2211 in the given order. Each 

particle keeps track of its improvement and the best objective function value achieved by the 
individual particles so far is stored as local best solution ( )t

k
e P , and the overall best objective 

function achieved by all the particles together so far is stored as the global best solution ).G( t
b  

The particle velocity and position are updated continuously in all iterations. The iterative 
improvement process is continued afterwards to further improve the solution quality. The 
Pseudocode of the proposed discrete PSO algorithm is shown in Figure 5. 

Output the Results 

Generate N particles at Random 

Evaluate the sequences 

 

Apply Velocity and Move the particle 

Update particle Index (PCurrent, PBest, GBest) 

Is the Stopping 
Criteria Satisfied?

No

Yes 
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Figure 5. Pseudocode of the Proposed Discrete PSO Algorithm 
The particle velocity and position are continuously updated using equation (4) and (5).  

 )PG()(randUC)PP()(randUCvUCv 1t
kk33

1t
k

1t
k

e
22

t
k11

1t
k

++++ −+−+=     (4) 

 1t
k

t
k

1t
k vPP ++ +=   (5) 

where 321 CandC,C is called acceleration constants. The acceleration constants 

321 CandC,C  in equation (4) guide every particle toward local best and the global best 
solution during the search process. Low acceleration value results in walking far from the 
target, namely local best and the global best. High value results in premature convergence of 
the search process. 

4.2 Procedural steps of the Discrete PSO Algorithm  
The step by step procedure for implementing the proposed discrete PSO algorithm is as 
follows. 
Step1: Initialize a swarm iP  with random positions and velocities in the problem space .X  
Step2: For each particle, evaluate the desired optimization fitness function 
Step3: Compare the fitness function with its previous best. If current value is better than 

previous best, then set previous best equal to current value and iP  equal to the 
current location iX . 

Step4: Identify the particle in the neighborhood with the best success so far, and assign its 
index to the variable G . 

Step5: Apply local search algorithm to all the particles at the end of each iteration and 
evaluate for the objective function. 

Step6: Change the velocity and position of the particle according to equation (4) and 
equation (5). 

Step7: Loop to step (2) until a criterion is met (usually number of iterations). 

Initialize swarm P   ;0t =  
Initialize velocity t

kv and position t
kP   

 Initialize parameters   
Evaluate particles 
Find the local best t

k
e P and global best t

bG  
Do 

{  
    ( )N,1k for =  
   Update Velocity 1t

kv + ; 
   Update Position 1t

kP + ; 
   Evaluate all particles; 
         Update 1t

k
e P +  and 1tG + , ( )N,1k = ; 

         1tt +→ ; 
 }  ( )maxttwhile <   
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4.3 Numerical Illustrations 
An example illustrating the process of updating the velocity and the position of a sequence 
is explained as follows: 
Velocity update: The procedure for updating the velocity of all the particles in each iteration 
is as follows: For example, let us assume 
The sequence t

kP = { }1,4,3,2 ; ,2C,1C 21 == 2C3 = ; 3.0U,4.0U,2.0U 321 === ; 2Vk = , 
)3,2(),4,1(v = ; t

k
e P  =  (1,4,3,2)  and t

bG =  (3,1,4,2) .   
Velocity of the particle k at time step 1t +  namely 1t

kV + is obtained using equation (4)   
1t

kV + = 1x 0.2 [(1,4),(2,3)] ⊕ 2 x 0.4 [(1,4,3,2) - (2,3,4,1)] ⊕ 2 x 0.3 [(3,1,4,2) - (2,3,4,1)] 
where [(1,4,3,2) - (2,3,4,1)] represents a velocity such that applying the resulting 
velocity to the current particle (2,3,4,1) yields a position (1,4,3,2). 
Thus,   1t

kV +  = 0.2 [(1,4), (2,3)] ⊕  0.8 [(2,3), (1,4)] ⊕ 0.6 [(1,2), (1, 4)] 
   = ((1, 4),(2, 3),(1, 2)) 
Position update: Position of the particle k  at time step 1t +  namely 1t

kP + is obtained using 
equation (5) by applying 1t

kV + over t
kP as follows. 

1t
kP +  =(2,3,4,1) + ((1,4), (2,3),(1,2));  

= (1,3,4,2) + ((2,3),(1,2)); =(1,4,3,2) + (1,2);  
= (4,1,3,2) 

4.4 Performance Comparison 
An extensive performance analysis using proposed discrete PSO algorithm is carried out by 
means of evaluating the performance measures by solving the benchmark FSPs of Taillard 
(1993). Extensive experiments are conducted to fix the parameters like number of particles, 
number of iterations, selection of learning coefficients and initial swarm generation. The 
evaluation of proposed discrete PSO algorithm is coded in Linux C and run on an Intel 
Pentium III 900MHz PC with 128 MB memory. 
Number of iterations: Number of iterations or termination criterion is a condition that the 
search process will be terminated. It might be a maximum number of iteration or maximum 
CPU times are normally to terminate the search process (Liu & Reeves, 2001; Gowrishankar 
et al. 2001). In this chapter, for the single-objective optimization problems, an evaluation of 
1000 x n x m number of sequences or particles is taken as the termination criterion.  
Number of particles: Experiments have been conducted to identify the optimal swarm size 
by solving a set of 30 different instances of Taillard (1993) for makespan objective with 20 
jobs and machines varying from 5, 10 and 20 using discrete PSO algorithm. In 
experimentation, the performance of the algorithm is better with swarm size 80 and the 
same has been used throughout our evaluation. 
Learning coefficients: The roll of learning coefficients or acceleration constants, namely 

21 C,C  and 3C  guide every particle towards the local best and the global best solutions 
during the search process. Low acceleration value results in walking far from the target, 
namely local best and the global best. High value results in premature convergence of the 
search process. Experiments have been conducted using different combinations of learning 
coefficients. To determine the best combinations of 21 C,C  and 3C values by solving a set of 
30 FSPs for makespan objective with 20 jobs and machines varying from 5, 10 and 20 using 
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the proposed PSO algorithm. The values 2C,1C 21 ==  and 2C3 = shows better 
performance and the same, has been used throughout our study.  
Velocity coefficients: The velocity update is carried out after every iteration to improve the 
search process. The velocity coefficients, namely 321 UandU,U guides the search to find 
the optimal solution quickly. As per the experiments, the values for 321 UandU,U  are 
generated randomly between 0 and 1. 
Initial Swarm Generation: For the generation of initial swarm one particle is generated from 
the results obtained by certain algorithms for the desired optimization fitness function and 
remaining particles of the swarm is constructed in a way that a permutation is produced 
randomly. The particle generated from certain algorithms is added with randomly generated 
particles at the beginning of the search. This insertion of the particle in initial swarm is to find 
better sequences in each iteration of the search. And also it improves the performance of 
discrete PSO algorithm in terms of finding near-optimal solutions. The algorithms selected for 
generating the particle for different objective functions are listed below. For makespan 
objective, one particle is generated using NEH heuristic of Nawaz et al. (1983) and is added to 
the swarm. For total flowtime objective, one particle is generated based on the heuristic 
developed by Rajendran. (1993) and is added to the swarm. For completion time variance 
objective, a particle is generated based on the algorithm developed by Gajpal & Rajendran 
(2006), and is added to the swarm. These algorithms have better start with the respective 
objectives. Performance of the proposed discrete PSO with respect to makespan objective is 
carried out in comparison with the benchmark solutions given by Taillard (1993) and with the 
results published in the literature. The quality measure namely, “Average Relative Percent 
Deviation” )RPD(  is considered for the evaluation. During comparison, the corresponding 
better values reported in the literature are taken. The RPD  is computed using equation (6). 

 100]C/CG[RPD ** ×−=   (6) 

where, G represents the global best solution obtained by the proposed algorithm for a given 
problem and *C represents the upper bound value reported in the literature for the 
corresponding objective function. Some sample results of problems ta001-ta010 of Taillard 
(1993) is presented in Table 1.   

Instances Problem Results  
Reported 

Results  
Obtained   RPD 

ta001 1278 1278 0.0000 
ta002 1359 1360 0.0736 
ta003 1081 1088 0.6475 
ta004 1293 1293 0.0000 
ta005 1235 1235 0.0000 
ta006 1195 1195 0.0000 
ta007 1239 1239 0.0000 
ta008 1206 1206 0.0000 
ta009 1230 1237 0.5691 
ta010 1108 1108 0.0000 

20 x 5 

RPD  0.1290 

Table 1. Sample Results for Makespan   
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In order to evaluate the performance of the proposed discrete PSO with respect to the total 
flowtime objective, the results are compared with the results of the popular performing 
heuristics developed by Liu & Reeves (2001), M-MMAS Algorithm and PACO Algorithm 
(Rajendran & Ziegler, 2004). Some sample results of problems ta001-ta010 for total flowtime 
criteria is presented in Table 2.  

Instances Problem Results  
Reported 

Results  
Obtained   RPD 

ta001 14056 3 14033 -0.1636 
ta002 15151 2 15151 0.0000 
ta003 13403 3 13313 -0.6715 
ta004 15486 2 15459 -0.1744 
ta005 13529 3 13529 0.0000 
ta006 13123 3 13123 0.0000 
ta007 13559 2 13548 -0.0811 
ta008 13968 1 13948 -0.1432 
ta009 14317 2 14315 -0.0140 
ta010 12968 2 12943 -0.1928 

20 x 5 

RPD  -0.1441 
Note: Superscript (1) refers to Heuristic Algorithm (Liu & Reeves, 2001) (2) M-MMAS Algorithm 
(Rajendran & Ziegler, 2004) (3) PACO Algorithm (Rajendran & Ziegler, 2004)   

Table 2. Sample Results for Total Flowtime 
 

Instances Problem Results  
Reported 

Results  
Obtained   RPD 

ta001 73040.55 3 72060.23 -1.3422 
ta002 90885.27 2 89238.17 -1.8123 
ta003 53894.49 2 53851.95 -0.0789 
ta004 89822.05 4 87104.42 -3.0256 
ta005 72350.55 2 72020.43 -0.4563 
ta006 71665.73 2 70817.64 -1.1834 
ta007 69088.45 2 68367.69 -1.0432 
ta008 70214.31 2 69793.85 -0.5988 
ta009 73329.22 2 72284.98 -1.4240 
ta010 52580.03 1 52015.34 -1.0740 

20 x 5 

RPD  -1.2039 
Note: Superscript (1) refers to PACO Algorithm (Rajendran & Ziegler, 2004) (2) MMAS Ant Colony 
Algorithm (Stuetzle, 1998) (3) NACO Algorithm with position-job insertion local search (Gajpal & 
Rajendran, 2006) (4) NACO Algorithm with job-index based local search (Gajpal & Rajendran, 2006)  

Table 3. Sample Results for Completion Time Variance 
The performance of the proposed discrete PSO algorithm with respect to completion time 
variance criterion, the results are compared with the results of ant colony algorithm with 
random-job insertion local search by Gajpal & Rajendran (2006), M-MMAS Ant Colony 
Algorithm by Stuetzle(1998), PACO Algorithm by Rajendran & Ziegler(2004), and three 



Particle Swarm Optimization 

 

412 

NACO Algorithm with position-job insertion and job-index based local searches by Rajendran 
& Ziegler (2004). To our knowledge, the results of completion time variance objective using 
PSO algorithm are not available in literature, the performance of the proposed algorithm is 
compared with other metaheuristic results. Some sample results of problems ta001-ta010 of 
Taillard (1993) for completion time variance objective are presented in Table 3.   
The results show that the proposed single-objective discrete PSO algorithm performs better. 
The negative sign in RPD  values shows that the proposed discrete PSO algorithm generates 
better results than the results reported in the literature considered. The summary of RPD  
values obtained for all the FSP instances of Taillard (1993) are presented in Table 4. 

 Instances Number of 
problems Makespan Total Flowtime Completion Time 

Variance 
20 x 5 10 0.1290238 -0.1440537 -1.2038674 
20 x10 10 0.5334462 -0.0164544 -1.7613968 
20 x 20 10 0.5329960 -0.0260092 -0.8586390 
50 x  5 10 0.0890855 -0.2925054 -0.9330275 
50 x 10 10 1.7541958 -0.0108922 -0.2059756 
50 x 20 10 2.9814187 0.2434647 1.7126618 
100 x 5 10 0.1713382 -0.7238382 1.2988817 
100 x 10 10 0.6882989 -0.1191928 0.9198400 
100 x 20 10 2.8784086 0.1476830 3.4646301 
200 x 10 10 0.5498368 1.8246721 0.0000000 
200 x 20 10 2.7011408 1.4120018 0.0000000 
500 x 20 10 1.8172343 1.4205378 0.0000000 

Table 4. RPD Values Obtained for the Various FSP Instances 

The proposed discrete PSO algorithm generates good results with reasonable CPU  time. 
CPU time taken by the proposed discrete PSO algorithm for various FSPs are presented in 
Table 5.  

Instances Number of 
Problems Makespan Total 

Flowtime 
Completion 

Time Variance 
20x5 10 0m25.164s 0m5.201s 0m6.642s 

20x10 10 1m36.844s 0m12.113s 0m33.619s 
20x20 10 6m22.854s 0m35.139s 2m16.764s 
50x5 10 13m44.973s 0m39.888s 1m10.433s 

50x10 10 55m38.305s 1m45.854s 6m19.487s 
50x20 10 110m32.087s 10m33.215s 32m41.970s 
100x5 10 19m42.310s 4m17.995s 10m39.676s 
100x10 10 26m3.295s 9m22.616s 45m1.041s 
100x20 10 62m14.918s 33m57.255s 84m4.257s 
200x10 10 143m25.161s 41m33.599s 50m27.703s 
200x20 10 166m27.657s 79m22.342s 129m58.384s 
500x20 10 543m32.695s 792m17.371s 410m50.485s 

Table 5. CPU time taken for Various FSP Instances   
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5. Discrete PSO Algorithm for Multi-Objective FSP 
 5.1 Concept and terminology 
The real-world scheduling problems are multi-objective in nature. In such cases, several 
objectives must be simultaneously considered when evaluating the quality of the proposed 
solution.  In multi objective decision problems one desires to simultaneously optimize more 
than one performance objectives such as makespan, tardiness, mean flowtime of jobs, etc. 
multi-objective optimization usually results in a set of non-dominated solutions instead of a 
single solution. The goal of multi-objective scheduling is to find a set of compromising 
schedules satisfying different objectives under consideration. For a given finite set of 
schedules generated by using a suitable algorithm for a multi-objective scheduling problem, 
various objective functions })x(f,....),x(f),x(f{)x(f k21=  can be evaluated. These schedules 
are to be compared and a set of schedules called non-dominated solutions are to be identified. 
For those solutions, no improvement in any objective function is possible without scarifying 
at least one of the other objective functions. Some researchers have developed multi-
objective metaheuristics for solving flowshop scheduling problems (Pasupathy et al. 2006; 
Prabhaharan et al. 2005; Loukil et al. 2005; Suresh & Mohanasundaram, 2004; Hisao 
Ishibuchi et al. 2003; Ishibuchi & Murata, 1998; Sridhar & Rajendran, 1996). A survey of 
multi-objective scheduling problems is given by T’kindt & Billaut (2001). A multi-objective 
PSO algorithm has been proposed for minimizing weighted sum of makespan and 
maximum earliness (Prabhaharan et al. 2005). A Pareto archived simulated annealing 
algorithm for multi-objective scheduling has been proposed (Suresh & Mohanasundaram, 
2004). Hisao Ishibuchi et al. (2003) proposed a modified multi-objective genetic local search 
algorithm (MMOGLS) for multi-objective FSP. They showed that the performance of the 
evolutionary multi-objective optimization algorithm can be improved by hybridization with 
local search. They apply multi-objective GA for PFSP and the results are compared with 
results published in the literature. Pasupathy et al. (2005) proposed a pareto-ranking based 
multi-objective GA called Pareto genetic algorithm with local search (PGA-ACS) algorithm 
for multi-objective FSP with an objective of minimizing the makespan and total flowtime. 
Loukil et al. (2005) proposed multi-objective simulated annealing algorithm to tackle the 
multi-objective production scheduling problems. 
Pareto dominance: Among a set of schedules P , a schedule Px1 ∈  is said to dominate the 

other schedule Px2 ∈ , denoted as ( )21 xx φ , if both the following conditions are true. 

