

Particle Swarm Optimization

Particle Swarm Optimization

Edited by
Aleksandar Lazinica

In-Tech
intechweb.org

IV

Published by In-Tech

In-Tech
Kirchengasse 43/3, A-1070 Vienna, Austria
Hosti 80b, 51000 Rijeka, Croatia

Abstracting and non-profit use of the material is permitted with credit to the source. Statements and
opinions expressed in the chapters are these of the individual contributors and not necessarily those of
the editors or publisher. No responsibility is accepted for the accuracy of information contained in the
published articles. Publisher assumes no responsibility liability for any damage or injury to persons or
property arising out of the use of any materials, instructions, methods or ideas contained inside. After
this work has been published by the In-Teh, authors have the right to republish it, in whole or part, in
any publication of which they are an author or editor, and the make other personal use of the work.

© 2009 In-tech
www.intechweb.org
Additional copies can be obtained from:
publication@intechweb.org

First published January 2009
Printed in Croatia

Particle Swarm Optimization, Edited by Aleksandar Lazinica
 p. cm.
ISBN 978-953-7619-48-0
1. Particle Swarm Optimization I. Aleksandar Lazinica

 V

Preface

Particle swarm optimization (PSO) is a population based stochastic optimization tech-

nique developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by social behavior of
bird flocking or fish schooling.

PSO shares many similarities with evolutionary computation techniques such as Genetic
Algorithms (GA). The system is initialized with a population of random solutions and
searches for optima by updating generations. However, unlike GA, PSO has no evolution
operators such as crossover and mutation. In PSO, the potential solutions, called particles,
fly through the problem space by following the current optimum particles.

This book represents the contributions of the top researchers in this field and will serve as

a valuable tool for professionals in this interdisciplinary field.

This book is certainly a small sample of the research activity on Particle Swarm Optimiza-
tion going on around the globe as you read it, but it surely covers a good deal of what has
been done in the field recently, and as such it works as a valuable source for researchers
interested in the involved subjects.

Special thanks to all authors, which have invested a great deal of time to write such inter-

esting and high quality chapters.

Aleksandar Lazinica

 VII

Contents

 Preface V

1. Novel Binary Particle Swarm Optimization 001
 Mojtaba Ahmadieh Khanesar, Hassan Tavakoli, Mohammad Teshnehlab

and Mahdi Aliyari Shoorehdeli

2. Swarm Intelligence Applications in Electric Machines 011
 Amr M. Amin and Omar T. Hegazy

3. Particle Swarm Optimization for HW/SW Partitioning 049
 M. B. Abdelhalim and S. E. –D Habib

4. Particle Swarms in Statistical Physics 077
 Andrei Bautu and Elena Bautu

5. Individual Parameter Selection Strategy for Particle Swarm Optimization 089
 Xingjuan Cai, Zhihua Cui, Jianchao Zeng and Ying Tan

6. Personal Best Oriented Particle Swarm Optimizer 113
 Chang-Huang Chen, Jong-Chin Hwang and Sheng-Nian Yeh

7. Particle Swarm Optimization for Power Dispatch with Pumped Hydro 131
 Po-Hung Chen

8. Searching for the best Points of interpolation

using swarm intelligence techniques
145

 Djerou L., Khelil N., Zerarka A. and Batouche M.

9. Particle Swarm Optimization and Other Metaheuristic Methods
in Hybrid Flow Shop Scheduling Problem

155

 M. Fikret Ercan

10. A Particle Swarm Optimization technique used for the improvement of

analogue circuit performances
169

 Mourad Fakhfakh, Yann Cooren, Mourad Loulou and Patrick Siarry

11. Particle Swarm Optimization Applied for Locating an Intruder
by an Ultra-Wideband Radar Network

183

 Rodrigo M. S. de Oliveira, Carlos L. S. S. Sobrinho, Josivaldo S. Araújo
 and Rubem Farias

VIII

12. Application of Particle Swarm Optimization in Accurate Segmentation of
Brain MR Images

203

 Nosratallah Forghani, Mohamad Forouzanfar , Armin Eftekhari
and Shahab Mohammad-Moradi

13. Swarm Intelligence in Portfolio Selection 223
 Shahab Mohammad-Moradi, Hamid Khaloozadeh, Mohamad Forouzanfar,

Ramezan Paravi Torghabeh and Nosratallah Forghani

14. Enhanced Particle Swarm Optimization for Design and Optimization of

Frequency Selective Surfaces and Artificial Magnetic Conductors
233

 Simone Genovesi, Agostino Monorchio and Raj Mittra

15. Search Performance Improvement for PSO in High Dimensional Sapece 249
 Toshiharu Hatanaka, Takeshi Korenaga, Nobuhiko Kondo and Katsuji Uosaki

16. Finding Base-Station Locations in Two-Tiered Wireless Sensor Networks

by Particle Swarm Optimization
261

 Tzung-Pei Hong, Guo-Neng Shiu and Yeong-Chyi Lee

17. Particle Swarm Optimization Algorithm for Transportation Problems 275
 Han Huang and Zhifeng Hao

18. A Particle Swarm Optimisation Approach to Graph Permutations 291
 Omar Ilaya and Cees Bil

19. Particle Swarm Optimization Applied to Parameters Learning of

Probabilistic Neural Networks for Classification of Economic Activities
313

 Patrick Marques Ciarelli, Renato A. Krohling and Elias Oliveira

20. Path Planning for Formations of Mobile Robots using PSO Technique 329
 Martin Macaš, Martin Saska, Lenka Lhotská, Libor Přeučil and Klaus Schilling

21. Simultaneous Perturbation Particle Swarm Optimization

and Its FPGA Implementation
347

 Yutaka Maeda and Naoto Matsushita

22. Particle Swarm Optimization with External Archives for Interactive Fuzzy

Multiobjective Nonlinear Programming
363

 Takeshi Matsui, Masatoshi Sakawa, Kosuke Kato and Koichi Tamada

23. Using Opposition-based Learning with Particle Swarm Optimization and
Barebones Differential Evolution

373

 Mahamed G.H. Omran

24. Particle Swarm Optimization: Dynamical Analysis through
Fractional Calculus

385

 E. J. Solteiro Pires, J. A. Tenreiro Machado and P. B. de Moura Oliveira

 IX

25. Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling 397
 S.G. Ponnambalam, N. Jawahar and S. Chandrasekaran