(i) The schedule Px1 ∈  is no worse than Px2 ∈  in all objectives. 

(ii) The schedule Px1 ∈  is strictly better than Px2 ∈  in at least one objective. 

When both the conditions are satisfied, 2x is called as a dominated schedule and 1x a non-
dominated schedule. If any of the above condition is violated, the schedule 1x does not 
dominate the schedule 2x . Among a set of schedules P , the non-dominated set 'P  are those 
that are not dominated by any member of the set (Deb, 2003). 
Non-dominated front: The set of all non-dominated schedules. 
Pareto optimal set: When the set P is the entire search space X , the resulting non-
dominated set is called the Pareto optimal set. 
The primary objective is to find a set of non-dominated fronts for the FSPs with the 
consideration of performance measures.  
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5.2 Proposed Multi-objective Discrete PSO Algorithm 
The discrete PSO algorithm proposed for single objective FSP has been suitably modified to 
generate non-dominated solution set considering three performance measures 
simultaneously. Before presenting the proposed algorithm, the non-dominated sorting 
procedure, Pareto search procedure and the parameters considered are discussed below.  
Non- Domination Sorting: Non-domination measures are used to find non-dominated set of 
solutions. The following procedure is used to generate non-dominated particle or solution 
set from the population of particles. Consider a swarm consisting of N  solutions (particles). 
Step 0: Begin with 1ij;1i +== , and repeat steps 1 and 2. 
Step 1: Compare solutions ix  and jx  for domination using the two conditions mentioned. 
Step 2: If jx  is dominated by ix , mark jx as ‘dominated,’ increment j , and go to step 1. 
Otherwise mark ix  as dominated, increment i , set 1ij +=  and go to step 1.  
All solutions that are not marked ‘dominated’ forms a non-dominated solution set and these 
are stored separately in a memory called archive.  

 
Figure 6. Iterative search loop of the multi-objective discrete PSO algorithm 

Pareto Search: In case of a single objective scheduling optimization, an optimal solution forms 
the Global best )G( t

b . Under multi-objective scheduling, with multiple objectives, t
bG  consist 

of a set of non-dominated solutions. Once the swarm is initialized, )ot(Gb =  is obtained after 
non-dominated sorting of the particles. During the subsequent iterations, position and velocity 
update of the particles are carried out using local best and global best. It is to be noted that one 
solution is randomly chosen from the archive as Global best set. During every iteration, non-
dominated solution set is updated. This non-dominated solution set is added with the Archive 
and the combined set is sorted for non-dominance. Dominated solutions within the combined 
set are removed and the remaining non-dominated solutions forms )1t(Gb = . This procedure 
is repeated to guide the non-dominated search process towards the Pareto region. Initially, a 
set of particles are generated randomly and evaluated. Then the non-dominated sorting of 
particles is done. Within the swarm, the non-dominated solution set i.e. t

bG  is identified and 
they are stored in an archive. Then the positions and velocities of the particles are updated 
iteratively. These current sets of non-dominated solutions are combined with the archive 

Initialize the parameters 
Generate the swarm and velocity 
t = 0: // iteration counter 
Evaluate all the particles 
Perform non-dominated sorting to identify t

bG  
Open Archive to store t

bG  
 
Do  { 

Update position;  
1tt +=  

Evaluate 
Do non-dominated sorting to identify t

bG  
Archive update 
Update velocity 

}        while )tt( max< :  ;100tmax =  
Output t

bG  
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solutions. Non-dominated sorting of archive is done to identify the archive survival members. 
This process is called Archive update. During this, all dominated members of the combined set 
are removed. This procedure is repeated to guide the non-dominated search process towards 
generating a solution front close to the Pareto region. After the termination criterion is met, the 
solution set stored in the archive forms the result. The iterative improvement process of multi-
objective PSO algorithm is presented in Figure 6. 

5.3 Performance of Multi-objective Discrete PSO Algorithm   
In this section, the performance measures namely minimization of makespan, total flowtime 
and completion time variance are considered simultaneously. It is to be noted that PSO 
algorithm has been very rarely studied by researchers for solving FSPs with multi-objective 
requirements. 
Parameter Selection: Using the proposed algorithm, experiments are conducted to redesign 
the algorithm with appropriate parameter settings. Parameters were identified by trial and 
error approach for the better performance. The swarm size is taken as 80. The values of 
acceleration constants are fixed by trial and error as 2C;1C 21 ==  and 2C3 = . The values of 
velocity coefficients 21 U,U and 3U are generated randomly between 0 and 1. Termination 
criterion is taken as 100 iterations. The benchmark instances of Taillard (1993) form a set of 120 
problems of various sizes, having 20, 50, 100, 200 and 500 jobs and 5, 10 or 20 machines have 
been taken and solved. When the iterative search process is continued beyond 100 iterations, 
solution quality is expected to improve further and the non-dominated front will converge 
towards the Pareto front. Some samples of non-dominated solution sets obtained during 1st, 
50th and 100th iterations of selected benchmark FSPs are presented in Table 6. to Table 10.  

1st Iteration 50th Iteration 100th Iteration 
maxC  ∑F  TV  maxC  ∑F  TV  maxC  ∑F  TV  

2372 37335 143185.03 2418 37282 163238.72 2380 37749 121770.54 
2385 37379 134831.95 2450 37645 139131.23 2395 37465 130522.04 
2410 36900 148013.59 2451 38181 137003.64 2458 37187 210477.03 
2412 37674 129799.71 2495 36838 186985.58 2465 37341 187537.33 
2412 36970 138733.95 2518 39668 127576.64 2488 36988 148466.05 
2414 36786 157977.52 2544 36566 258462.42 2493 36787 244247.03 
2425 36842 155318.20 2550 36352 180610.66 2518 36639 213526.66 
2432 36071 225477.25 2633 37206 175815.11 2545 36177 189031.61 
2437 36855 150071.23       
2448 37604 125025.85       
2451 36764 158552.28       
2451 36600 172676.80       
2464 37521 134748.27       
2468 37875 124452.44       
2480 39012 119837.64       
2491 36170 154730.75       
2523 38802 123177.59       

Table 6. Non-dominated fronts obtained for 20 x 20 FSP (Problem ta025 of Taillard,1993) 
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1st Iteration 50th Iteration 100th Iteration 
maxC  ∑F  TV  maxC  ∑F  TV  maxC  ∑F  TV  

3840 127915 674615.63 4168 138549 801359.25 4192 143728 688058.06 
3923 132364 655699.19 4170 139913 794893.25 4218 142073 835741.13 
3979 130656 669600.50 4181 140250 769993.81 4226 136757 870648.81 
3979 132435 633633.38 4188 138913 756248.50 4241 140962 788543.19 
3982 132026 666358.94 4243 137007 882535.81 4245 138443 845496.63 
4018 136354 604771.06 4254 141017 750998.31 4266 137938 828836.88 
4023 132426 646723.94 4284 136183 929310.25 4298 137356 866164.31 
4034 135781 631409.19 4290 137714 833303.44 4324 143038 776172.63 
4058 131370 652795.69 4295 135927 845500.88 4329 143586 760850.94 
4081 137607 586079.44 4319 142649 731565.19 4334 141675 780154.75 
4084 136148 601373.06 4320 140119 747898.00 4343 136398 868004.75 

Table 7. Non-dominated fronts obtained for 50 x 20 FSP (Problem ta055 of Taillard,1993) 
 

1st Iteration 50th Iteration 100th Iteration 
maxC  ∑F  TV  maxC ∑F  TV  maxC ∑F  TV  

6719 414626 2332780.00 7079 442243 2714971.00 6977 429237 2643600.00 
6736 407661 2339133.25 7122 431015 2619110.50 7187 429079 2992237.75 
6754 407217 2426269.50 7125 430238 2888681.25 7222 423655 3181877.50 
6759 414920 2322475.00 7279 427670 3036344.25 7266 427705 3032460.25 
6772 421227 2319961.50 7307 426737 3014873.00 7287 426588 3061585.25 
6776 420444 2215965.00       
6780 406735 2308902.00       
6785 417764 2299484.50       
6804 417373 2165440.25       
6934 402802 2477583.00       

Table 8. Non-dominated fronts obtained for 100 x 20 FSP (Problem ta085 of Taillard,1993) 
 

1st Iteration 50th Iteration 100th Iteration 
maxC  ∑F  TV  maxC ∑F  TV  maxC ∑F  TV  

11883 1341992 8681969.00 12169 1370395 8968974.00 12213 1382492 9226709.00 
11922 1378165 8301979.00    12246 1418388 8839896.00 
11935 1361242 8654574.00    12304 1390924 9191086.00 
11938 1365058 8581394.00    12361 1380781 9530417.00 
11964 1363602 8492216.00    12445 1379004 9589141.00 
11995 1355612 8551758.00       
12020 1371423 8237680.50       
12051 1369441 8470111.00       
12115 1354810 8405068.00       

Table 9. Non-dominated fronts obtained for 200 x 20 FSP (Problem ta105 of Taillard,1993) 
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1st Iteration 50th Iteration 100th Iteration 
maxC  ∑F  TV  maxC  ∑F  TV  maxC  ∑F  TV  

27361 7380460 53524660.00 27802 7498389 54440864.00 27612 7421436 53180528.00 
27417 7405289 51892856.00 27811 7402468 53268448.00 27765 7458248 53042776.00 
27448 7419382 51504108.00 27999 7543786 53059836.00 27870 7440681 53140668.00 
27465 7394286 52016468.00 28091 7529455 52754652.00 27891 7374759 53306856.00 
27534 7392887 51930096.00       
27593 7458730 51066888.00       
27603 7373445 51681608.00       
27638 7439401 51390116.00       
27680 7445450 51262332.00       
27700 7418177 51122680.00       
27729 7492150 51039416.00       

Table 10. Non-dominated fronts obtained for 500 x 20 FSP (Problem ta115 of Taillard,1993) 
Normalized values of the performance measures are plotted for better visualization. Some 
samples of non-dominated front obtained during 1st, 50th and 100th iterations of selected 
benchmark FSPs are presented in Fig. 7. to Fig. 11. 

6. Conclusion 
Literature survey indicates that very few authors have studied the applications of multi-
objective scheduling in flowshop scheduling using particle swarm optimization algorithm is 
scarce. This Chapter presents a discrete PSO algorithm to solve FSPs. This work has been 
conducted in two phases. In the first phase, a discrete PSO is proposed to solve the single-
objective FSPs. In the second phase, a multi-objective discrete PSO algorithm is proposed to 
solve the FSPs with three objectives. The performance of the proposed single-objective 
discrete PSO is tested by solving a large set of benchmark FSPs. The quality measure namely 
“Average Relative Percent Deviation” ( RPD ) is used to compare the solution quality 
obtained with the results available in the literature. It shows that the proposed discrete PSO 
algorithm performs better in terms of quality of results. Using the proposed algorithm, 
experiments are conducted to redesign the algorithm with appropriate parameter settings. 
The RPD  for each set of instances are also shown in an efficient way. The parameters 
selected for solving the problems are holds good. The proposed multi-objective discrete PSO 
algorithm performs better in terms of yielding more number of non-dominated solutions 
close to Pareto front during the search. It is seen that, when the number of iterations is more, 
the non-dominated solution set generated is close to the Pareto front.  
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Figure 7. Non-dominated solution set obtained for 20 x 20 FSP (Problem ta025 of 
Taillard,1993) 
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Figure 8. Non-dominated solution set obtained for 50 x 20 FSP (Problem ta055 of 
Taillard,1993) 
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Figure 9. Non-dominated solution set obtained for 100x20 FSP (Problem ta085 of 
Taillard,1993) 
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Figure 10.Non-dominated solution set obtained for 200x20 FSP (Problem ta105 of 
Taillard,1993) 
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Figure 11.Non-dominated solution set obtained for 500x20 FSP (Problem ta115 of 
Taillard,1993) 
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1. Introduction      
Radial Basis Function neural network (RBFNN) is a combination of learning vector 
quantizer LVQ-I and gradient descent. RBFNN is first proposed by (Broomhead & Lowe, 
1988), and their interpolation and generalization properties are thoroughly investigated in 
(Lowe, 1989), (Freeman & Saad, 1995). Since the mid-1980s, RBFNN has been used to apply 
on many applications, such as pattern classification, system identification, nonlinear 
function approximation, adaptive control, speech recognition, and time-series prediction, 
and so on. In contrast to the well-known Multilayer Perceptron (MLP) Networks, the RBF 
network utilizes a radial construction mechanism. MLP were trained by the error Back 
Propagation (BP) algorithm, since the RBFNN has a faster training procedure substantially 
and adopts typical two-stage training scheme, it can avoid solution to fall into local optima.  
A key point of RBFNN is to decide a proper number of hidden nodes. If the hidden node 
number of RBFNN is too small, the generated output vectors may be in low accuracy. On 
the contrary, it with too large number of hidden nodes may cause over-fitting for the input 
data, and influences global generalization performance. In conventional RBF training 
approach, the number of hidden node is usually decided according to the statistic properties 
of input data, then determine the centers and spread width for each hidden nodes by means 
of k-means clustering algorithm (Moddy & Darken, 1989). The drawback of this approach is 
that the network performance is depended on the pre-selected number of hidden nodes. If 
an unsuitable number is chosen, RBFNN may present a poor global generalization 
capability, as slow training speed, and requirement for large memory space. To solve this 
problem, the self-growing RBF techniques were proposed in (Karayiannis & Mi, 1997), 
(Zheng et al, 1999). However, the predefined parameters and local searching on solution 
space cause the inaccuracy of approximation from a sub-solution. 
Evolutionary computation is a globally optimization technique, where the aim is to improve 
the ability of individual to survive. Among that, Genetic Algorithm (GA) is a parallel 
searching technique that mimics natural genetics and the evolutionary process. In (Back et 
al, 1997), they employed GA to determine the RBFNN structure so the optimal number and 
distribution of RBF hidden nodes can be obtained automatically. A common approach is 
applied GA to search for the optimal network structure among several candidates 
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constructed initially by the unsupervised clustering method (Chen et al, 1999). However, its 
results depend on the pre-selected RBFNN structures which may not be appropriate. 
Another method is to fix the number of RBF nodes and adopted GA to search optimal 
network parameters, for example, centers and spread widths for RBF hidden nodes, and the 
weights connected to the output layer (Aiguo & Jiren, 1998). This method requires heavy 
computational cost while the number of RBF hidden nodes is too large, the dimension of 
each chromosome has to extend to corresponding length. It will spend too much time for 
training. GA based self-growing RBF network training method was proposed by (Yunfei & 
Zhang, 2002) to overcome the mentioned drawbacks. It searches single parameter, the 
cluster distance factor, which can avoid organizing a large dimension in a chromosome. It 
performs a fast training speed and well convergences while the GA operators (reproduction, 
recombination, and mutation, etc.) and fitness evaluation is properly applied. However, GA-
based approaches are poorer in several aspects, as premature convergence and falling into 
local optima, than new evolutionary computation techniques. 
The particle swarm optimization (PSO) is a novel and popular search algorithm based on 
the simulation of the social behavior of birds within a flock in evolutionary computation. As 
opposed to (Yunfei & Zhang, 2002), this paper proposes a PSO based RBFNN self-structure 
algorithm to overcome the drawbacks that mentioned above. PSO is a swarm intelligence 
method that roughly models the social behavior of swarms and has been proved to be 
efficient on many optimization problems in science and engineering. The social behavior of 
PSO allows particles to stochastically return toward previously successful regions in the 
search space. We propose a PSO-based approach for searching the optimal cluster distance 
factor to provide a suitable criterion on self-structure RBFNN training. The results of 
simulation experiments exhibit the rapid convergence and more better optimal solutions 
than other related approaches. Furthermore, it yields efficient training for constructing 
RBFNN. 
The paper is organized as follows. Section II describes structure and the training of the RBF 
network. Section III describes the principle and procedures of the self-structure RBF 
algorithm. Section IV presents the application of a PSO to search the cluster distance factor. 
Section V evaluates our method for modeling nonlinear function and predicting time series 
by RBF Network and comparing the results with the GA-RBF Network and K-means 
methods. Section VI is the conclusion.  

2. Radial Basis Function Neural Network 
Generally, a RBFNN consists of three layers: the input layer, the RBF layer (hidden layer) 
and the output layer. The inputs of hidden layer are the linear combinitions of scalar 
weights and the input vector  [ ]T

nxxx ,,, 21 L=x , where the scalar weights are usually 
assigned unity values. Thus the whole input vector appears to each neuron in the hidden 
layer. The incoming vectors are mapping by the radial basis functions in each hidden node. 
The output layer yields a vector [ ]myyy ,,, 21 L=y  for m outputs by linear combination of 
the outputs of the hidden nodes to produce the final output. Fig. 1 presents the structure of a 
single output RBF network; the network output can be obtained by 

 ∑
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where  f(x) is the final output, ( )⋅iφ  denotes the radial basis function of the i-th hidden node, 

iw  denotes the hidden-to-output weight corresponding to the i-th hidden node, and k is the 
total number of hidden nodes. 

 
Figure 1. The structure of a RBFNN 

A radial basis function is a multidimensional function that describes the distance between a 
given input vector and a pre-defined center vector. There are different types of radial basis 
function. A normalized Gaussian function usually used as the radial basis function, that is  
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where 
iμ  and iσ denote the center and spread width of the i-th node, respectively.  

Generally, the RBFNN training can be divided into two stages:  
1. Determine the parameters of radial basis functions, i.e., Gaussian center and spread 

width. In general, k-means clustering method was commonly used here. 
2. Determine the output weight w  by supervised learning method. Usually Least-Mean-

Square (LMS) or Recursive Least-Square (RLS) was used. 
The first stage is very crucial, since the number and location of centers in the hidden layer 
will influence the performance of the RBFNN directly. In the next section, the principle and 
procedure of self-structure RBF algorithm will be described. 

3. Self-structure RBFNN 
The hidden layer of an RBFNN acts as a receptive field operating on the input data space. 
The number of hidden node based on the distribution of the training data set. The proposed 
approach performs this task by defining a cluster distance factor, ε , which is the maximum 
distance between an input sample and a specific RBF node center and allowing the number 
of basis function to increase iteratively according to this factor. 
The rationale of this learning is described as follows: the hidden layer starts with no hidden 
node and ε  is pre-determined by PSO to control the clusters production. The first RBF node 
center 1μ  is set by choosing one data, x1, randomly from NT input data sample. The value of 
Euclidean 2-norm distance between 1μ  and the next input sample, x2, is compared with ε . 
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If it is greater, a new cluster whose center location is x2 is created as 2μ ; otherwise, the 

elements of 1μ are updated as  

 ( ) ( ) ( ) Nix iiii ,,2,1 ,oldoldnew 1211 L=−+= μαμμ   (3) 

where i1μ  and x2i are the i-th component of vectors 1μ  and x2, respectively, ⋅  denotes the 

Euclidean distance and 10 << α  is the updating ratio. Thus, this procedure is carried out on 
the remaining training samples. The number of clusters grows or RBF nodes center self-
adjust continuously until all of the samples are processed. The proposed self-structure 
RBFNN algorithm can be summarized as follows: 
1. Assuming that there are p clusters with their centers, 

pμμ ,,1 L , are generated from 

previous iterations. Taking a new input sample xn to calculate the distances with the 
each clusters inx μ− , where pi ,,1L= . 

2. The cluster whose center qμ  is ( )pix in
i

,...,1  where,minarg =− μ
μ

  will be focused. 

3. Comparing qnx μ−  with the distance criterion parameter, ε . If it is greater than ε , 

then a new cluster center, 1+pμ , is created at the position of the sample point, xn. 

Otherwise the elements of pμ are updated by (3). 

4. Repeating the above steps until all of the samples are processed. 
For L clusters, a global spread width σ  can be derived by the average of Euclidean distance 
between each cluster center and its nearest neighbor as  

 ji μμ −=σ   (4) 

where ⋅  denotes the expression for the average value for Li ≤≤1 , Lj ≤≤1  and ji ≠ . 
In (Yunfei & Zhang, 2002), the cluster distance factor, ),0( ∞∈ε , is obviously a critical 
factor to determine input space partitioning and obtains the hidden node number and 
locations in RBFNN. An unduly large value of ε  does not reflect an enough number of 
cluster so it may cause a poor-generalized precision solution. On the contrary, an unduly 
small value of ε  will create redundant clusters; therefore, it may cause overlap between 
RBF neurons; moreover, it may lead to poor accuracy and slow convergence either. This 
paper proposes a PSO-based searching approach to determine the proper value of ε ; 
further, the optimal structure of RBF network can be obtained. And, an objective function to 
evaluate the effectiveness of applying PSO is proposed. Following section will describe how 
to employ PSO technique to search a potential optimal value ε . 

4. PSO-based Self-structure RBFNN  
The PSO is a population based optimization technique that was proposed by Kennedy and 
Eberhart in 1995 (Eberhart & Kennedy, 1995), which the population is referred to as a swarm. 
The particles express the ability of fast convergence to local and/or global optimal 
position(s) over a small number of generations. 
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4.1 Evolution of PSO 
A swarm of PSO consists of a number of particles. Each particle represents a potential 
solution of the optimization task. All of the particles iteratively discover the probable 
solution. Each particle generates a position according to the new velocity and the previous 
positions of the particle, and it is compared with the best position which is generated by 
previous particles according to the cost function. The best solution is then kept; i.e., each 
particle accelerates in the directions of not only the local best solution but also the global 
best position. If a particle discovers a new probable solution, other particles will move closer 
to it so as to explore the region more completely in the process (Gudise & 
Venayagamoorthy, 2003).  
Let N denotes the swarm numbers. In general, there are three attributes, current position aij, 
current velocity vij and past best position Pbij, for particles in the search space to present 
their features. Each particle in the swarm is iteratively updated according to the 
aforementioned attributes assuming that the objective function f is to be minimized so that 
the dimension consists of n particles and the new velocity of every particle is updated by (5). 
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where vij is the velocity of the j-th particle of the i-th swarm for all Ni  ...1∈ , w is the inertia 
weight of velocity, c1 and c2 denote the acceleration coefficients, r1 and r2 are two uniform 
random values falling in the range between (0, 1), and t is the number of generations. The 
new position of the i-th particle is calculated as follows: 

 )1()()1( ++=+ tvtata ijijij   (6) 

The past best solution of each particle is updated by: 
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The global best solution Gb will be found from all of particles during previous three steps 
are defined as: 

 nitPbftGb iP ib
≤≤+=+ 1)),1((min arg)1(   (8) 

4.2 Disturbance  
Since initial particles are generated by randomly, they may not uniform enough to distribute 
over the solution space. Therefore, it may trap particles into local optimal solution 
inevitably. To avoid solution falling into the local minimal and jumping it out to find the 
global minimal, this paper added a mutation-like disturbance strategy into the PSO process 
(Sun et al, 2005). The disturbance mechanism randomly activates under a disturbance 
probability. While the disturbance mechanism is active, the selected particle will be 
randomly placed at a new position (ε  value in this paper), then this particle will keep 
following the PSO process to search a better solution. The other non-selected particle will 
keep following the PSO iteration as usual and trying to find a new solution. 
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4.3 Objective function 
For searching a suitable ε  value for RBFNN training, a function of root mean squared error 
(RMSE) which evaluates discrepancies between the sampling data output yn and the 
predictive output ∗

ny  is applied. Thus, the objective function for NT sample is defined as  

 ( ) ( )
( ) ( )( )
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nn

n N

kyky
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where ( )kyn
∗

 is the predictive output of the k-th sample data which is obtained by ε  value 
during training. 
In the section II, the relationship between self-structure RBF network training and cluster 
distance factor ε  was discussed. If (9) can be reduced to a sufficiently small value, a suitable 
value of ε  could be obtained to train the structure of RBFNN. Thus, the predictive RBFNN 
output would be closed to the sampling data output. 

4.4 RBFNN structure determination by PSO 
In this paper, our goal is to minimize the value of ( )∗

nyf ,ε . The objective function minimized 
by PSO and found potential optimal solution finally. Since we only search one parameter by 
PSO (i.e., the cluster distance factor ε ), the swarm number i=1, and defined the particle 
number as mj ≤≤1 . In the initial state of PSO, all the particles’ positions aj (i.e., initial 
cluster distance factor ε ) were set as 0.02, vj were set as 0, and the Pbj and Gbj  were 
initialized by a random number generator in the range of [0, 1]. After particles moved by (6), 
each particle will find a potential solution, the new past best position would be updated by 
(7), and the global best position would be updated by (8). The particle would keep moving 
to find a better solution until it reaches the goal or meets the termination condition (Lin et al, 
2005). The pseudo code of our PSO-based cluster distance factor searching approach 
presented in Fig. 2. 

 

 
Figure 2. The pseudo code of PSO-based cluster distance factor searching 

Create and initiate an N-dimension PSO: P 
Repeat: 

Execute PSO to update P by (5) and (6) 
for each particle ] ...1[ mi ∈  

       if *),(*),( nijnij yPbfyf <ε  

then 
ijijPb ε=  

         if *),(*),( ninij yGbfyPbf <  

then 
iji PbGb =  

endfor 
Until Termination condition is met 
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5. Simulations and Results 
5.1 Setting of simulation 

The six nonlinear functions with different complexities are tested here. These tested 
functions are listed as follows: 

Ex. Tested function Range 

1 
)1(

)12)(2(
2x
xxy

+
−−

=  ]12,8[−∈x  

2 
x

x
y

)sin(
=  ]10,10[−∈x  

3 2/22 2

)21(1.1 xexxy −+−=  ]5,5[−∈x  

4 
2

)cos1()
2

sin(5.0 xxy +
+= ]8.10,5.4[−∈x

5 )
10
2sin()

5
2sin( xxy ππ +=  ]10,0[∈x  

6 )
5

2cos()
10

sin( xxy ππ +−=  ]10,10[−∈x  

Table 1. The six tested nonlinear functions 

In order to confirm the advantages of the proposed approach, the K-means algorithm 
(Moddy & Darken, 1989) and GA-based self-growing RBFNN training algorithm (Yunfei & 
Zhang, 2002) are also carries out in these tested functions. Due to (Yunfei & Zhang, 2002) 
adopted Simple Genetic Algorithm (SGA) which using binary coding to train RBF structure 
for saving computation time, but it will loose some accuracy compared to the real-valued, 
i.e., this method may not present the optimal solution. So we implemented it with Real-
value Genetic Algorithm (RGA) to obtain accuracy results.  
For every simulation, the training data set consists of 50 input-output data samples taken at 
random, and the testing data set includes 75 samples different from the training data set. For 
the definition of parameters in the proposed approach, w, c1 and c2 are given 0.12, 0.25 and 
0.25 respectively, and the search range of ε  is bounded between 0.2 and 1, the particle 
number is 10. For the GA-based self-growing RBFNN training algorithm the search range of 
ε  in the input space is also in the range from 0.2 to 1, the crossover rate Pc is given 0.8, and 
mutation rate Pm is given 0.01, the population size is 10. For the K-means method, the 
optimal number of RBF neurons in the hidden layer is chosen to be 30 by experience.  

5.2 Simulation results 
After simulations, the RMSE of training data, RMSE of testing data, maximal error and 
number of hidden node will be presented in tables for each case. In these tables, the three 
involved algorithms are denotes as PSO-based, GA-based (Yunfei & Zhang, 2002) and K-
means (Moddy & Darken, 1989). Additionally, the real data and approximated data will be 
shown in the same figure; meantime, the error from each approximation will be presented 
by figures. There three sub-figures in each figure, the results from the left sub-figure to the 
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right sub-figure are generated by PSO-based approach, GA-based approach and K-means 
approach, respectively. 
Example 1. 

 PSO-based GA-based K-means
RMSE for training data 0.0332 0.0584 0.1552 
RMSE for testing data 0.0520 0.0786 0.1962 

Maximal error 0.3852 0.2355 0.9508 
Number of hidden node 33 29 30 

Table 2. Comparison between the three approaches in example 1 

 
Figure 3. Curves of RBFNN output and real data in example 1. (solid-line represents the real 
data, dashed-line represents the output data) 

 
Figure 4. The errors between the real data and approximations in example 1 
Example 2. 

 PSO-based GA-based K-means
RMSE for training data 0.0035 0.0046 0.0234 
RMSE for testing data 0.0099 0.0113 0.0357 

Maximal error 0.0460 0.0509 0.1006 
Number of hidden node 28 28 30 

Table 3. Comparison between the three approaches in example 2 
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Figure 5. Curves of RBFNN output and real data in example 2. (solid-line represents the real 
data, dashed-line represents the output data) 

 
Figure 6. The errors between the real data and approximations in example 2 
Example 3. 

 PSO-based GA-based K-means
RMSE for training data 0.0056 0.0173 0.1271 
RMSE for testing data 0.0057 0.0188 0.0803 

Maximal error 0.0134 0.0432 0.2441 
Number of hidden node 24 22 30 

Table 4. Comparison between the three approaches in example 3 

 
Figure 7. Curves of RBFNN output and real data in example 3. (solid-line represents the real 
data, dashed-line represents the output data) 
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Figure 8. The errors between the real data and approximations in example 3 
Example 4. 

 PSO-based GA-based K-means
RMSE for training data 0.0079 0.0112 0.0337 
RMSE for testing data 0.0192 0.0292 0.0740 

Maximal error 0.1217 0.0939 0.1854 
Number of hidden node 19 31 30 

Table 5. Comparison between the three approaches in example 4 

 
Figure 9. Curves of RBFNN output and real data in example 4. (solid-line represents the real 
data, dashed-line represents the output data) 

 
Figure 10. The errors between the real data and approximations in example 4 
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Example 5. 