26. A Radial Basis Function Neural Network with Adaptive Structure via

Particle Swarm Optimization
423

 Tsung-Ying Sun, Chan-Cheng Liu, Chun-Ling Lin, Sheng-Ta Hsieh
 and Cheng-Sen Huang

27. A Novel Binary Coding Particle Swarm Optimization

for Feeder Reconfiguration
437

 Men-Shen Tsai and Wu-Chang Wu

28. Particle Swarms for Continuous, Binary, and Discrete Search Spaces 451
 Lisa Osadciw and Kalyan Veeramachaneni

29. Application of Particle Swarm Optimization Algorithm
in Smart Antenna Array Systems

461

 May M.M. Wagih

1

Novel Binary Particle Swarm Optimization
Mojtaba Ahmadieh Khanesar, Hassan Tavakoli, Mohammad Teshnehlab

andMahdi Aliyari Shoorehdeli
K N. Toosi University of Technology

Iran

1. Introduction
Particle swarm optimization (PSO) was originally designed and introduced by Eberhart and
Kennedy (Ebarhart, Kennedy, 1995; Kennedy, Eberhart, 1995; Ebarhart, Kennedy, 2001). The
PSO is a population based search algorithm based on the simulation of the social behavior of
birds, bees or a school of fishes. This algorithm originally intends to graphically simulate the
graceful and unpredictable choreography of a bird folk. Each individual within the swarm is
represented by a vector in multidimensional search space. This vector has also one assigned
vector which determines the next movement of the particle and is called the velocity vector.
The PSO algorithm also determines how to update the velocity of a particle. Each particle
updates its velocity based on current velocity and the best position it has explored so far;
and also based on the global best position explored by swarm (Engelbrecht, 2005; Sadri,
Ching, 2006; Engelbrecht, 2002).
The PSO process then is iterated a fixed number of times or until a minimum error based on
desired performance index is achieved. It has been shown that this simple model can deal
with difficult optimization problems efficiently. The PSO was originally developed for real-
valued spaces but many problems are, however, defined for discrete valued spaces where
the domain of the variables is finite. Classical examples of such problems are: integer
programming, scheduling and routing (Engelbrecht, 2005). In 1997, Kennedy and Eberhart
introduced a discrete binary version of PSO for discrete optimization problems (Kennedy,
Eberhart, 1997). In binary PSO, each particle represents its position in binary values which
are 0 or 1. Each particle's value can then be changed (or better say mutate) from one to zero
or vice versa. In binary PSO the velocity of a particle defined as the probability that a
particle might change its state to one. This algorithm will be discussed in more detail in next
sections.
Upon introduction of this new algorithm, it was used in number of engineering
applications. Using binary PSO, Wang and Xiang (Wang & Xiang, 2007) proposed a high
quality splitting criterion for codebooks of tree-structured vector quantizers (TSVQ). Using
binary PSO, they reduced the computation time too. Binary PSO is used to train the
structure of a Bayesian network (Chen et al., 2007). A modified discrete particle swarm
optimization (PSO) is successfully used based technique for generating optimal preventive
maintenance schedule of generating units for economical and reliable operation of a power
system while satisfying system load demand and crew constraints (Yare &
Venayagamoorthy, 2007). Choosing optimum input subset for SVM (Zhang & Huo, 2005),

Particle Swarm Optimization

2

designing dual-band dual-polarized planar antenna (Marandi et. al, 2006) are two other
engineering applications of binary PSO. Also some well-known problems are solved using
binary PSO and its variations. For example, binary PSO has been used in many applications
like Iterated Prisoner's Dilemma (Franken & Engelbrecht, 2005) and traveling salesman
(Zhong, et. al. 17).
Although binary PSO is successfully used in number of engineering applications, but this
algorithm still has some shortcomings. The difficulties of binary PSO will be discussed, and
then a novel binary PSO algorithm will be proposed. In novel binary PSO proposed here,
the velocity of a particle is its probability to change its state from its previous state to its
complement value, rather than the probability of change to 1. In this new definition the
velocity of particle and also its parameters has the same role as in real-valued version of the
PSO. This algorithm will be discussed. Also simulation results are presented to show the
superior performance of the proposed algorithm over the previously introduced one. There
are also other versions of binary PSO. In (Sadri & Ching, 2006) authors add birth and
mortality to the ordinary PSO. AMPSO is a version of binary PSO, which employs a
trigonometric function as a bit string generator (Pampara et al., 2005). Boolean algebra can
also be used for binary PSO (Marandi et al., 2006). Also fuzzy system can be used to
improve the capability of the binary PSO as in (Wei Peng et al., 2004).

2. THE PARTICLE SWARM OPTIMIZATION
A detailed description of PSO algorithm is presented in (Engelbrecht, 2005; Sadri, Ching,
2006; Engelbrecht, 2002). Here we will give a short description of the real- valued and binary
PSO proposed by Kennedy and Eberhart.

2.1 Real-valued particle swarm optimization
Assume that our search space is d-dimensional, and the i-th particle of the swarm can be
represented by a d-dimensional position vector . The velocity of the
particle is denoted by . Also consider best visited position for the
particle is and also the best position explored so far is

. So the position of the particle and its velocity is being updated
using following equations:

 (1)

 (2)

Where are positive constants, and are two random
variables with uniform distribution between 0 and 1. In this equation, W is the inertia
weight which shows the effect of previous velocity vector on the new vector. An upper
bound is placed on the velocity in all dimensions . This limitation prevents the particle
from moving too rapidly from one region in search space to another. This value is usually
initialized as a function of the range of the problem. For example if the range of all is [—
50,50] then is proportional to 50. for each particle is updated in each iteration
when a better position for the particle or for the whole swarm is obtained. The feature that
drives PSO is social interaction. Individuals (particles) within the swarm learn from each
other, and based on the knowledge obtained then move to become similar to their "better"

Novel Binary Particle Swarm Optimization

3

previously obtained position and also to their "better" neighbors. Individual within a
neighborhood communicate with one other. Based on the communication of a particle
within the swarm different neighborhood topologies are defined. One of these topologies
which is considered here, is the star topology. In this topology each particle can
communicate with every other individual, forming a fully connected social network. In this
case each particle is attracted toward the best particle (best problem solution) found by any
member of the entire swarm. Each particle therefore imitates the overall best particle. So the

 updated when a new best position within the whole swarm is found. The algorithm
for the PSO can be summarized as follows:
1. Initialize the swarm X i , the position of particles are randomly initialized within the

hypercube of feasible space.
2. Evaluate the performance F of each particle, using its current position Xi (t).
3. Compare the performance of each individual to its best performance so far:

.

/

4. Compare the performance of each particle to the global best particle: if

5. Change the velocity of the particle according to (1).
6. Move each particle to a new position using equation (2).
7. Go to step 2, and repeat until convergence.

2.2 Binary particle swarm optimization
Kennedy and Eberhart proposed a discrete binary version of PSO for binary problems [4]. In
their model a particle will decide on "yes" or " no", "true" or "false", "include" or "not to
include" etc. also this binary values can be a representation of a real value in binary search
space.
In the binary PSO, the particle's personal best and global best is updated as in real- valued
version. The major difference between binary PSO with real-valued version is that velocities
of the particles are rather defined in terms of probabilities that a bit will change to one.
Using this definition a velocity must be restricted within the range [0,1] . So a map is
introduced to map all real valued numbers of velocity to the range [0,1] [4]. The
normalization function used here is a sigmoid function as:

 (3)
Also the equation (1) is used to update the velocity vector of the particle. And the new
position of the particle is obtained using the equation below:

(4)

Where is a uniform random number in the range [0,1].

Particle Swarm Optimization

4

2.3 Main problems with binary PSO
Here two main problems and concerns about binary PSO is discussed the first is the
parameters of binary PSO and the second is the problem with memory of binary PSO.
a) Parameters of the binary PSO
It is not just the interpretation of the velocity and particle trajectories that changes for the
binary PSO. The meaning and behavior of the velocity clamping and the inertia weight
differ substantially from the real-valued PSO. In fact, the effects of these parameters are the
opposite of those for the real valued PSO. In fact, the effects of these parameters are the
opposite of those for the real-valued PSO (Engelbrecht, 2005).
In real-valued version of PSO large numbers for maximum velocity of the particle encourage
exploration. But in binary PSO small numbers for promotes exploration, even if a
good solution is found. And if = 0, then the search changes into a pure random search.
Large values for limit exploration. For example if = 4, then = 0.982 is
the probability of to change to bit 1.
There is also some difficulties with choosing proper value for inertia weight w . For binary
PSO, values of prevents convergence. For values of becomes 0 over
time. For which so for we have . If velocity

increases over time and so all bits change to 1. If then

 so the probability that bits change to bit 0 increases.

As discussed in (Engelbrecht, 2005) the inertia weight and its effect is a problem. Also two
approaches are suggested there: First is to remove the momentum term. According to
(Engelbrecht, 2005), as the change in particle's position is randomly influenced by f/y , so
the momentum term might not be needed. This approach is unexplored approach although
it is used in (Pampara et al., 2005), but no comparisons are provided there. The second
approach is to use a random number for w in the range: (-1,1) . In fact inertia weight has
some valuable information about previously found directions found. Removing this term
can't give any improvement to the binary PSO and the previous direction will be lost in this
manner. Also using a random number for win the range (-1, 1) or any range like this can't be
a good solution. It is desired that the algorithm is quite insensible to the values selected for
w. Also using negative values for w makes no sense because this term provides the effect of
previous directions in the next direction of the particle. Using a negative value for this
parameter is not logical.
b) Memory of the binary PSO
Considering equation (4) the next value for the bit is quite independent of the current value
of that bit and the value is solely updated using the velocity vector. In real-valued version of
PSO the update rule uses current position of the swarm and the velocity vector just
determines the movement of the particle in the space.

3. THE NOVEL BINARY PARTICLE SWARM OPTIMIZATION
Here, the and of the swarm is updated as in real-valued or binary version. The
major difference between this algorithm and other version of binary PSO is the
interpretation of velocity. Here, as in real-valued version of PSO, velocity of a particle is the
rate at which the particle changes its bit's value. Two vectors for each particle are introduced
as: and . is the probability of the bits of the particle to change to zero while is

Novel Binary Particle Swarm Optimization

5

the probability that bits of particle change to one. Since in update equation of these
velocities, which will be introduced later, the inertia term is used, these velocities are not
complement. So the probability of change in j-th bit of i-th particle is simply defined as
follows:

(4)

In this way the velocity of particle is simply calculated. Also the update algorithm for
and is as follows: consider the best position visited so far for a particle is and the
global best position for the particle is . Also consider that the j-th bit of i-th best
particle is one. So to guide the bit j-th of i-th particle to its best position, the velocity of
change to one () for that particle increases and the velocity of change to zero () is
decreases. Using this concept following rules can be extracted:

(6)

Where are two temporary values, are two random variable in the range of
(0,1) which are updated each iteration. Also are two fixed variables which are
determined by user. Then:

(7)

Where is the inertia term. In fact in this algorithm if the j-th bit in the global best variable
is zero or if the j-th bit in the corresponding personal best variable is zero the velocity ()
is increased. And the probability of changing to one is also decreases with the same rate. In
addition, if the j-th bit in the global best variable is one is increased and decreases.
In this approach previously found direction of change to one or change to zero for a bit is
maintained and used so particles make use of previously found direction. After updating
velocity of particles, and , the velocity of change is obtained as in (5). A normalization
process is also done. Using sigmoid function as introduced in (3). And then the next
particles state is computed as follows:

(7)

Particle Swarm Optimization

6

Where is the 2's complement of . That is, if then and if
then . And is a uniform random number between 0 and 1.
The meaning of the parameters used in velocity equation, are exactly like those for the real-
valued PSO. The inertia weight used here maintains the previous direction of bits of particle
to the personal best bit or global best bit whether it is 1 or 0. Also the meaning of velocity is
the same as meaning of the velocity in real-valued version of PSO which is the rate of
change in particle's position. Also as in real-valued PSO if the maximum velocity value
considered is large, random search will happen. Small values for maximum velocity cause
the particle to move less. Here also the previous states of the bits of the particles are taking
into account. Using the equation (7) the previous value of the particle is taken into account,
while in binary PSO just velocity determined the next value of particle. So, better
performance and better learning from experiments in this algorithm is achieved.
Experimental results in the next section support these complain. The algorithm proposed
here for the binary PSO can be summarized as follows:
1. Initialize the swarm X i , the position of particles are randomly initialized within the

hypercube. Elements of X i are randomly selected from binary values 0 and 1.
2. Evaluate the performance F of each particle, using its current position Xi (t) .
3. Compare the performance of each individual to its best performance so far: if if

.

4. Compare the performance of each particle to the global best particle:
:

5. Change the velocity of the particle, and according to (6,7).
6. Calculate the velocity of change of the bits, as in (5).
7. Generate the random variable in the range: (0,1). Move each particle to a new

position using equation (8).
8. Go to step 2, and repeat until convergence.