 PSO-based GA-based K-means
RMSE for training data 0.0460 0.0519 0.0637 
RMSE for testing data 0.0546 0.0564 0.0867 

Maximal error 0.3056 0.3236 0.2208 
Number of hidden node 20 21 30 

Table 6. Comparison between the three approaches in example 5 

 
Figure 11. Curves of RBFNN output and real data in example 5. (solid-line represents the 
real data, dashed-line represents the output data) 

 
Figure 12. The errors between the real data and approximations in example 5 
Example 6. 

 PSO-based GA-based K-means
RMSE for training data 0.0079 0.0092 0.0690 
RMSE for testing data 0.0439 0.0509 0.0859 

Maximal error 0.2159 0.2486 0.1855 
Number of hidden node 29 27 30 

Table 7. Comparison between the three approaches in example 6 
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Figure 13. Curves of RBFNN output and real data in example 6. (solid-line represents the 
real data, dashed-line represents the output data) 

 
Figure 14. The errors between the real data and approximations in example 6 

5.3 Discussion 
In the simulation results in tables, PSO-based approach has lower RMSE for training data 
and testing data. It means that over fitting does not happen in the proposed approach. From 
figures of the curves of RBFNN output and real data, the approximated curves by PSO-
based approach is closer to the real data than these by others. From figures of the 
approximated errors, it could be shown that PSO-based approach results small error in most 
of sample, whereas the K-means approach has largest error.  
We know that RBFNN needs different number of hidden node and cluster radius for 
different complexities. K-means approach usually performs a larger error because it is not 
able to decide a suitable number of hidden node. Though GA-based approach decides a 
suitable number of hidden node, its cluster radius is not good enough to classify whole data. 
The proposed approach is able to find out the optimal cluster radius to further decide a 
number of hidden node because PSO has better capacity of global searching than GA. 

6. Conclusion 
This paper has presented a novel approach for self-structure RBFNN. A very important step 
for the RBFNN training is to decide a proper number of hidden node. If the number of 
hidden node does not chosen properly, the RBFNN may present poor global generalization 
capability, slow training speed, and the requirement of large memory space. Therefore, to 
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decide a suitable cluster distance factor (ε ) is the crucial condition for creating an optimal 
self-structure RBFNN. This paper proposed a PSO-based approach for searching the optimal 
ε ; further, RBFNN is able to determine the optimal number of hidden node automatically.  
For proofing benefits of the proposed PSO-based approach, the simulations consisting of six 
nonlinear system modeling were tested; meanwhile, GA-based approach and K-means 
approach  were also carried out for comparison. Simulation results show that the PSO-
RBFNN algorithm outperforms the GA-RBFNN and K-means methods by the minimal 
training RMSE and the minimal testing RMSE.  
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1. Introduction 
Power distribution systems are formed by many inter-connected feeders. Each feeder is 
further partitioned into many load-zones by switches. These switches can be divided into 
two categories: normally closed sectionalizing-switches and normally opened tie-switches. 
During normal operation, the structure of distribution system must be maintained in radial 
structure by properly adjusting the status of the switches. The distribution system can be 
reconfigured by changing the status of these switches while maintaining the radial 
structure.  The feeder reconfiguration serves several purposes, for example, reducing power 
losses, maintaining load balance and enhancing service reliability. The mean of a switch 
operation plan is that by changing the status of sectionalizing-switches and tie-switches, 
loads can be transferred from one feeder to an adjacent feeder to redistribute loads without 
violating the operation limitations. However, great deals of switches exist on distribution 
systems. The number of possible solutions for feeder reconfiguration is increased in 
exponential order when the number of switches on distribution system increases. Thus 
selecting the best switch operation plan from all feasible solutions can be considered as an 
NP-Complete problem. Because the status of switches can be represented as ‘1‘ or ‘0’, the 
problem of feeder reconfiguration can also be regarded as ‘1’ and ‘0’ permutation 
combinatorial optimization problems.  
Researchers studied the feeder reconfiguration problems using different methods in the past 
decades. The results of these researches provide acceptable solutions for feeder 
reconfiguration problems. Heuristic methods to minimize power losses and improve the 
searching speed were proposed in (Baran & Wu, 1989). Soft computing approaches were 
applied to the problem extensively as well, for example, neural network (Kim et al., 1993), 
simulated annealing (SA) (Chang & Kuo, 1994), genetic algorithm (GA) (Nara et al., 1992; 
Kitayama & Matsumoto, 1995) and evolutionary programming (EP) (Hsiao, 2004; Hsu & 
Tsai, 2005). Algorithms based on concept of mimicking swarm intelligent are popular in 
recent years. For instance, ant colony optimization (ACO) (Teng & Lui, 2003; Carpaneto & 
Chicco, 2004; Khoa & Phan, 2006) and particle swarm optimization (PSO) (Chang & Lu, 
2002) are the algorithms that can be applied to the field of optimization problems. These 
algorithms are applied to the problems of power distribution system gradually. 
This research will apply the concept of PSO algorithm that is a novel and suitable algorithm 
for solving combinatorial optimization problems. Kennedy and Eberhart (Kennedy & 
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Eberhart, 1995; Shi & Eberhart, 1998) proposed PSO (typical PSO) in 1995. The PSO can be 
treated as the branch of the evolutionary algorithms and it introduces the concept of swarm 
intelligent. There are many similarities between PSO and Genetic Algorithm (GA). Both 
algorithms produce an initial solution set randomly at first. Through iterations of the 
evolution process, optimal solution can be obtained. The major difference between GA and 
PSO is that PSO has no explicit selection, crossover and mutation operations (Eberhart & 
Shi, 1998). Searching process in PSO is based on the previous best solution of a particle and 
the best solution of the population so far to update particle’s information. That means the 
particles will share the best information between each other and lead the particles moving 
toward the target. Due to the searching mechanism designed in PSO, the probability of 
falling into local solution for PSO algorithm can be reduced. Also, the concept of PSO is 
simple and is easy to implement than GA. Thus, PSO can be a powerful algorithm to aid and 
speed up the decision-making process for feeder reconfiguration problems to identify the 
best switching plan. 
As mentioned previously, feeder reconfiguration problems are non-linear discrete 
optimization problems. However, the typical PSO is designed for continuous function 
optimization problems; it is not designed for discrete function optimization problems. 
Fortunately, Kennedy and Eberhart proposed a modified version of PSO called Binary 
Particle Swarm Optimization (BPSO) that can be used to solve discrete function 
optimization problems (Eberhart & Kennedy, 1997). Although BPSO can be applied to solve 
the discrete optimization problems, there are still problems when BPSO is applied for feeder 
reconfiguration problems.  In feeder reconfiguration problems, there are a large number of 
tie-switches. Randomly choosing the locations of these tie-switches will cause outages or 
non-radial structure in distribution systems. In (Chang & Lu, 2002), BPSO is used to solve 
the feeder reconfiguration problems and the method they proposed avoided the problem of 
unsuitable numbers of tie-switches. The concept of (Chang & Lu, 2002) is based on BPSO 
and the moving velocity of particle is defined in terms of probabilities. Instead of BPSO used 
in (Chang & Lu, 2002), this research tries to construct a more feasible discrete PSO scheme 
based on typical PSO for feeder reconfiguration. The method proposed in this research 
modifies the operators of PSO’s formula based on the characteristics of both the status of 
switches and the shift operator to construct the binary coding particle swarm optimization 
for feeder reconfiguration. Minimizing total line losses and load balancing without violating 
operation constraints and maintaining radial structure are the two objective functions in this 
research. The simulations will be performed and the results are used to compare the 
proposed method, the method proposed in (Chang & Lu, 2002) and BPSO to verify the 
performance and effectiveness. A distribution system in Taiwan Power Company (TPC) is 
used in this study to verify the stability and usefulness of the proposed algorithm. 

2. Problem Statement 
There are all kinds of loads on distribution systems and these loads distributed non-evenly 
on the distribution feeders. The uneven load distribution on feeders may cause the 
conductor overloading or transformer load unbalancing on distribution systems during 
emergency operation. Fig. 1 is a simple 3-feeder distribution system. The ampacity of each 
feeder is 300A. The total loads on each feeder are 105A, 250A and 200A respectively. This 
configuration is considered as an unbalanced distribution system when the feeder loading is 
concerned. The feeder reconfiguration can be performed by opening/closing of 
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sectionalizing-switches and tie-switches on distribution systems to reduce line losses or 
increase the system reliability. Therefore, feeder reconfiguration can redistribute the loads 
and is a common practice for the distribution system operators to avoid the problems of the 
conductor/transformer overloading or unbalancing on distribution feeders or transformers. 
Fig. 2 is the result of feeder reconfiguration from Fig. 1. The loads on each feeder are 185A, 
190A and 180A respectively after reconfiguration. As a result, the system is operated in a 
more balanced way. However, some constraints should be considered during feeder 
reconfiguration. These constraints include: the radial structure of distribution system must 
be maintained, all zones must be served, feeder capacity should not be exceeded and feeder 
voltage profile should be maintained. As mentioned earlier, the feeder reconfiguration 
problems can be treated as ‘1’ & ‘0’ permutation combinatorial optimization problems. ‘1’ 
represents a normally closed switch; while ‘0’ represents a normally opened switch. 
Considering a simple system shown in Fig. 1, the order of switch permutation is sw1, sw2, 
…, sw11 in turn. Thus, the status of switch permutation of the system in Fig. 1 can be 
expressed as [1 1 0 1 1 1 1 0 1 1 1]. The result of feeder reconfiguration is shown in Fig. 2, and 
the switch permutation becomes [1 1 1 0 1 1 1 1 0 1 1]. 

 
Figure 1. A simple 3-feeders distribution system 

 
Figure 2. Result of feeder reconfiguration 

Some objectives such as minimize the total line losses, minimize the numbers of operating 
switches, minimize voltage drop and load balance index are considered during feeder 
reconfiguration in general. Two objectives are considered in this research. The first is to 
minimize the total line losses during normal operation. By doing so, the operation of 
distribution system will be more economic and effective. The second objective is to 
distribute loads on feeders evenly. Balanced feeder loads can increase the opportunity of 
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load transfer during emergency conditions and improve system reliability. The method 
proposed in this research also ensures that structure is maintained in radial and the 
ampacity of each conductor is kept within allowable limits. “Concentric load model” is used 
in this research for calculating branch currents. The line losses can be formulated as follows: 
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where Floss is the total real power losses of distribution feeders, n is the total numbers of 
zones in distribution system, Ii is the current magnitude of the i-th zone and zi is the line 
impendence of the i-th zone. The load balance index is expressed as following:  
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where k is number of feeder. Capm or Capn represents the total load of feeder m and n 
respectively.  The total feeder loads can be calculated as following: 
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where, Loadi,j ∈  Feederi, i is the feeder number, and j is the load zone number within feeder 
i. In order to calculate the fitness value of the system represented by a particle, the method 
proposed in (Hsu & Tsai, 2005) is used to integrate the two object functions. 

3. Particle Swarm Optimization 
3.1 Typical Particle Swarm Optimization 
A considerable amount of incredible social behavior and great intelligent exist in nature 
such as ant colonies, bird flocking, animal herding and fish schooling. Although the ability 
of individual is limited, the population can achieve the difficult target though cooperation 
with each other. Note that there is no centralized control in population. The behavior of 
individual depends on interacting with one another and with their environment only. These 
simple behaviors among individuals can lead population make themselves toward global 
behavior. Thus, completing a goal by aggregating the individuals and cooperating with each 
other that could be called swarm intelligent. Particle Swarm Optimization is one of the 
optimization algorithms provided with the concept of swarm intelligent. Original concept of 
PSO came from the study of simulating behavior of bird flocking to look for food. A possible 
solution for each problem can be represented as a particle that is just like a bird flocking in a 
D-dimensional searching space. Each individual particle has a fitness value that is evaluated 
by a fitness function to pick a good experience for itself and population respectively. The 
particles of population is initialized randomly first. A particle changed its searching 
direction based on two values or experiences during each iteration. The first one is the best 
searching experience of individual so far and it is called pbest. Another one is the best result 
obtained so far by any particle in the population and it is called gbest. When pbest and gbest 
are obtained, a particle updates its velocity and position based on (4) and (5).  Lastly, the 
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algorithm will check the results every iteration until the best solution is found or 
termination conditions are satisfied. 

 ( ) ( )ididid
new
id xgbestrandcxpbestrandcwvv −××+−××+= () () 21   (4) 
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In the above equations, vid is the original velocity of the i-th particle, new
idv is the new 

velocity of the i-th particle, w is the inertia weight, c1 and c2 are the acceleration constants, xid 

is the original position of the i-th particle, new
idx is the new position of the i-th particle and 

rand() is a random number ranging between 0 and 1. 
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Figure 3. Searching diagram of typical PSO 

In (4), the first part is the inertia (habitual behavior), which represents the particle trusts its 
own status at present location and provides a basic momentum. The second part is the 
cognition (self-knowledge) or memory, which represents the particle is attracted by its own 
previous best position and moving toward to it. The third part is the social (social 
knowledge) or cooperation, which represents the particle is attracted by the best position so 
far in population and moving toward to it. There are restrictions among these three parts 
and can be used to determine the major performance of the algorithm. The purpose of 
updating formula is to lead particles moving toward compound vector of inertia part, 
cognition part and social part. By doing so, the opportunity for particle to reach the target 
(optimal solution) will be increased. The inertia weight in the formula is used to adjust 
searching areas. A larger inertia weight will motivate the algorithm toward a global search; 
a smaller value will force the PSO toward a local search. The searching diagram of typical 
PSO is shown in Fig. 3.  

3.2 Binary Particle Swarm Optimization 
Kennedy and Eberhart proposed a binary version of PSO for discrete problems (Eberhart & 
Kennedy, 1997). In the binary PSO version, the particle’s personal best and global best is still 
updated as in the typical version as described in (4). The elements inside xid, pbest and gbest 
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of BPSO are either `1‘ or `0‘.  Therefore, a particle flies in a search space restricted to zero 
and one. The speed of the particle must be constrained to the interval [0, 1]. A logistic 

sigmoid transformation function )( new
idvS  shown in (6) can be used to limit the speed of 

particle. 
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The update equation of BPSO can be done in two steps. First, (4) is used to update the 
velocity of the particle and the sigmoid function, (6), is used to limit the velocity in the 
interval [0, 1]. Second, the new position of the particle is obtained using (7) shown below: 
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where, rand() is a uniform random number in the range [0, 1]. 
Since the relevant variables are derived from the changes of probabilities, the concept of 
BPSO is different from the typical PSO. It is hard to identify the relation between the current 
status and previous status of a particle. The selection of parameters, such as inertia weight, 
acceleration constants, etc., is also problematic.  

3.3 Binary Coding Particle Swarm Optimization 
Through the discussion of typical PSO and BPSO in the previous section, the PSO algorithm 
cannot be applied to feeder reconfiguration directly. Therefore, this research tries to 
construct a more feasible discrete PSO scheme based on the concept of typical PSO for 
feeder reconfiguration. The typical PSO must be modified based on the characteristics of 
distribution feeder operations. Two issues will be considered in the modification process. 
The first one is the problem of feeder reconfiguration is ‘1’ & ‘0’ permutation combinatorial 
optimization problem. The second issue is utilizing the shift operator that is used in 
computer programming languages. The shift operator and shift operator set defined in this 
research using these two aspects. Shift operator and shift operator set can be used to 
construct the binary coding particle swarm optimization for distribution feeder 
reconfiguration. These two definitions and the proposed binary coding PSO will be 
discussed. 