4. EXPERIMENTAL RESULTS
In this section we will compare the performance of proposed binary PSO and the binary
PSO proposed by Kennedy and Eberhart in (Kennedy & Ebarhart, 1997) and the binary PSO
used in (Tasgetiren & Liang,2007). In our experiments we investigated methods on the
minimization of test functions set which is proposed in (Kennedy & Ebarhart, 1997). The
functions used here are: Sphere, Rosenbrock, Griewangk and Rastrigin which are
represented in equations (9-12) respectively. The global minimum of all of these functions is
zero. The expression of these test functions are as follows:

Novel Binary Particle Swarm Optimization

7

(9)

(10)

(11)

(12)

These functions have been used by many researchers as benchmarks for evaluating and
comparing different optimization algorithms. In all of these functions N is the dimension of
our search space. In our experiments the range of the particles were set to [-50 ,50] and 20
bits are used to represent binary values for the real numbers. Also population size is 100 and
the number of iteration assumed to be 1000. The different values assumed in tests for N are
3, 5,10, where N is the dimension of solution space. As it is shown in Table (1-8), the results
are quite satisfactory and much better than the algorithms proposed in (Kennedy &
Ebarhart, 1997) and (Tasgetiren & Liang,2007). As it was mentioned earlier, the method
proposed here uses the previous direction found effectively and velocity has the same
interpretation as the real-valued PSO, which is the rate of changes. The method of selecting
inertia weight in binary PSO proposed in (Kennedy & Ebarhart, 1997) is still a problem
(Engelbrecht, 2005). But removing the inertia weight is also undesirable because the
previous direction is completely losses. In fact the previous velocities of a particle contain
some information about the direction to previous personal best and global bests of the
particle and surely have some valuable information which can help us faster and better find
the solution. But in the proposed algorithm the effect of previous direction and also the
effect of previous state of the system is completely taken into account. The results obtained
here quite support the idea.

5. CONCLUSION
In this study a new interpretation for the velocity of binary PSO was proposed, which is the
rate of change in bits of particles. Also the main difficulty of older version of binary PSO
which is choosing proper value for wis solved. The previous direction and previous state of
each particle is also taken into account and helped finding good solutions for problems. This
approach tested and returned quite satisfactory results in number of test problems. The
binary PSO can be used in variety of applications, especially when the values of the search
space are discrete like decision making, solving lot sizing problem, the traveling salesman
problem, scheduling and routing.

Particle Swarm Optimization

8

Dimension of input
space

The Novel Binary
PSO

Binary PSO as
(Kennedy 1997)

Binary PSO as
(Tasgetiren 2007)

N=3 6.82 x10-9 0.06 0.15

N=5 1. 92 x10-6 7.96 22.90
N=10 0.11 216.61 394.71

Table 1. The results of best global best of minimization for sphere function

Dimension of input
space

The Novel Binary
PSO

Binary PSO as
(Kennedy 1997)

Binary PSO as
(Tasgetiren 2007)

N=3 2.57 x10-8 9.21 0.15

N=5 5.29 x10-4 171.54 224.40
N=10 1.98 1532.90 1718.3

Table 2. The results of best mean of personal bests for sphere function

Dimension of input
space

The Novel Binary
PSO

Binary PSO as
(Kennedy 1997)

Binary PSO as
(Tasgetiren2007)

N=3 0.09 0.93 0.86
N=5 2.25 1406 3746
N=10 32.83 1.3094xl06 1.523xl06

Table 3. The results of best global best of minimization for Rosenbrock function

Dimension of input
space

The Novel Binary
PSO

Binary PSO as
(Kennedy 1997)

Binary PSO as
(Tasgetiren2007)

N=3 0.52 837.62 2945.8
N=5 2.52 304210 6000503
N=10 367.84 3.62 x107 5.02 x107

Table 4. The results of best mean of personal bests for Rosenbrock function

Dimension of input
space

The Novel Binary
PSO

Binary PSO as
(Kennedy 1997)

Binary PSO as
(Tasgetiren2007)

N=3 2.09 x109 3.00 x10-3 0.03

N=5 7.4 x103 0.21 0.15
N=10 0.06 0.83 1.03

Table 5. The results of best global best of minimization for Grienwangk function

Dimension of input
space

The Novel Binary
PSO

Binary PSO as
(Kennedy 1997)

Binary PSO as
(Tasgetiren2007)

N=3 3.78 x10-8 0.17 0.20
N=5 0.012 0.58 0.66
N=10 0.30 1.39 1.43

Table 6. The results of best mean of personal bests for Grienwangk function

Novel Binary Particle Swarm Optimization

9

Dimension of input
space

The Novel Binary
PSO

Binary PSO as
(Kennedy 1997)

Binary PSO as
(Tasgetiren2007)

N=3 1.35 x10-6 2.67 3.71

N=5 3.40 x10-3 25.88 51.32
N=10 10.39 490.82 539.34

Table 7. The results of best global best of minimization for Rastrigrin function

Dimension of input
space

The Novel Binary
PSO

Binary PSO as
(Kennedy 1997)

Binary PSO as
(Tasgetiren2007)

N=3 6.51 x10-6 32.03 46.79
N=5 0.38 215.59 268.40
N=10 39.14 1664.3 1820.2

Table 8. The results of best mean of personal bests for Rastrigrin function

6. REFERENCES
R. Eberhart, and J. Kennedy, (1995) A New Optimizer Using Particles Swarm Theory, Proc.

Sixth International Symposium on Micro Machine and Human Science (Nagoya, Japan),
IEEE Service Center, Piscataway, NJ, pp. 39-43,

J. Kennedy, and R Eberhart, (1995), Particle Swarm Optimization, IEEE Conference on Neural
Networks, pp. 1942-1948, (Perth, Australia), Piscataway, NJ, IV, 1995.

J. Kennedy and R. Eberhart. Swarm Intelligence. Morgan Kaufmann Publishers, Inc., San
Francisco, CA, 2001.

Kennedy, J.; Eberhart, R.C. (1997), A discrete binary version of the particle swarm
algorithm, IEEE Conference on Systems, Man, and Cybernetics, 1997.

A. P. Engelbrecht. (2005),Fundamentals of Computational Swarm Intelligence. Wiley, 2005
J. Sadri, and Ching Y. Suen, (2006), A Genetic Binary Particle Swarm Optimization Model,

IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, 2006
M. Fatih Tasgetiren. & Yun-Chia Liang, (2007), A Binary Particle Swarm Optimization

Algorithm for Lot Sizing Problem Journal of Economic and Social Research vol 5.
Elsevier pp. 1-20

A. P. Engelbrecht, (2002), computational Intelligence, John Wiley and Sons, 2002 Pampara,
G., Franken, N. ,Engelbrecht, A.P. (2005), Combining particle swarm optimisation with

angle modulation to solve binary problems, IEEE Congress on Evolutionary
Computation, 2005 pp 89-96

Marandi, A., Afshinmanesh, F., Shahabadi, M., Bahrami, F., (2006), Boolean Particle Swarm
Optimization and Its Application to the Design of a Dual-Band Dual-Polarized
Planar Antenna, CEC 2006, pp. 3212-3218

Franken, N., Engelbrecht, A.P., (2005), Particle swarm optimization approaches to coevolve
strategies for the iterated prisoner's dilemma, IEEE Transactions on Evolutionary
Computation, 2005 pp.562 - 579

Chunkai Zhang; Hong Hu, (2005), Using PSO algorithm to evolve an optimum input subset
for a SVM in time series forecasting, IEEE International Conference on Systems, Man
and Cybernetics, 2005 pp. 3793-3796

Particle Swarm Optimization

10

Yu-Xuan Wang; Qiao-Liang Xiang, (2007), An Improved Discrete Particle Swarm Optimizer
for Fast Vector Quantization Codebook Design, Multimedia and Expo, 2007 IEEE
International Conference on, Issue, 2-5 July 2007 pp.472 - 475

Heng Xing-Chen, Qin Zheng, Tian Lei, Shao Li-Ping, (2007), Learning Bayesian Network
Structures with Discrete Particle Swarm Optimization Algorithm, Proceedings of the
2007 IEEE Symposium on Foundations of Computational Intelligence, pp.47-53

Yusuf Yare, Ganesh K. Venayagamoorthy, (2007), Optimal Scheduling of Generator
Maintenance using Modified Discrete Particle Swarm Optimization, Symposium
Bulk Power System Dynamics and Control August, 2007, Charleston, SC, USA

Wen-liang Zhong, Jun Zhang, Wei-neng Chen, (2007), A novel discrete particle swarm
optimization to solve traveling salesman problem, Evolutionary Computation, 2007.
CEC 2007. IEEE Congress on, Singapore, Sept. 2007,pp. 3283-3287.

Wei Pang, Kang-ping Wang, Chun-guang Zhou, Long-jiang Dong, (2004) Fuzzy Discrete
Particle Swarm Optimization for Solving Traveling Salesman Problem, Proceedings
of the Fourth International Conference on Computer and Information Technology (CIT04),
Volume, Issue, 14-16 Sept. 2004 pp. 796 - 800

2

Swarm Intelligence Applications in Electric
Machines

Amr M. Amin and Omar T. Hegazy
Power and Electrical Machines Department, Faculty of Engineering – Helwan University

Egypt

1. Introduction
Particle Swarm Optimization (PSO) has potential applications in electric drives. The
excellent characteristics of PSO may be successfully used to optimize the performance of
electric machines in many aspects.
In this chapter, a field-oriented controller that is based on Particle Swarm Optimization is
presented. In this system, the speed control of two asymmetrical windings induction motor
is achieved while maintaining maximum efficiency of the motor. PSO selects the optimal
rotor flux level at any operating point. In addition, the electromagnetic torque is also
improved while maintaining a fast dynamic response. A novel approach is used to evaluate
the optimal rotor flux level by using Particle Swarm Optimization. PSO method is a
member of the wide category of Swarm Intelligence methods (SI). There are two speed
control strategies will demonstrate in next sections. These are field-oriented controller
(FOC), and FOC based on PSO. The strategies are implemented mathematically and
experimental. The simulation and experimental results have demonstrated that the FOC
based on PSO method saves more energy than the conventional FOC method.
In this chapter, another application of PSO for losses and operating cost minimization
control is presented for the induction motor drives. Two strategies for induction motor
speed control are proposed in this section. These strategies are based on PSO and called
maximum efficiency strategy and minimum operating cost Strategy. The proposed
technique is based on the principle that the flux level in a machine can be adjusted to give
the minimum amount of losses and minimum operating cost for a given value of speed and
load torque.
In the demonstrated systems, the flux and torque hysteresis bands are the only adjustable
parameters to achieve direct torque control (DTC) of induction motors. Their selection
greatly influences the inverter switching loss, motor harmonic loss and motor torque
ripples, which are the major performance criteria. In this section, the effects of flux and
torque hysteresis bands are investigated and optimized by the particle swarms optimization
technique. A DTC control strategy with variable hysteresis bands, which improves the
drive performance compared to the classical DTC, is presented.
Online Artificial Neural Networks (ANNs) could be also trained based on PSO optimized
data. Here the fast response of ANN is used to optimize the operating conditions of the
machine.

Particle Swarm Optimization

12

It is very important to note that, these applications were achieved without any additional
hardware cost, because the PSO is a software scheme. Consequently, PSO has positive
promises for a wide range of variable speed drive applications.

2. Losses Minimization of Two Asymmetrical Windings Induction Motor
In this section, applying field orientation based on Particle Swarm Optimization (PSO)
controls the speed of two-asymmetrical windings induction motor is the first application of
PSO. The maximum efficiency of the motor is obtained by the evaluation of optimal rotor
flux at any operating point. In addition, the electro-magnetic torque is also improved while
maintaining a fast dynamic response. In this section, a novel approach is used to evaluate
the optimal rotor flux level. This approach is based on Particle Swarm Optimization
(PSO). This section presents two speed control strategies. These are field-oriented
controller (FOC) and FOC based on PSO. The strategies are implemented mathematically
and experimental. The simulation and experimental results have demonstrated that the FOC
based on PSO method saves more energy than the conventional FOC method.
The two asymmetrical windings induction motor is treated as a two-phase induction motor
(TPIM). It is used in many low power applications, where three–phase supply is not readily
available. This type of motor runs at an efficiency range of 50% to 65% at rated operating
conditions [1, 2].
The conventional field-oriented controller normally operates at rated flux at any values with
its torque range. When the load is reduced considerably, the core losses become so high
causing poor efficiency. If significant energy savings are required, it is necessary to
optimize the efficiency of the motor. The optimum efficiency is obtained by the evaluation of
the optimal rotor flux level . This flux level is varied according to the torque and the speed
of the operating point.
PSO is applied to evaluate the optimal flux. It has the straightforward goal of minimizing
the total losses for a given load and speed. It is shown that the efficiency is reasonably close
to optimal.