3.3.1 Shift Operator 
Suppose m sectionalizing switches (normally closed, N.C.) and n tie switches (normally 
opened, N.O.) exist on a distribution system.  The permutation combination of the status all 
switches (s=m+n) is [S1, S2, …, Ss] and it will be called ‘sequence of switch states’, or SSS, in the 
rest of this paper. The shift operator is defined as SO (Biti, DirectionL,R, Stepc) and it means that 
an action will change the position of an N.O. in SSS. Biti is the index of i-th switch in SSS. 
DirectionL,R indicates the direction of left or right shifting on the i-th switch. Stepc is the 
number of shifting steps. The new permutation in SSS is defined as SSS’=SSS <+> SO. The 
symbol, ‘<+>’, represents the shift operator.  It will be applied to SSS to get a new SSS’.  
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A case is used to explain the operating process of shift operator. A simple distribution 
system shown in Fig. 4 has four feeders, nine N.C.s and three N.O.es. The SSS of this system 
is denoted as [1 0 1 0 1 1 1 1 1 1 0 1]. Supposing an SO(4, R, 1) is applied on this SSS. The 
process of operation is described as Fig. 5. When an N.O. shifts, a ‘1’ (N.C.) needs to be set at 
its original position to maintain system structure. 

Sectionalizing Switch

Tie Switch

fd1

fd2

fd3

fd4

S1 S2 S3

S4 S6

S7

S10

S11S12

S8

S9

S5

 
Figure 4. A simple 4-feeders distribution system 

 
Figure 5. Basic operating process of shift operator 

3.3.2 Shift Operator Set 
A set with at least one or more shift operators is called shift operator set (SOS). An SOS 
represents all actions about how to set or shift normal open switches on distribution 
systems. The definition of shift operator set is shown in (8). 

 { }nSOSOSOSOS ,...,, 21=   (8) 

where n is the number of shift operators. 
Considering two SSSes, SSS1 and SSS2, a set of shift operators which transfers SSS1 to SSS2 
needs to be identified.  Two SSSes, SSS1=[1 0 1 0 1 1 1 1 1 1 0 1] and SSS2=[1 1 1 1 0 1 1 0 1 0 1 
1], are used to explain how the shift operators are obtained. By comparing the position of 
normally opened switch one by one in these two SSSes, the SOS can be acquired. The 
determination of the shift operator set and the result are shown as Fig. 6. In this example, 
SOS={ SO1, SO2, SO3}= SSS2 Θ SSS1. The symbol, ‘ Θ ’, is used to represent an action to get 
the shift operators from SSS1 to SSS2. 
Base on the concept of above process, (pbest - xid) and (gbest - xid) in (4) can be rewritten as 
(pbest Θ  xid) and (gbest Θ  xid) respectively. The xid, pbest and gbest represent different 
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SSSes in this sketch. This process will transfer an SSS to a new one which is closer to the best 
switch plan. 

 
Figure 6. Decision process of shift operator set 

3.3.3 Constructing Binary Coding PSO 
The definition of shift operator and shift operator set are discussed in previous sections.  The 
velocity update formulas (4) and (5) of PSO can be reestablished to solve the problem of 
feeder reconfiguration. The new velocity update formula for the proposed binary coding 
PSO is as below: 

 ))   (()())  (()()( ididid
new
id xgbestrandxpbestrandvwv Θ〈×〉⊕Θ〈×〉⊕⊗=  (9) 
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idid
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The symbol, ‘ ⊕ ’, shown in (9) is used for combining two shift operator sets. The symbol, 
‘ ⊗ ’, is the operator that is used to shift the number of steps. The symbol, ‘ 〈×〉 ’, is used to 

select the number of shift operator, SO, in (pbest Θ xid) or (gbest Θ xid) randomly. xid is the 
original SSS of  the i-th particle; pbest is the best SSS of the i-th particle; gbest is the best SSS 
of any particle in the population. vid is the original shift operator set of the i-th particle, 

new
idv is the new shift operator set of the i-th particle. new

idx is the new SSS of the i-th particle. 
rand() is a random number with a range of [1, n] where n is the number of SO in SOS.  
In Eq. (9), w is the inertia weight.  The role of w is used for adjusting searching areas. The 
searching areas are reduced progressively when the number of iteration increases. The 
inertia weight can be calculated as (11). 
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max ShiftStep
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iterationiterationw now ×−=
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A simple example is used to show how the proposed method works. Based on the system 
shown in Fig. 4, xid, pbest and gbest represent different SSSes are given: 

xid    : [1 0 1 0 1 1 1 1 1 1 0 1] 
pbest : [1 1 1 1 0 1 1 0 1 0 1 1] 
gbest : [1 1 0 1 0 1 1 1 0 1 1 1] 
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The SOS can be derived from (pbest Θ xid) and (gbest Θ xid) as: 

             (pbest Θ xid) = {(2, R, 3), (4, R, 4), (11, L, 1)} 
             (gbest Θ xid) = {(2, R, 1), (4, R, 1), (11, L, 2)} 

The three parts in (9) can be expressed as following:  

w ⊗ vid = {(2, L, 3), (4, L, 2), (11, R, 2)} 
               rand() 〈×〉 (pbest Θ xid) = {(2, R, 3), (4, R, 4) , (11, L, 1)} 

rand() 〈×〉 (gbest Θ xid) = {(2, R, 1), (11, L, 2)} 

According to (9), the new
idv contains eight SOes, (2, L, 3), (2, R, 3), (2, R, 1), (4, L, 2), (4, R, 4), 

(11, R, 2), (11, L, 1) and (11, L, 2). Combining these eight SOes, the final new
idv contains three 

SOes, (2, R, 1), (4, R, 2) and (11, L, 1). Finally the new SSS, new
idx , will be [1 1 0 1 1 0 1 1 1 0 1 

1] according to (10). 
The procedure of proposed binary coding PSO is outlined as below: 
a. Determine the size of population and other parameters such as number of iterations 

and maximum shift steps. 
b. Initialize the SSS and shift operator sets randomly to produce particles. 
c. Evaluate the fitness value for each particle. 
d. Compare the present fitness value of i-th particle with its historical best fitness value. If 

the present value is better than pbest, update the information including SSS and fitness 
value of pbest. 

e. Compare present fitness value with the best historical fitness value of any particle in 
population. If the present fitness value is better than gbest, update the information 
including SSS and fitness value for gbest. 

f. Update the shift operator set and generate a new SSS of the particle according to (9) and 
(10), respectively. 

g. If stop criterion is satisfied then stop, otherwise go to step c). In this research, the stop 
criterion is the iteration count reaches the maximum number of iteration. 

4. Experimental Results 
To verify the performance of the proposed algorithm and compare with algorithms of 
typical BPSO (Eberhart & Kennedy, 1997) and modified BPSO (Chang & Lu, 2002) for feeder 
reconfiguration problem, a four-feeder distribution system is used. This distribution system 
is taken from Taoyuan division, Taiwan Power Company, Taiwan. The system has 24 
sectionalizing-switches, 8 tie-switches and 28 load-zones, as shown in Fig. 7. The capacity of 
each feeder is shown in Table 1. The objective functions are: minimizing feeder loss and load 
balancing index without violating operation constraints. The proposed method and the 
algorithms described in (Eberhart & Kennedy, 1997) and (Chang & Lu, 2002) were 
implemented using Java language for comparison purposes. Relevant parameters are set as 
follows. The size of population is 10 for all methods. Maximum number of iteration is set to 
1000 for all methods as well. The inertia weight, learning factor of c1 and c2 for the methods 
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of typical BPSO (Eberhart & Kennedy, 1997) and modified BPSO (Chang & Lu, 2002) are set 
to 0.8, 2.0 and 2.0, respectively. The settings of these parameters can be referred to (Chang & 
Lu, 2002).  In order to obtain the results and calculate the average performance, 10 runs were 
performed for each method. 
The comparisons of the results from the three algorithms are shown in Table 2. The Max, 
Min and Average in Table 2 indicate the maximum, minimum and average fitness value, 
running time, losses and load balancing index values in 10 runs respectively. The typical 
BPSO is not able to get a better result than proposed algorithm due to the higher probability 
of inadequate number of tie-switches represented by particles. Although the running time of 
typical BPSO is less than proposed method, the average values of losses and load balancing 
index of typical BPSO are higher than proposed method. The modified BPSO is able to avoid 
the problem of inadequate number of tie-switches represented in each particle.  On the other 
hand, the result of proposed method is better than other two methods. Beside the execution 
time of proposed method is two seconds longer than BPSO, all the other outcomes of 
proposed method are superior to other methods. The feeders which represent of maximum 
fitness value of feeder reconfiguration of the typical BPSO method, modified BPSO and 
proposed method are shown in Fig. 8, Fig. 9 and Fig. 10 respectively. Table 3 lists the 
comparison of total loads of each feeder obtained from the three methods. All the results 
indicate that the proposed method provides better and more reliable solutions than typical 
BPSO and modified BPSO methods for minimizing line losses and load balancing problem. 
 

Feeder ID F1 F2 F3 F4 

Capacity (Amp) 500 500 250 500 

Table 1. Capacity of each feeder 

 

 
Figure 7. A 4-feeders distribution system for testing 



A Novel Binary Coding Particle Swarm Optimization for Feeder Reconfiguration 

 

447 

Method Typical 
BPSO 

Modified 
BPSO 

Binary 
coding PSO 

Max 0.8759 0.9121 0.9234 

Min 0.8058 0.8844 0.8898 Fitness 
Value 

Average 0.8594 0.8992 0.9032 

Max 6625 11015 8734 

Min 5250 8812 8110 
Running 

Time 
(msec) 

Average 6212 10359 8354 

Max  515kW 405kW 364kW 

Min  339kW 335kW 312kW Loss 

Average  404kW 365kW 329kW 

Max  525928 434216 264648 

Min  184712 183368 169112 
Load 

Balance 
Index 

Average  329504 294859 208328 

Table 2. Results and comparisons of three algorithms 

Feeder ID
Method  F1 F2 F3 F4 

Original system 176 146 171 203 

Typical BPSO  124 312 122 138 

Modified BPSO 139 232 122 203 

Binary Coding PSO  139 227 110 220 

Table 3. The comparison of the feeder loading 
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Figure 8. The final feeder configuration found by the typical BPSO method 

 
Figure 9. The final feeder configuration found by the modified BPSO method 

 
Figure 10. The final feeder configuration found by the proposed method 
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5. Conclusion 
Particle Swarm Optimization is a novel and powerful algorithm for continuous and discrete 
functions optimization problems. In this work, the concept of typical PSO is modified and 
applied to the feeder reconfiguration problems. Feeder reconfiguration problems are non-
linear discrete optimization problems in nature; and further, there are some defects to use 
typical BPSO directly for feeder reconfiguration. This research try to construct a binary 
coding particle swarm optimization based on typical PSO to solve this problem. The 
operators of typical PSO algorithm have been reviewed and redefined in this research to fit 
the application of distribution feeder reconfiguration. In addition, minimizing total line 
losses and load balancing without violating operation constraints are the objective functions 
used in this research. The experimental results show that the proposed method can solve the 
feeder reconfiguration problem more effectively. 

6. Acknowledgement 
This research was supported by the National Science Council, Taiwan under contract NSC 
97-2221-E-027-110. 

7. References 
Baran M.E. and Wu F.F. (1989). Network Reconfiguration in Distribution Systems for Loss 

Reduction and Load Balancing, IEEE Trans. on Power Delivery, vol. 4, no.2, April 
1989, pp. 1401-1407. 

Chang H. C. and Kuo C. C. (1994). Network reconfiguration in distribution system using 
simulated annealing, Elect. Power Syst. Res, vol. 29, May 1994, pp. 227-238. 

Chang R.F. and Lu C.N. (2002). Feeder Reconfiguration for Load Factor Improvement, IEEE 
Power Engineering Society Winter Meeting, Vol. 2, 27-31 Jan. 2002, pp.980-984. 

Carpaneto E. and Chicco G. (2004). Ant-Colony Search-Based Minimum Losses 
Reconfiguration of Distribution Systems, Proc. IEEE Melecon 2004, pp.971-974, 
Dubrovnik, Croatia. 

Eberhart R.C. and Kennedy J. (1997). A Discrete Binary Version of the Particle Swarm 
Algorithm, In Proceedings of IEEE International Conference on Systems, Man, and 
Cybernetics, vol. 5, pp.4104-4108, 1997. 

Eberhart R.C. and Shi Y. (1998). Comparison between Genetic Algorithms and Particle 
Swarm Optimization, The 7th Annual Conference on Evolutionary Programming, San 
Diego, USA, 1998. 

Hsiao Ying Tung. (2004). Mutiobjective Evolution Programming Method for Feeder 
Reconfiguration, IEEE Trans. on Power Systems, Vol. 19, No. 1 pp. 594-599, February 
2004. 

Hsu Fu-Yuan and Tsai Men-Shen. (2005). A Multi-Objective Evolution Programming 
Method for Feeder Reconfiguration of Power Distribution System, Proc. of the 13th 
Conf. on Intelligent Systems Application to Power Systems, pp.55-60, November 2005. 

Kim H., Ko Y. and Jung K.H. (1993). Artificial Neural Networks Based Feeder 
Reconfiguration for Loss Reduction in Distribution Systems, IEEE Trans. on Power 
Delivery, vol. 8, no. 3, July 1993, pp. 1356-1366. 



Particle Swarm Optimization 

 

450 

Kennedy J. and Eberhart R. C. (1995). Particle Swarm Optimization, Proceedings IEEE Int’l. 
Conf. on Neural Networks, IV, pp.1942-1948, 1995. 

Kitayama M. and Matsumoto K. (1995). An Optimization Method for Distribution System 
Configuration Based on Genetic Algorithm, Proceedings of IEE APSCOM, pp. 614-
619, 1995. 

Khoa T.Q.D. and Phan B.T.T. (2006). Ant Colony Search based loss minimum for 
reconfiguration of distribution systems, 2006 IEEE Power India Conference. Page(s): 
6pp, April 2006. 

Nara K., Shiose A., Kitagawa M. and Ishihara T. (1992). Implementation of Genetic 
Algorithm for Distribution Systems Loss Minimum Reconfiguration, IEEE Trans. on 
Power Systems, vol.7, no. 3, August 1992, pp. 1044-1051. 

Shi Y. and Eberhart R.C. (1998). A modified particle swarm optimizer, IEEE International 
Conference on Evolutionary Programming, pp.69-73, May 1998, Alaska. 

Teng Jen-Hao and Lui Yi-Hwa (2003). A Novel ACS-Based Optimum Switch Relocation 
Method, IEEE Trans. on Power Systems, vol. 18, no. 1, February 2003, pp.113-120. 