2.1 Mathematical Model of the Motor
The d-q model of an unsymmetrical windings induction motor in a stationary reference
frame can be used for a dynamic analysis. This model can take in account the core losses.
The d-q model as applied to TPIM is described in [1, 2]. The equivalent circuit is shown in
fig. 1. The machine model may be expressed by the following voltage and flux linkage
equations :
Voltage Equations:

qsqsmqs pirv λ+=

 (1)

 dsdsads pirv λ+=
 (2)

 qrdrrqrr pkir λλω +−= *)/1(0

(3)

Swarm Intelligence Applications in Electric Machines

13

 drqrrdsR pkir λλω ++= *0
 (4)

)(0 qfeqrqsmqqfeqfe ipipipLRi −++−=

(5)

)(0 dfedrdsmddfedfe ipipipLRi −++−=
 (6)

Flux Linkage Equations:

)(qfeqrqsmqqslmqs iiiLiL −++=λ (7)

)(dfedrdsmddslads iiiLiL −++=λ (8)

rM LlM

Lmq

Llr

+ -

(1/k)ωrλ dr

+

-

Vqs rr

iqs iqr

Rqfe iqfe

rA LlA

Lmd

LlR

+-

kωrλ qr

+

-

Vds

ids idr

Rdfe idfe

rR

Figure 1. The d-q axes two-phase induction motor Equivalent circuit with iron losses [5]

)iii(LiL qfeqrqsmqqrlrqr −++=λ

 (9)

)iii(LiL dfedrdsmddrlRdr −++=λ

 (10)
Electrical torque equation is expressed as:

)(1)((
2 qfedrdsqrmdqfeqrqsdrmq iiiiL

k
iiiiLkPTe −+−−+= (11)

Particle Swarm Optimization

14

Dynamic equation is given as follows:

 rmrml BpjTTe ωω +=−
 (12)

2.2 Field-Oriented Controller [FOC]
The stator windings of the motor are unbalanced. The machine parameters differ from the d
axis to the q axis. The waveform of the electromagnetic torque demonstrates the unbalance
of the system. The torque in equation (11) contains an AC term; it can be observed that two
values are presented for the referred magnetizing inductance. It is possible to eliminate the
AC term of electro-magnetic torque by an appropriate control of the stator currents.
However, these relations are valid only in linear conditions. Furthermore, the model is
implemented using a non-referred equivalent circuit, which presumes some complicated
measurement of the magnetizing mutual inductance of the stator and the rotor circuits [3].
The indirect field-oriented control scheme is the most popular scheme for field-oriented
controllers. It provides decoupling between the torque of flux currents. The electric torque
must be a function of the stator currents and rotor flux in synchronous reference frame [6].
Assuming that the stator currents can be imposed as:

 1dsds
ss ii = (13)

 1qs
s

qs
s iki = (14)

 Where: k= Msrd / Msrq

 []qrdr
s

ds
s

sdr
s

qs
s

sqr
r

e iMiM
L

PT λλ −=
2 (15)

By substituting the variables ids, and iqs by auxiliary variables ids1, and iqs1 into (15) the
torque can be expressed by

 []qrdsdrqs
ssss

r

sdr
e ii

L
MPT λλ 112

−= (16)

In synchronous reference frame, the electromagnetic torque is expressed as :

[]qrdsdrqs
eeee

r

sdr
e ii

L
MPT λλ 112

−= (17)

 []rqs
ee

r

sdr
e i

L
MP

T λ12
= (18)

Swarm Intelligence Applications in Electric Machines

15

sdr

r
e

ds
e

M
i λ=1 (19)

 1* qs
e

rr

sdr
re iM

λτ
ωω =− (20)

2.3 Model with the Losses of two asymmetrical windings induction motor
Finding the losses expression for the two asymmetrical windings induction motor with
losses model is a very complex. In this section, a simplified induction motor model with
iron losses will be developed [4]. For this purpose, it is necessary to transform all machine
variables to the synchronous reference frame. The voltage equations are written in
expanded form as follows:

)(e
mdmd

e
sdlae

e
qm

mq

e
qs

lm
e
qsm

e
qs iLiL

dt
di

L
dt

di
Lirv ++++= ω (21)

)(e
mqmq

e
sqlme

e
dm

md

e
ds

la
e
dsa

e
ds iLiL

dt
diL

dt
diLirv +−++= ω (22)

)(0 e
dmmd

e
drlR

sl
e
qm

mq

e
qr

lr
e
qrr iLiL

kdt
di

L
dt

di
Lir ++++= ω

 (23)

)(*0 e
qmmq

e
qrlrsl

e
dm

md

e
dr

lR
e
drR iLiLk

dt
diL

dt
diLir +−++= ω (24)

e
qm

e
qfe

e
qr

e
qs iiii +=+ (25)

e
dm

e
dfe

e
dr

e
ds iiii +=+ (26)

Where:

 dfe

e
dme

dfe
qfe

e
qme

dfe R
vi;

R
v

i ==

e
qs

r

mqslree
dm i

L
LL

v
ω

−= (27)

Particle Swarm Optimization

16

e
dsmdse

e
qm iLv ω= (28)

The losses in the motor are mainly:
a. Stator copper losses,
b. Rotor copper losses,
c. Core losses, and
d. Friction losses.
The total electrical losses can be expressed as follows

 Plosses = Pcu1 + Pcu2 +Pcor (29)

Where:
Pcu1: Stator copper losses
Pcu2 : Rotor copper losses
Pcore: Core losses
The stator copper losses of the two asymmetrical windings induction motor are caused by
electric currents flowing through the stator windings. The core losses of the motor due to
hysteresis and eddy currents in the stator. The total electrical losses of motor can be
rewritten as:

dfe

e
dm

qfe

e
qme

drR
e
qrr

e
dsa

e
qsmlosses R

v
R
v

iriririrP
22

2222
+++++= (30)

The total electrical losses are obtained as follows:

 2

222

2
2

2

22

2

222

2

2

mds

r

qfe

mdse
a

r
mds

re

dfer

mqslre

r

mqsr
mlosses LR

Lr

K
LP

LT
RL

LL
L
Lr

rP λω

λ

ω
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
++= (31)

Where:
ωe = ωr+ ωsl, and ωsl is the slip speed r/sec.

 2*
*2

r

re
sl P

rT
λ

ω = (32)

Equation (31) is the electrical losses formula, which depends on rotor flux (λr) according to
operating point (speed and load torque).

Total Plosses (TP losses) = Plosses + friction power losses

 = Pin - Pout

 Efficiency (η) = Po / (Po + Total Plosses) (33)

Swarm Intelligence Applications in Electric Machines

17

Where:
Friction power losses = F ∗ωr2 , and
Output power (Po) = TL∗ωr.
The equation (31) is the cost function, which depends on rotor flux (λr) according to the
operating point. Figure 2 presents the distribution of losses in motor and its variation with
the flux. As the flux reduces from the rated value, the core losses decrease, but the motor
copper losses increase. However, the total losses decrease to a minimum value and then
increase again. It is desirable to set the rotor flux at the optimal value, so that the efficiency
is optimum.

Figure 2. Losses variation of the motor with varying flux

The function of the losses minimization of the motor problem can be formulated as follows:
Minimize Total Losses which are a function of λ , Te , and ωr
• The losses formula is the cost function of PSO. The particle swarm optimization (PSO)

technique is used for minimizing this cost function.
• The PSO is applied to evaluate the optimal rotor flux that minimizes the motor losses at

any operating point. Figure 3 presents the flowchart of the execution of PSO, which
evaluates the optimal flux by using MATLAB /SIMULINK.

Particle Swarm Optimization

18

Are
all possible operating
conditions optimized

varying the rotor
flux level using PSO

Run the Simulik model of two asymmetrical
windings induction motor with losses

Determination of the new
operation conditions
(speed and torque)

Read motor parameters

Start

calculation of the cost
function

Is
 the value of

the cost
function is
minimum

?

No

set this value as optimum point
and record the corresponding

optimum values of the efficiency
and the rotor flux load

End

Yes

No

Yes

Calculation of motor currents

Figure 3. The flowchart of the execution of PSO

Swarm Intelligence Applications in Electric Machines

19

The optimal flux is the input of the indirect rotor flux oriented controller. The indirect field-
oriented controller generates the required two reference currents to drive the motor
corresponding to the optimal flux. These currents are fed to the hysteresis current controller
of the two-level inverter. The switching pattern is generated according to the difference
between the reference current and the load current through the hysteresis band. Figure 4
shows a whole control diagram of the proposed losses-minimization control system.

PSO

M/C
ParamertersTl Nr

FO

Te*

ϕ*

iqs
*=ia ref.

ids
*= ib ref.

Four Switch
Inverter

[FSI]

Rotor

main

aux

ib actual

ia actual

Hysteresis-band
current control

flux optimal

Vdc Vdc

Figure 4. Proposed losses minimization control system

2.4 Simulation study with FOC
The motor used in this study has the following parameters, which were measured by
using experimental tests . The FOC module is developed with closed loop speed control.
The input of the FOC module is the reference speed and the rated rotor flux. The field–
oriented controller generates the required reference currents to drive the motor as shown in
fig.5. These currents are based on the flux level, which determines the value of direct
current, and the reference torque, which determines the value of quadrature current. The
reference torque is calculated according to the speed error. In this section, six-cases of
motor operation with FOC are presented.

FO

Te*

ϕ*

iqs
*=ia ref.

ids
*= ib ref.

Four Switch
Inverter

[FSI]

Rotor

main

aux

ib actual

ia actual

Hysteresis-band
current control

Vdc

Figure 5. Block diagram of indirect rotor flux oriented control of the motor

Particle Swarm Optimization

20

Figure 6 shows the performance of the motor at case (1), where the motor is loaded by
0.25p.u. The control technique based on the PI controller has been developed. The
proportional (Kp) and integral (Ki) constants of PI controller are chosen by trial and error.
The speed-time curve for the motor is shown in fig. 6a. It is noticed that the speed
oscillations are eliminated when the FOC is applied to the drive system.
Figure 6b illustrates the developed torque-time curve of the motor. In this figure, the
pulsating torque is eliminated.

(a)

(b)

Swarm Intelligence Applications in Electric Machines

21

(c)

(d)

Figure 6. Simulation results of the motor at case (1), (a) Speed-time curve, (b) Torque-time
curve, (c)The stator current in q-axis, (d) the stator current in d-axis

The efficiency is calculated from equation (33). Therefore, the efficiency is found to be equal
to 33.85 %. The six-cases are summarized in Table 1.

Torque load (TL)
p.u Speed (N) Flux rated

p.u Efficiency (%)
0.25 0.5 Nrated 1 33.85
0.375 0.5 Nrated 1 36.51
0.5 0.5 Nrated 1 48.21
0.6125 0.5 Nrated 1 55.15
0.75 0.5 Nrated 1 60.175
1 0.5 Nrated 1 63.54

Table 1. The summary of the cases

Particle Swarm Optimization

22

It is clear that, the indirect field-oriented controller with a rated rotor flux generally exhibits
poor efficiency of the motor at light load. If significant energy savings need to be obtained,
it is necessary to optimize the efficiency of the motor. The optimum efficiency of the motor
is obtained by the evaluation of the optimal rotor flux level.

2.5 Losses minimization control scheme
As swarm intelligence is based on real life observations of social animals (usually insects), it
is more flexibility and robust than any traditional optimization methods. PSO method is a
member of the wide category of swarm intelligence methods (SI). In this section, PSO is
applied to evaluate the optimal flux that minimizes the motor losses. The problem can be
formulated as follows:
Minimize Total Losses which are a function of λ , Te , and ωr
• The motor used as a two-asymmetrical windings induction motor. The parameters used

are shown in Table 2 [10].

Parameters Value

Population size 10
Max. iter 50

c1 0.5
c2 0.5

Max. weight 1.4
Min. weight 0.1

r1 [0,1]
r2 [0,1]

Lbnd 0.2
upbnd 2

Table 2. PSO Algorithm Parameters

A simplified block diagram of the proposed speed control scheme is shown in fig.7.

PSO

M/C
ParamertersTl Nr

FO

Te*

ϕ*

iqs
*=ia ref.

ids
*= ib ref.

Four Switch
Inverter

[FSI]

Rotor

main

aux

ib actual

ia actual

Hysteresis-band
current control

flux optimal

Vdc

Figure 7. Proposed losses minimization control system

Swarm Intelligence Applications in Electric Machines

23

A Four-Switch Inverter (FSI) feeds the two-asymmetrical windings induction motor. The
optimal flux is fed to the indirect rotor flux oriented control. The indirect field-oriented
control generates the required reference current to drive the motor corresponding to this
flux

2.6 Simulation results with FO based on PSO
The optimal rotor flux provides the maximum efficiency at any operating point, next the
previous six-cases are repeated by using FOC based on PSO. PSO will evaluate the optimal
rotor flux level. This flux is fed to the FOC module. Figure 8 shows the performance of the
motor at case (1), when PSO is applied side-by-side FOC.