 



28 
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1. Introduction 
Swarm Intelligence is an adaptive computing technique that gains knowledge from the 
collective behavior of a decentralized system composed of simple agents interacting locally 
with each other and the environment. There is no centralized command or control dictating 
the behavior of these agents. The local interactions among these agents cause a global 
pattern to emerge from which problems are solved. The foundation of swarming theory was 
given in 1969. Two scientists, Keller and Segel, in their paper, “Slime mold aggregation”, 
challenged the traditional pacemaker theory [47]. They suggested that the slime mold 
aggregation is a result of mutual interactions among different cells rather than the 
traditional belief that the aggregation is directed by a pacemaker cell. This theory became 
the basis for swarm theory. In emergent systems, an interconnected system of rel- atively 
simple agents self-organize to form a more complex, adaptive, higher-level behav- ior. To 
attain this complex behavior, these elements follow simple rules (e.g., the rule defined by 
the “Social Impact Theory” [18]). Examples of such systems can be found abundant in 
nature including ant colonies, bird flocking, animal herding, honey bees, bac- teria, and 
many more. These natural systems are optimizing using certain criteria during local 
interactions so that the routes optimize as ants trace the way to food. The ants may be 
designed to achieve goals other than locating food adding more dimensions to the basic 
algorithm. From closely observing these highly decentralized behaviors, a “swarm-like” 
algorithm emerges such as the Ant Colony Optimization (ACO) and Particle Swarm Opti- 
mization (PSO). The ACO and PSO have been applied successfully to solve real-world 
optimization problems in engineering and telecommunication [8, 9]. Swarm Intelligence 
algorithms have many features in common with Evolutionary Algorithms. Evolutionary 
algorithms are population based stochastic algorithms in which the population evolves over 
a number of iterations using simple operations. Like EA, SI models are population- based. 
The system is randomly initialized with a population of individuals, i.e., potential solutions. 
These individuals move in search patterns over many iterations following sim- ple rules, 
which mimic the social and cognitive behavior of insects or animals as they try to locate a 
prize or optima. Unlike EA, SI based algorithms do not use evolutionary opera- tors such as 
crossover and mutation. 
Particle Swarm Optimization algorithm (PSO) was originally by Kennedy and Eber- hart in 
1995 [18], and with social and cognitive behavior, has become widely used for optimization 
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problems found in engineering and computer science. PSO was inspired by insect swarms 
and has since proven to be a powerful competitor to other evolutionary algorithms such as 
genetic algorithms [41].  
Comparisons between PSO and the standard Genetic algorithms (another kind of evo- 
lutionary algorithms) have been done analytically based on performance in [41]. Com- 
pared to Genetic algorithms the PSO tends to converge more quickly to the best solution. 
The PSO algorithm simulates social behavior by sharing information concerning the best 
solution. An attraction of some sort is formed with these “better” solutions helping improve 
their own best solution until all converge to the single “best” solution. Each par- ticle 
representing a single intersection of all search dimensions. 
The particles evaluate their positions using a fitness that is in the form of a mathemati- cal 
measure using the solution dimensions. Particles in a local neighborhood share memo- ries 
of their “best” positions; then they use those memories to adjust their own velocities and, 
thus, positions. The original PSO formulae developed by Kennedy and Eberhart were 
modified by Shi and Eberhart [68] with the introduction of an inertia parameter, ω , that 
was shown empirically to improve the overall performance of PSO. 
The number of successful applications of swarm optimization algorithms is increasing 
exponentially. The most recent uses of these algorithms include cluster head identification in 
wireless sensor networks in [69], shortest communication route in sensor networks in [9] 
and identifying optimal hierarchy in decentralized sensor networks.  
In the next section the particle swarm for continuous search spaces is presented. The 
continuous particle swarm optimization algorithm has been a research topic for more than 
decade. The affect of the parameters on the convergence of the swarm has been well stud- 
ied in. The neighborhood topolgies and different variations are presented extensively in. In 
this chapter we will focus on the binary and the discrete version of the algorithm. The 
binary version of the algorithm is presented in section 2.2 and the discrete version of the 
algorithm is presented in section 2.3. The binary and the discrete version of the algorithm- 
make the particles search in the probablistic search space. The infinite range of the veloci- 
ties are transformed into a bounded probabilistic space. The transformations and the 
algorithms are detailed in this chapter. The affect of the parameters are briefly detailed in 
this chapter. The performance of these algorithms are presented on simple functions. The 
chapter is accompanied by a code written in MATLAB that can be used by the readers. 

2. Particle Swarms for Continuous Spaces 
The PSO formulae define each particle as a potential solution to a problem in a D- 
dimensional space with the ith particle represented as 1 2 3( , , ,....... )i i i i iDX x x x x=  . Each particle  
also   maintains  a memory of  its  previous  best  position,   designated  as  pbest, 

1 2 3( , , ,....... )i i i i iDP p p p p= , and a velocity along each dimension represented as 

1 2 3( , , ,....... )i i i i iDV v v v v=  . In each generation, the previous best, pbest, of the particle com-bines 
with the best fitness in the local neighborhood, designated gbest. A velocity is com- puted 
using these values along each dimension moving the particle to a new solution. The portion 
of the adjustment to the velocity influenced by the individual’s previous best posi- tion is 
considered as the cognition component, and the portion influenced by the best in the 
neighborhood is the social component. 
In early versions of the algorithm, these formulae are 
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  (1) 

  (2) 

Constants 1ψ  and 2ψ  determine the relative influence of the social and the cognition 
components, and the weights on these components are set to influence the motion to a new 
solution. Often this is same value to give each component (the cognition and the social 
learning rates) equal weight. A constant, maxV  , is often used to limit the velocities of the 
particles and improve the resolution of the search space. 
The algorithm is primarily used to search continuous search spaces. The pseudocode of the 
algorithm for the continuous search spaces is shown in Figure 1. 

Algorithm PSO: 
 For t= 1 to the max. bound of the number on generations, 

For i=1 to the population size, 
For d=1 to the problem dimensionality,  

Apply the velocity update equation: 

 
where Pi is the best position visited so far by Xi,  

Pg is the best position visited so far by any particle 
Limit magnitude: 

 
Update Position: 

 
End- for-d; 
Compute fitness of ; 
If needed, update historical information regarding Pi and Pg;  

End-for-i; 
Terminate if Pg meets problem requirements;  

End-for-t; 
End algorithm. 

Figure 1.  Pseudocode for the Continuous PSO Algorithm 
Example 1: Continuous PSO on a simple spheres function : Minimize the function 

 
The MATLAB code for the above problem as solved by the particle swarm optimiza- tion 
algorithm is provided along with the chapter. In the following solution 10 particles are 
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randomly intialized in the search space. The evolution of the particles after 10, 100 and 1000 
iterations in the search space are shown for a 2-D problem. 

3. Binary Search Spaces 
The binary version of the Particle swarm optimization is needed for discrete, binary search 
spaces. Many variables in the sensor management problems are binary, for example the 
fusion rule for binary hypothesis testing is binary valued. A sigmoid function trans- forms 
the infinite range of the velocities to a requisite 0 or 1. The sigmoid function is 

  (3) 

where  Vid is the velocity of the ith particle along the dth dimension. The velocity update  
equation remains the same as section 2.1. The position update equation is modified as 

  (4) 

where idρ  is  a  random  number  drawn  from  a  uniform  distribution  between 0,1U ⎡ ⎤⎣ ⎦ . 
These formula are iterated repeatedly over each dimension of each particle, and updating 
the pbest vector if a better solution is found. This is similar to the PSO for continuous search 
spaces. 
By following the above procedure, we transform the entire continuous velocity space, 

,−∞ ∞⎡ ⎤⎣ ⎦  , is transformed into a one or zero for that dimension. The probability of 1 
and probability of zero for different velocities is shown in Figure 2. 

 
Figure 2.  Probability of Xid =1 and Xid=0 given the Vid 

Algorithm Binary PSO: 
For t= 1 to the max. bound of the number on generations, 

For i=1 to the population size, 
For d=1 to the problem dimensionality,  

Apply the velocity update equation: 
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where Pi is the best position visited so far by Xi, 

Pg is the best position visited so far by any particle 
Limit magnitude: 

 
Update Position: 

 

 

 
End- for-d; 
Compute fitness of ; 
If needed, update historical information regarding Pi and Pg;  

End-for-i; 
Terminate if Pg meets problem requirements;  

End-for-t; 
End algorithm. 

Figure 3.  Pseudocode for the Binary PSO Algorithm 

Example 2: Goldberg’s Order-Three Problem 
Groups of three bits are combined to form disjoint subsets and the fitness is evaluated using 

 
where each si is a disjoint 3-bit substring of x and 

 

where |si| denotes the sum of the bits in the 3-bit substring

. 

2. 3 Particle Swarms for Discrete Multi Valued Search Spaces 
Extending this binary model of PSO, a discrete multi-valued particle swarm for any range of 
discrete values is described in detail. Many real world optimization problems, including 
signal design, power management in sensor networks, and scheduling have vari- ables 
which have discrete multi-values. This need is increasing as more problems are being solved 
by particle swarm optimization based algorithm [73, 74]. It can be argued instead that 
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discrete variables can be transformed into an equivalent binary representation, and the 
binary PSO can simply be used. However, the range of the discrete variables does not 
typically correspond to a power of 2 for the equivalent binary representation. This then 
generates a range of values exceeding the real range resulting in an unbalanced conver- 
gence and more iterations than necessary. For example, a discrete variable ranging from 0 
to5 [0,1,2,3,4,5] requires a minimum of three bit binary representation, which ranges 
between [0-7]. Special conditions need to be added reducing the algorithms efficiency to 
manage the values beyond the original maximum, which in this example is, 6 & 7. Another 
important factor is that the Hamming distances between the two discrete values, undergoes 
a non-linear transformation using the equivalent binary representation. This often adds to 
the complexity to the search process. The inefficiency emerges as an increase in the 
dimensions of the particle adding more variables to the search. For these reasons, a discrete 
multi valued PSO is more efficient and should be used for discrete ranges greater than 2. 
Previously, researchers simply enhanced the performance of the binary PSO to fix the 
efficiency. Al-Kazemi, et al. [75], improved the original binary PSO algorithm by modify- 
ing the way particles interact. The research on designing a PSO for discrete multi-valued 
problems, however, has been sparse. In MVPSO [74], Jim, et al, extended the binary PSO by 
creating a multi dimensional particle. Each dimension of the original problem is subdi- 
vided into three dimensions for a ternary problem. Each dimension of the particle is a real 
valued number and is transformed into a number in the range of [0 1] using the sigmoid 
function. After a series of transformations, the three numbers ultimately represent the 
probability of having a one of three discrete values for a ternary system. The extra trans- 
formations bring us closer to the new discrete multi-valued PSO except many operations are 
added. The transition of a particle or position update is probabilistic similar to the binary 
PSO.  
For discrete multi valued optimization problems, the range of variables lie between 0 and 
M-1, where ‘M’ implies an M-ary number system. The same velocity update and par- ticle 
representation are used in this algorithm. The position update equation is, however, change 
as follows.  
1. Transform the velocity using 

  
(5)

 
2. A number is the  generated using a normal distribution with  idS=μ  and σ  as 

parameters. 

  (6) 
3. The number is rounded to the closest discrete variable with the end points fixed. 

  (7) 

  (8) 
4. . The velocity update equation remains the same as (1). The positions of the particles are 

discrete values between 0 and M-1. Now for any given Sid, we have an associated 
probability for any number between [0, M-1]. However, the probability of drawing a 
num- ber randomly reduces based on its distance from Sid according to the Figure 4. In 
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the subsection, the relation between Sid and the probability of a discrete variables is 
given. 

 
Figure 4.  Transformation of the Particle Velocity to a Discrete Variable 

 
Figure 5.  Probabilities of Different Digits Given a Particular S 
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Probability of a discrete value ‘m’: For a given S, a number is generated using a normal 
distribution with the mean as S and standard deviation σ  for an M-ary system. Based on 
this normal distribution and equation (7), the probability for a specific discrete variables 
given S can be calculated based on the area under that region of the Gaussian curve. For 
example for a ternary system, given an S = 0.9 and σ  = 0.8, the areas of the Gaussian curve 
that will contribute to different digits are shown in Figure 5. For a Sid, the probability of a 
discrete variable having a value ‘m’ is given by: 
m=0, 

  

(9)

 
where Q is the error function. The function g(x) is 

  
(10)

 
with m in the range 1 to M-2, the conditional probability of achieving Xid given a previous 
Sid value is 

  

(11)

 
For m = M-1, the conditional probability is 

  

(12)

 
Note that 

  (13) 
One can significantly control the performance of the algorithm using these equations. For 
example, controlling the σ  controls the standard deviation of the Gaussian and, hence, the 
probabilities of various discrete variables. 

Algorithm Discrete PSO: 
For t= 1 to the max. bound of the number on generations, 

For i=1 to the population size, 
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For d=1 to the problem dimensionality,  
Apply the velocity update equation: 

 
where Pi is the best position visited so far by Xi,  

Pg is the best position visited so far by any particle 
Limit magnitude: 

 
Update Position: 

 
 

 
End- for-d; 
Compute fitness of ; 
If needed, update historical information regarding Pi and Pg;  

End-for-i; 
Terminate if Pg meets problem requirements;  

End-for-t; 
End algorithm. 

Figure 6.  Psuedo Code for Particle Swarms for Discrete Multi Valued Search Spaces 

Example 3: Sastry-Veermachaneni-Osadciw  Function for Ternary Systems 
Groups of three digits are combined to form disjoint subsets and the fitness is evalu- ated using 

 
where each si is a disjoint 3-bit substring of x and 

 
where |si | denotes the sum of the digits in the 3-digit substring. 

2.4  Particle Swarms for Mixed Search Spaces 
Mixed search spaces imply that the solution to the problem is composed of binary, dis- crete 
and continuous variables. The solution can be any combination of two. The particle swarm 
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optimization algorithms operators work independently on each dimension making it 
possible for mixing different variable types into one single particle. In Genetic algo- rithms, 
however, the crossover operator needs to be designed independently for the differ- ent 
variable types. The swarm algorithm will call upon the different position update formulae 
based on the type of the variable. The pseudo code is given in the following fig ure.  
Algorithm PSO for Mixed Search Spaces: 

For t= 1 to the max. bound of the number on generations, 
For i=1 to the population size, 

For d=1 to the problem dimensionality,  
Apply the velocity update equation: 

 
where Pi is the best position visited so far by Xi, 

Pg is the best position visited so far by any particle 
Limit magnitude: 

 
Update Position: 
if  Xid is continuous valued 

 
else if  Xid is binary valued 

 
 

 
elseif Xid is discrete valued 

 
 

 
End- for-d; 
Compute fitness of (X�it + 1� ); 
If needed, update historical information regarding Pi and Pg;  

End-for-i; 
Terminate if Pg meets problem requirements;  

End-for-t; 
End algorithm. 

Figure 7.  Pseudo code for mixed search spaces 
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1. Introduction  
In wireless applications the antenna pattern is shaped so as to cancel interfering signals 
(placing nulls) and produce or steer a strong beam towards the wanted signal according to 
signal direction of arrival (DOA). Such antenna system is called smart antenna array. 
This chapter presents the efficiency of Particle Swarm Optimization algorithm (PSO) 
compared to Genetic algorithm (GA) in solving antenna array pattern synthesis problem. 
Also PSO is applied to determine optimal antenna elements feed that provide null 
(minimum power) in the directions of the interfering signals while to maximize of radiation 
in the direction of the useful signal. Application for PSO algorithm in Direct Data Domain 
Least Squares (D3LS) approach that is used to estimate incoming signal is illustrated.  
Due to environment changing the target goal is changing so modification in the algorithm is 
proposed to provide optimal solution for varying real time target (to track the desired users 
and reject interference sources). The problem is formulated and solved by means of the 
proposed algorithm. Examples are simulated to demonstrate the effectiveness and the 
design flexibility of PSO in the framework of electromagnetic synthesis of linear arrays. 

2. Smart Antenna Array System Overview 
The ability to communicate with people on the move has evolved remarkably since Marconi 
first demonstrated radio’s ability to provide continuous contact with ships sailing the 
English Channel in 1897. There onwards, new wireless methods and services have been 
adopted. Smart antenna system represents one of the valuable parts that support the 
increasing requirement and needs to higher quality wireless services.  
Smart antenna systems processes signals arriving from different directions to detect 
(estimate) desired signal direction of arrival DOA. Biased on the estimated DOA the 
beamformer optimize antenna elements weights such that the radiation pattern of the 
antenna array is adjusted to minimize a certain error function or to maximize a certain 
reward function derived by the adaptive algorithm. Figure 1. Presents block diagram for 
Smart antenna system. Smart antenna processing core is represented in three areas the 
adaptive algorithms the DOA estimation algorithm and the beamformer control. 
One of the simplest geometries for an array is a linear array in which the centers of the 
antenna elements are aligned along a straight line. For simplicity consider the uniformly 
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spaced linear array of N elements and that there is M signals received. We assume that K 
samples are observed by the array then output vector ܆ሺ݊ሻ is 

ሺ݊ሻ܆  ൌ ሺ݊ሻ܁ሻߠሺۯ  ݊               ,ሺ݊ሻ۽ ൌ 1,2, ሺ݊ሻ is ሺܰ܆ (1) .… ൈ  ሻߠሺۯ ,ሻ  matrix of array output signals at any given instant (sampling time) nܭ
is ሺܰ ൈ ܯሺ݊ሻ is ሺ܁ ,ሻ  steering matrixܯ ൈ  ሺ݊ሻ is noise matrix. The array۽ ,ሻ signal matrixܭ
steering matrix (array manifold) ۯሺߠሻ  is  

ሻߠሺۯ   ൌ ሾ܉ሺߠଵሻ, ,ଶሻߠሺ܉ ڮ ڮ  ሻሿ (2)ۼߠሺ܉

Where  

ሻߠሺ܉  ൌ ቂ1, exp ቀଶగௗ ୱ୧୬ ఏఒ ቁ , ڮ ڮ exp ቀଶగௗሺNିଵሻ ୱ୧୬ ఏMఒ ቁቃ ,    (3)     ݅ ൌ 1,2, … . M ܉ሺߠሻ  is the response of the linear array to the ݅௧ source arriving from direction ሺߠሻ. The 
array manifold is defined as the one-dimensional manifold composed of all the steering 
vectors as ߠ ranges over all possible angles i.e. ߠ א ሾ0,  . ሿߨ2

 
Figure 1. Block diagram of smart antenna array system and linear array signal model 

The array manifold used to calibrate the array for direction finding estimation. Each element 
output is multiplied by a complex weight ݓכ, suggested by the adaptive algorithm then the 
beamformer update the phase and amplitude relation between the branches, and sum them 
to give information signal ܇ሺnሻ 

ሺ݊ሻ܇     ൌ ܅ ሺ݊ሻ (4)܆ሺ݊ሻ்܅ ൌ ሾݓଵ    ݓଶ  ݓଷ …  ேሿݓ
3. PSO for Smart Antenna System 
The smart antenna changes their directional pattern with the help of few adjustable 
parameters in according to the estimation and analysis to received signal, environment and 
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pre-known information to improve the performance and capacity of the system. A 
promising way for the determination of a suitable parameter configuration for the antenna 
is the application of heuristic optimization procedures.  
Pattern synthesis problem (beamforming) is continuous varying target real time problem 
that needs fast optimal solution to adjust array pattern and support for the service required. 
Also the controlling parameters are limited due to practical design and cost aspects. 
Consequently Enhancement to PSO algorithm is proposed to support for these two major 
needs. 

3.1 PSO and Dynamic Real Environment Optimization 
For real time dynamic environment problem the goal value changes, original PSO algorithm 
has no method for detecting this change and the particles are still influenced by their 
memories of the original goal position. If the change in the goal is small, this problem is self-
correcting. Subsequent fitness evaluations will result in positions closer to the new goal 
location replacing earlier position ܆ vectors, and the swarm should follow, and eventually 
intersect the moving goal. 
However, if the movement of the goal is more pronounced, it moves too far from the swarm 
for subsequent fitness evaluations to return values better than the current personal best ۾௧ 
vector, and the particles do not track the moving goal. A proposed attempt to rectify this 
problem by having the particles periodically replaces their ۾௧  vector with their current ܆௧ 
vector, thus “forgetting” their experiences to that point. This differs from a restart, in that 
the particles, in retaining their current location, have retained the profits from their previous 
experiences, but are forced to redefine their relationship to the goal at that point. Figure 2 
present flow chart for the proposed PSO algorithm to support for varying dynamic target 
optimization problem. 

 
Figure 2. Dynamic Particle Swarm Algorithm 
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3.2 PSO and bounded search space 
Constraint is usually set to the array parameters these constraints may be spatial, for 
example, that the interelement spacing be greater than a prescribed value or that the 
element positions be within specified limits. Other type of design constraint is the excitation 
where it may require that the elements feed is phase only or amplitude and that the current- 
taper ratio be less than or equal to a prescribed value. 
Introducing constraint to the PSO  will decrease degree of freedom. Search time will also 
increase if the concept of accept and after the each particle movement for each iteration 
according to boundaries. However, if we can convert the problem to an unconstrained one 
initially through using suitable transformations of the constraint parameter this will 
eliminate time lost in explore and probability of rejecting the particle movement. Illustration 
for such solution will be clear in next section while simulation. 

4. PSO use for pattern synthesis  
This section objects to reformulate and define antenna array adaptive beamforming in term 
of an optimization problem. Problem Search Space represented by array pattern controlling 
parameters is identified. Fitness function that measures the deviation of the optimal 
proposed solution from the target is defined.  

 
Figure 3.Linear array geometry 

Let us consider the linear array of ܯ non-uniformly spaced point source isotropic elements 
located along a straight line at the positions ݔ , where ݇ ൌ 0, … , ܯ െ 1. The beam pattern 
function ܲሺݑሻ of the array, is defined as follows,  

  ܲሺݑሻ ൌ ቤ ࣅ࣊݁ݓ ୀିࡹ࢛࢞ ቤ  

ݓ  ൌן expሺ݆ߚሻ  

ሻݑሺ   ൌ ฬ ן ݁ሺమഏഊ ௫ೖ௨ାఉೖሻெିଵୀ ฬ    (5)  

 

Where ݓ is the weight coefficient of the ݇௧ element, ߣ is the background wavelength, ݑ ൌsin ߠ െ sin  ఖ the incident angle of the impinging plane wave and the steeringߠ and ߠ ఖ, beingߠ
angle of the array, respectively.  In order to generate a beam pattern (BP) that attain specific 
characteristics e.g., sidelobes level (SLL) lower than a fixed threshold or reproduces a 
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desired shape ௗܲሺݑሻ, initially we have to identify the array designing parameters and their 
boundaries i.e. The particle search space in PSO algorithm.  
let vector ࣀ  be defined as follow,  ࣀ ൌ ሾܯ, ,ݔ … ;ெିଵݔ ݓ … . ;ெିଵݓ    ;ሿ்ܦ
Where, ܯ  is number of array elements, ሾݔ, … ݓெିଵሿ is array elements spacing vector, ሾݔ … . ݓ ெିଵሿ is array elements feed vector generally represented asݓ ൌן  boundary limits has to be taken in account when solving the problem to ࣀ .is array length ܦ ሻ, finallyߚሺ݆ ݔ݁
facilitate practical and cost design needs. 
Then a quantized measure for the solution distance from the target required should be 
defined, this value will be function of the search space parameter vector ࣀ. Generally for 
antenna array pattern synthesis most of the well known target consideration is the main 
beam ெ݂, total pattern ݂, sidelobe level ௌ݂, number,  location and width of nulls ݂௨, 
number of array elements ே݂  then we can us define global antenna array fitness function ݂, 
as follows: 

  ݂ሺࣀሻ ൌ ଵభಳುሺࣀሻାమಾಳሺࣀሻାయೄಽಽሺࣀሻାరೠሺࣀሻାఱಿ ሺࣀതሻ  (6) 

Where  

   ݂ሺࣀሻ ൌ න ቀ ௗܲሺݑሻ ܳ⁄ െ ௗܲሺݑሻቁ א௨ݑ݀  (7) 

  ெ݂ሺࣀሻ ൌ  ቆන ቀ ௗܲሺݑሻ ܳ⁄ െ ௗܲሺݑሻቁ ெא௨ ݑ݀ ቇ
ୀଵ  (8) 

    ௌ݂ሺࣀሻ ൌ ொ௫ሼಳሺ௨ሻሽ ௦௧௧ݑ  ݎ݂        ݑ  1  (9) 

   ݂௨ሺࣀሻ ൌ  ቆන ቀ ௗܲሺݑሻ ܳ⁄ െ ௗܲሺݑሻቁ ேא௨ݑ݀ ቇ
ୀଵ     

ܤ    ܰ ൌ ௨ݑ േ ௨ݑ∆0.5        (10) 

   ே݂ሺࣀሻ ൌ  (11) ;ܯ

Where ݑ௦௧௧  being a value that allows excluding the main lobe from the calculation of the 
SLL. Moreover, ܳ  is a normalizing constant, ܤ  represents visible region ;  while  ௗܲሺݑሻ 
represents the desired BP shape. ܤܯ represents the range of values covering the Main beam, 
mb number of beams in the pattern, ܰܤ corresponds to the nulls locations and ݈݊ is number 
of nulls required. Finally, ܿ୧ are coefficients that identify each criteria value. 
It is often necessary to impose a constraint on the interelement spacing to minimize the 
mutual coupling effects. For and array with an even number of elements the constraint may 
be expressed as follow  

ଵݔ    ௗଶ ݔ         , െ ିଵݔ   ݀        ݅ ൌ 2,3, … …  (12)    ܯ

The above constrain can be represented using the following transformation:  ݔଵ ൌ ௗଶ  ሺݔଵ́ሻଶ  ݔଶ ൌ ቀௗଶ  ݀ቁ  ሺݔଵ́ሻଶ  ሺݔଶ́ሻଶ  
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Generally 

ሺݔሻ ൌ ൬݅ െ 12൰ ݀  ሺݔ́ሻଶ   ,           ݅ ൌ 1,2, … . ܯ
ୀଵ  

For odd elements number array 

  ሺݔሻ ൌ ሺ݅ െ 1ሻ݀   ሺݔ́ሻଶ   ,         ݅ ൌ 2, … . ሺܯ െ 1ሻ/2ିଵୀଵ   (13) 

Solving using equation 10 allows minimization to be carried out with the new primed 
variables, and it is readily seen that the constraints are always satisfied. 
Another type of constraint on spacing’s usually imposed is the one requiring the elements to 
lie within a specified range mainly required to avoid unacceptable practical array 
dimensions. Stated mathematically in the following form: 

 ܽ  ݔ  ܾ                           ݅ ൌ 1,2, … .  (14) ܯ

the transformation to be used in this case is  

ݔ  ൌ ܽ  ሺܾ െ ܽሻ ଶ݊݅ݏ ప́ݔ  (15)  

It is sometimes necessary to constrain the current taper to be within specified limits. That is, 

ܫ      ܫ േ ݅               ,ܥ ൌ 1,2, ….  (16) 

It is easily verified that the transformation of the form in equation (15) will transform the 
constrained space into an unconstrained one  

ܫ    ൌ ܫ  ܥ ݊݅ݏ పሖܫ   (17) 

Next section will investigate the efficiency of the PSO for solving linear array configuration 
compared to other algorithms.  

4.1 PSO and GA for Pattern Synthesis  
To validate the PSO approach, initially we apply PSO, to find the optimized element weight 
to achieve the Chebyshev pattern for 10 equispaced isotropic elements with λ/2 interelement 
spacing antenna array of minimum SLL of 26dB, and compare its performance to GA, for 
solving the same problem. The sample points, are chosen 300 equally distributed points over ݑ on a personal computer with a Pentium IV processor running at 1GHz. The target beam 
will be ௗܲ 

 ௗܲ ൌ 2.79 ݏܿ ݑ  2.49 ݏܿ ݑ3 െ 0.97 ݏܿ ݑ5  1.35 ݏܿ ݑ7  ݏܿ  ݑ9

We consider 10 elements symmetric array with amplitude excitation only i.e. ߚ ൌ 0  then  ࣀ ൌ ݓ … . ቀಾమݓ ቁିଵ൨் ; ܯ      ൌ 10   

ାሺெݓ   ଶ⁄ ሻ ൌ ሺெݓ ଶ⁄ ሻିሺାଵሻ        ݇ ൌ 0, … ܯ 2⁄   

݂ሺࣀሻ ൌ 2 כ  ൭ ௗܲሺݑሻܳ െ ௗܲሺݑሻ൱ א௨ݑ݀ ; 0 ݎ݂           ݑ  1   
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ௌ݂ሺࣀሻ ൌ ଶ௫ೠೞೌೝರೠರభሼಳሺ௨ሻሽ                    ݑ௦௧௧ ൌ 0.25  ሺࣀሻ ൌ ଵೄಽಽሺࣀതሻାಳುሺࣀതሻ        
Figure 4 presents the output pattern explored over the optimization process by one particle 
until it reaches the optimum solution. Corresponding proposed elements weigh for these 
local minima is as listed in Table 1.    

Iteration No ࢝, ,࢝ ૢ࢝ ,࢝ ૡ࢝ ,࢝ ૠ࢝ ,࢝ ࢝   Max. SLL࢝
dB 

P1 (5) 0.3292 0.5337 0.7030 0.9883 1 -20 
P2 (30) 0.3543 0.3243 0.5679 1 0.7044 -15 
P3 (78) 0.3521 0.4688 0.7158 0.8378 1 -12 
P4 (122) 0.3574 0.4850 0.7055 0.8921 1 -26 

Table 1. Optimum proposed weight corresponding to one particle 

Figure 4, 5 shows behavior of the fitness values for solutions explored versus the number of 
iterations for one particle. Dotted curve represents the gbest fitness value where it intersects 
with the particles. Note that although the particle has achieved good fitness value in its 
exploring journey it was not trapped at these local minima at P1, P2, P3, P4. 

 
Figure 4.  Explored solution for one particle at  iteration 5, 30, 80, 120 compared to target 
pattern 

Figure 6 present comparisons between the fitness error per iteration for GA and PSO 
algorithms solving the above problem with same initial random feed using PSO and Genetic 
algorithm. It can be noticed the performance difference in reaching optimum solution is not 
big only difference comes for the time per iteration in each algorithm. According to output 
in Table 1 that the optimized proposed element feeds is the same for both algorithms.  
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Figure 5. Behavior of the fitness function per iteration for one particle, dotted curve 
represent  behavior of gbest fitness value per iteration 

 
Figure 6. Fitness per iteration behavior for PSO algorithm and GA algorithm 

Next section will search the capabilities of the PSO for solving array configuration. A 
simulation for steering single beam, introducing multiple beams in DOA and introducing 
nulls in  the imposed directions by controlling the excitations of the array elements feed or the 
elements spacing represented in term of λ. also the adaptive ability of PSO for changing the 
problem target in runtime is presented such feature is to be useful in digital beamforming.  
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Algorithm/ 
Normalized 
weight 

,࢝ ૢ࢝ ,࢝ ,࢝ ૡ࢝ ,࢝ ૠ࢝ ,࢝ ࢝   No. of࢝
Iteration 

Total 
time 
min. 

PSO 0.3574 0.4850 0.7055 0.8921 1.000 115 2 

GA 0.3563 0.4845 0.7055 0.891 1.000 122 9 

Table 2. Optimum proposed weight corresponding to PSO, GA algorithm 
 

4.2 PSO and Pattern Synthesis Phase Control 
The phase-only null synthesizing is attractive since in a phased array the required controls 
are available at no extra cost [Steyskal, H.,1986]. This section will illustrate different 
scenarios for pattern shaping using PSO to search suitable phase feed to fullfill-required 
pattern. Initially consider it is required to Introduce single null at direction ߠ ൌ50˚ and 
SLL<30dB with same mainbeam. PSO evaluated element weighting which fulfilled the 
requirements of the design using fitness function equation 6. 
Figure 7, shows the output pattern after 200, iteration notice that the SLL criterion is not 
achieved. 

 
 Figure 7. Pattern proposed after 200 iteration for null at 50˚ 

Now let us consider the target is moved. Assume it is required to steer the mainbeam to be 
at  ߠ ൌ110˚ and  presence of interference at ߠ ൌ150˚. PSO evaluated antenna array elements’ 
phase which fulfill these requirements of the design output proposed pattern as Figure 8a 
shows the output pattern  after 50, iteration as can be notices although that the SLL< 20dB 
was not achieved as the maximum level is 18dB. Assume surrounding environment is stable 
so the algorithm is to continue search for better feeding solution  Figure 8b shows the 
proposed pattern corresponding after 500 iteration maximum SLL of -22dB was achieved 
and also the null width and is increased. Figure 9 shows the total fitness value per iteration 
curve corresponding to Figure 7 and Figure 8.  
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 Figure 8. a) Pattern proposed for mainbeam steered to 110˚ and null at 150˚ after 50 
iterations 

 
Figure 8. b) Pattern proposed  for mainbeam steered to 110˚  and null at 150˚ after 500 
iteration 

 
Figure 9. Fitness per iteration curve corresponding to figure 7, 8 
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4.3 PSO and Pattern Synthesis Phase – Position Control 
The phase-only synthesis with equal element spacing requires a large number of elements 
compared to the amplitude only arrays. Controlling the inter element space and elements 
phases feed we can have the potential to circumvent this design challenge. Theoretically, the 
unequal spacing of antenna elements corresponds to nonuniform sampling of signals in the 
time domain.[ H. Unz, 1960] . 
 The PSO is applied to  search for the optimum element phases and positions of the uniform 
amplitude linear arrays to achieve target pattern and minimum side lobe level .We only 
consider symmetric arrays for the next results however same can be applied for non 
symmetric array. Synthesis of an unequally spaced array is carried out separately for the 
position-only and the position-phase cases for various limits in the distance between the 
elements. The number of elements considered for the PSO-based synthesis is 32; hence the 
number of parameters to be optimized is 16 for the position- only synthesis and 32 for the 
phase-position synthesis. 
The PSO synthesis results of positions and phases for the cases when ݀௫ ൌ 0.6λ and ݀௫ ൌ λ array patterns are shown in Figure. 10 and 11, respectively. From Figure 10, we can 
see that the maximum SLL for the position-phase synthesis is lower than that for the 
position-only synthesis. In Figure 11 When ݀௫ ൌ λ, the maximum SLL of the position- 
phase synthesis and position-only synthesis is 23.34 and 22.53 dB, respectively   
For the case ݀௫ ൌ λ , The time taken to reach -20 dB SLL was about 10 min, and the total 
time taken for 300 iterations was about 23 min for a  swarm of 320 agents. The simulations 
were carried out  on a PC based on an Intel Pentium-IV 3-GHz processor.  
 We can conclude that for smaller, ݀௫the element phases have a larger effect in lowering 
the SLL of an unequally spaced array with no significant difference in the directivity From 
Figures 10–11.  

 
 Figure 10. Array patterns for the PSO-based position-only (dashed line) the position-phase 
(solid line) for ݀௫ ൌ 0.6λ 
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Figure 11. Array patterns for the PSO-based position-only (dashed line) the position-phase 
(solid line) for ݀௫ ൌ λ 

We have seen that the unequally spaced array derived using the position-phase synthesis 
has lowered SLL compared to that of the unequally spaced arrays derived using the 
position-only synthesis. Let us consider the PSO-based position-phase synthesis and phase-
only synthesis for designing a pencil beam array. 

 
Figure 12. Array patterns for the PSO -based position-phase synthesis (solid line) and the 
phase-only synthesis (dashed line) of a pencil beam array of 60 elements 

The number of elements has to increase to meet beam requirement we consider symmetric 
array of 60 elements. For the position-phase synthesis, the prior limits assumed in the 
minimum and maximum distance between the elements are  ݀ ൌ 0.5λ and ݀௫ ൌ 0.7λ, 
respectively. For phase-only synthesis, the uniform distances between the elements are 
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assumed to be 0.5λ. Figure 12 shows the corresponding array patterns shows the phases and 
positions derived using the PSO-based phase-only  synthesis and position-phase synthesis 
we can see that for the position-phase synthesis, the SLL is lower compared to that of the 
phase-only synthesis.  

5. PSO Application in Smart Antenna Array Signal Estimation 
Conventional adaptive beamforming algorithms are based on a stationary environment. 
Assume that the desired signal and interferers are not correlated. Using statistical theory, 
one requires several successive snapshots of the data to form a covariance matrix of the 
interference with independent identically distributed secondary data[B. D. Van, IEEE 1986]. 
The snapshots accumulation is quite time consuming. Thus when the environment becomes 
nonstationary, an inaccurate covariance matrix is derived, which results in that the 
interference cannot be rejected. Therefore the adaptive processing using a single snapshot 
[Markus E. Ali ] is more suitable  for a dynamic environment. A direct data domain least 
squares (D3LS) algorithm [T. K. Sarkar, 2000 ] has been developed to analyze the received 
data using a single snapshot.  
Although the D3LS algorithm has certain advantages, it has some drawbacks such that the 
degrees of freedom are limited to nearly half. Furthermore it is shown by simulations that 
while the jammers can be rejected, the main lobe of the antenna beam pattern is often 
deviated from the direction of the desired signal and the sidelobe level is relative high.  

5.1 Algorithm Formulation 
 Consider an array composed of ܰ sensors separated by a distance as shown in Figure 1. We 
assume that narrowband signals consisting of the desired signal plus possibly coherent 
multipath and jammers with center frequency °݂ are impinging on the array from various 
angles, with the constraint. For sake of simplicity, we assume that the incident fields are 
coplanar and that they are located in the far field of the array. 
Each received signal ݔሺ݇ሻ  includes additive, zero mean, Gaussian noise. Time is 
represented by the ݇௧ time sample. Thus, for   Xሺtሻ ൌ ሾݔଵሺ݇ሻ ଶሺ݇ሻݔ    Nሺ݇ሻሿTݔ

ሺ݇ሻݔ   ൌ ሾ തܽሺߠଵሻ  തܽሺߠଶሻ ….  തܽሺߠெሻሿ. ێێۏ
ۍێ ۑۑےெሺ݇ሻݏڭڭଶሺ݇ሻݏଵሺ݇ሻݏ

ېۑ  ത݊ሺ݇ሻ                      (19) 

തܽሺߠሻ is ܯ-elements array steering vector for the ߠ direction of arrival, ߣ wavelength and ݀ 
is the elements interspacing distance. ݏҧሺ݇ሻ is the vector of incident signals at time ݇ and ത݊ሺ݇ሻ 
is noise vector at each array element m, zero mean, variance. Then for ܣҧ ൌ ሾ തܽሺߠଵሻ  തܽሺߠଶሻ ….  തܽሺߠሻሿெൈ   
matrix of steering vectors തܽሺߠሻ 

  Xഥ ൌ .ҧܣ ҧሺ݇ሻݏ  ത݊ሺ݇ሻ (20) 

Thus, each of the D-complex signals arrives at angles ߠ and is intercepted by the M antenna 
elements. It is assumed the number of arriving signals D < M. It is understood that the 
arriving signals are time varying and thus our calculations are based upon time snapshots of 
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the incoming signal. Obviously if the transmitters are moving, the matrix of steering vectors 
is changing with time and the corresponding arrival angles are changing. 
Let ܵ be the complex voltage induced in the nth array element at a particular instance of 
time due to a signal of unity amplitude coming from a direction ߠ௦, 

 ܵ ൌ ݔ݁ ቂ݆2ߨ ቄሺିଵሻௗఒ  ௦ሻቅቃ (21)ߠሺ݊݅ݏ

Let ݔ be the complex voltages that are measured at the nth element due to the actual signal, 
jammers and thermal noise 

ݔ  ൌ ௦ܵߙ  Interference  Noise    (22) 

ݔ   ൌ ௦ܵߙ   ቆܣ݁ݔ ൬݆ ଶగሺିଵሻௗఒ ൯൰ቇߠ൫݊݅ݏ  ݊ିଵ
ୀଵ    (23) 

Where ߙ௦ denotes the complex amplitude of the desired SOI, ܣ and ߠ are the amplitude 
and direction of arrival of the  jammer signal, ݊ is the thermal noise at the nth element. 
There are ܦ  jammers and ܦ  ൏ ܯ െ 1/2. With ܵ  and ܺ  (n=0,…,M)  the known received 
signal data, one can construct the matrix X and S such that  

ࢄ  ൌ ൦࢞ ࢞ … ࢞ࡸ࢞ ࢞ … ڭାࡸ࢞ ڭ … ࡸ࢞ڭ ାࡸ࢞ … ࡹ࢞ ൪ሺࡸାሻൈሺࡸାሻ     ࡿ ൌ ൦࢙ ࢙ … ࢙ࡸ࢙ ࢙ … ڭାࡸ࢙ ڭ … ࡸ࢙ڭ ାࡸ࢙ … ࡹ࢙ ൪ሺࡸାሻൈሺࡸାሻ (24) 

From equations (21) and (23) the matrix U ൌ X െ  represents the contribution due to ,ࡿ௦ߙ
signal multipaths, interferes, clutter and thermal noise (i.e., all the undesired components of 
the signals except SOI). In an adaptive beamforming, the adaptive weight vector w is chosen 
in such a way that the contribution from the jammers and thermal noise are minimized to 
enhance the output signal to interference plus noise ratio (SINR). Hence, the following 
generalized eigenvalue problem is obtained. 

 UW ൌ ሺX െ ௦ܵሻܹߙ ൌ ഥݓ (25)   0 ൌ ሾݓଵ  ݓଶ   ேሿ்ݓ  .…

Note that U(1,1) and U(1,2) elements of the interference plus noise matrix, are given by 

 ܷሺ1,1ሻ ൌ ଵܺ െ  ௗଵ    (26)ܵߙ

 ܷሺ1,2ሻ ൌ ܺଶ െ  ௗଶ   (27)ܵߙ

Where  ଵܺ and ܺଶ are the voltages received at antenna elements 1 and 2 due to the signal, 
jammer, clutter and noise where as ܵௗଵ  and ܵௗଶ  are the values of the SOI only at those 
elements due to a signal of unit strength, let us define Z as follow  

ݖ  ൌ ݔ݁ ቂ݆2ߨ ቄௗఒ  ௦ሻቃ   (28)ߠሺ݊݅ݏ
 

Then ܷሺ1,1ሻ െ  ଵܷሺ1,2ሻ contains no component of the desired signal. In general, the sameିݖ
is true for  ܷሺ݅, ݆ሻ െ ,ଵܷሺ݅ିݖ ݆  1ሻ, ሺ݅ ൌ 1, … , ܮ  1, ݆ ൌ 1, … , ሻܮ . Therefore one can form a 
square matrix F of dimension L+1, generated from ܷ. Therefore, in such way, one can form a 
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reduced rank matrix combined with a constraint that the gain of the subarray is C in the 
directionߠ௦, then one can obtain equation given as follow 

 ൦ ܼ ܼଵ … ܼܺ െ ܼିଵ ଵܺ … … ܺ െ ܼିଵܺାଵڭ ڭ ڭ ଷ݂ڭ െ ସ݂ܼିଵ … … ܺெିଵ െ ܼିଵܺெ൪ ൦ ܹܹଵܹڭ൪ ൌ ൦C000൪ (29) 

To obtain the desired signal component, equation (5.14) is represented as  

 ሾFሿሾWሿ ൌ ሾYሿ  (30) 

Using any optimization algorithm to solve equation (30) for, optimum weight vector [W] 
that provide maximum signal gain through minimizing objective function represented as 
equation (31)  

ሺW୧ሻߞ  ൌ ԡሾFሿሾWሿିYԡԡYԡ  10ି (31) 

Consequently SOI  the signal component  ߙ may be estimated from  

 α ൌ ଵC ∑ ሾW୧X୧ሿ୧ୀL୧ୀ  (32) 

The algorithm above is referred to as a “forward method” in the literature [8]. [6],[11].  note 
we can reformulate the problem using the same data to obtain independent estimate for the 
solution. This can be achieved by two methods: 
a. By reversing the data sequence and then complex conjugating each term of that 

sequence (Backward method) 
b. By combining the (forward-backwards method) to double the given data and thereby 

increase the number of weights (degrees of freedom) significantly over that of either the 
forward or backward method alone. The number of degrees of freedom can reach to 1  ሺܰ െ 1ሻ/1.5. 

to investigate the method  let us we consider recovering signal using the previous presented 
algorithm let us consider a single tone signal with specs as table (3) received by liner array 
of 10 elements linear array. 

 Magnitude in V Phase DOA in degree 
Signal 1 0 45° 
Jammer #1 1.25 0 75° 
Jammer # 2 2 0 60° 
Jammer #3 0.5 0 0° 

Table 3. Incident signal characteristics 

The sampling frequency is 10 ݂; Using  PSO algorithm as an optimization tools to solve the 
optimum  W୧ for the objective equation (31) value  for each iteration we get  Wଵ= (1.2996248637+j*0.0724160744),    Wଶ=(0.9415241429+j*-0,3236468668) Wଷ=(-0.9898155714+j*-0.1071454180), Wସ = (- 1.2513334352+j*0.3583762104) 

Using these weights in equation 32 to get the value of SOI amplitude  
The first ten samplings of the signal and the system output are compared as follow  
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Initial transmitted signal  Estimated signal 

1 0.9999-j0.000003154 
0.809+j0.5877 0.809+j0.5877 
0.309+j0.951 0.309+j0.951 
-0.309+j0.951 -0.309+j0951 
-0.809+j0.5877 -0.809+j0.5877 
-1 -0.90.999+j0000003154
-0.809-j0.587 -0.809+j0.5877 
-0.309-j0.951 -0.309-j0.951 
0.3090-j0.951 0.309-j0.951 
0.809-j0.5877 0.80.90-j0.5877 

Table 4. Output estimated signal using D3LS and PSO algorithm as an optimization method 

The total CPU time taken for the above results is 1.19 sec. PSO is less computational 
operations compared to conjugate gradient method. 

6. Conclusion 
PSO application for solving different numerical problems in smart antenna is illustrated. 
Improvement is proposed to the algorithm to support the continuous real time varying 
target problem.  Also a solution is proposed to overcome the case of bounded search space 
through introducing of transformation function. Simulation for different scenarios is solved 
with the aid of PSO. Synthesis of an adaptive Beamforming using the phase only control 
where target is dynamic over time has been presented. PSO was introduced to solve 
position-only and position-phase synthesis, which is a bounded search space problem. 
Finally an investigation for using PSO to estimate signal amplitude though D3LS approach 
is presented. 
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