(a)

(b)

Particle Swarm Optimization

24

(c)

(d)

(e)

Figure 8. Simulation results of the motor at case (1). (a) Speed-time curve , (b)Torque-time
curve, (c) The stator current in q-axis, (d) The stator current in d-axis, (e) Total Losses
against iterations

Swarm Intelligence Applications in Electric Machines

25

It is noticed that, the PSO implementation increased the efficiency of the motor to 46.11% at
half the rated speed. The six-cases are summarized in Table 3.

Torque load
(TL) p.u Speed (N) Optimal flux(p.u) Efficiency (%)

0.25 0.5 Nrated 0.636 46.11
0.375 0.5 Nrated 0.6906 49.15
0.5 0.5 Nrated 0.722 57.11

0.6125 0.5 Nrated 0.761 62.34
0.75 0.5 Nrated 0.8312 65.31

1 0.5 Nrated 0.8722 68.15
Table 3. The summary of the six-cases at optimal flux

In practical system, the flux level based on PSO at different operating points (torque and
speed) is calculated and stored in a look up table. The use of look up table will enable the
system to work in real time without any delay that might be needed to calculate the optimal
point. The proposed controller would receive the operating point (torque and speed) and
get the optimum flux from the look up table. It will generate the required reference current.
It is noticed that, the efficiency with the FOC based on PSO method is higher than the
efficiency with the FOC method only.

2.7 Experimental Results
To verify the validity of the proposed control scheme, a laboratory prototype is built and
tested. The basic elements of the proposed experimental scheme are shown in fig. 9 and fig.
10. The experimental results of the motor are achieved by coupling the motor to an eddy
current dynamometer. The experimental results are achieved using two control methods:
• Field-Oriented Control [FOC], and
• Field-Oriented Control [FOC] based on PSO.
The reference and the actual motor currents are fed to the hysteresis current controller. The
switching pattern of the two-level four-switch inverter [FSI] is generated according to the
difference between the reference currents and the load currents. Figure 11 shows the
experimental results of the motor with FOC at case (1), where the motor is loaded by Tl =
0.25 p.u.
The measured input power of the motor is about 169 watts, and then the efficiency is
calculated about 44.92 %, whereas the efficiency with FOC is 32.30 %. It is noticed that, the
PSO implementation increased the efficiency of the motor by 12.62 %. The cases are
summarized in Table 4 as follows.

FOC FOC with PSO
Cases Flux

p.u
Power
Input

η
(%)

Flux
p.u

Power
Input

η
(%)

(1) 1 235 32.3 0.636 169 44.92

(2) 1 323 35.2 0.690 243 47.06

Table 5 the summary of the two-cases

Particle Swarm Optimization

26

The improvement of the efficiency in case (1) is around 12.62 % when PSO is applied. The
improvement of the efficiency in case (2) is around 11.84 %, where the motor is loaded by Tl
= 0.375 p.u. These results demonstrate that, the FOC based on PSO method saves more
energy than conventional FOC method. Thus, the efficiency with PSO is improved than it's
at FOC.

PI Indirect
Field-Oriented dq-->ab

transfor-
me

PSO

Hystersis
current

controller

Inverter

Two dc-supply

M/c
paramaters

Rotor

ωref

NrTl

T*
e

φ*

is
qs

isds

Switching
Pattern

ia

ib

4

Iaact

Ibact

Shaft
encoder

Ia_ref

Ib_ref

ωactual

IN
TE

R
-F

A
C

E

+ -

ωactual

Figure 9. Block diagram of the proposed drive system

G1 G2Edc

Edc

D

S

D

S

D

S

D

S
ids

iqs

aux

rotor
main

Rs

Cs

Rs

Cs

Rs

Cs

Rs

Cs

D2D1

D3 D4

S1 S2

G2

S2

G4

S4

Figure 10. The power circuit of Four Switch inverter [FSI]

Swarm Intelligence Applications in Electric Machines

27

(a)

(b)

(c)

Figure 11. Experimental results of FOC method. (a)The reference and actual speed, (b) The
reference and actual current in q-axis, (c) The reference and actual current in d-axis

Particle Swarm Optimization

28

The measured total input power of the motor is 235 watts. The efficiency is calculated from
equation (33). The efficiency is found to be equal to 32.30 %. Figure 11 shows the
experimental result of the motor with FOC based on PSO at case (1).

(a)

(b)

Figure 11. Experimental results of FOC method based on PSO. (a) The reference and actual
current in q-axis, (b)The reference and actual current in d-axis

3. Maximum Efficiency and Minimum Operating Cost of Induction motors
This section presents another application of PSO for losses and operating cost minimization
control in the induction motor drives. In this paper, two strategies for induction motor
speed control are proposed. Those two strategies are based on PSO and called Maximum

Swarm Intelligence Applications in Electric Machines

29

Efficiency Strategy and Minimum Operating Cost Strategy. The proposed technique is
based on the principle that the flux level in the machine can be adjusted to give the
minimum amount of losses and minimum operating cost for a given value of speed and
load torque. The main advantages of the proposed technique are; its simple structure and its
straightforward maximization of induction motor efficiency and its operating cost for a
given load torque. As will be demonstrated, PSO is so efficient in finding the optimum
operating machine's flux level. The optimum flux level is a function of the machine
operating point.
Simulation results show that a considerable energy and cost savings are achieved in
comparison with the conventional method of operation under the condition of constant
voltage to frequency ratio [5, 6].
It is estimated that, electric machines consume more than 50% of the world electric energy
generated. Improving efficiency in electric drives is important, mainly, for two reasons:
economic saving and reduction of environmental pollution. Induction motors have a high
efficiency at rated speed and torque. However, at light loads, the iron losses increase
dramatically, reducing considerably the efficiency. The main induction motor losses are
usually split into 5 components: stator copper losses, rotor copper losses, iron losses,
mechanical losses, and stray losses.
The efficiency that decreases with increasing losses can be improved by minimizing the
losses. Copper losses reduce with decreasing the stator and the rotor currents, while the core
losses essentially increase with increasing air-gap flux density. A study of the copper and
core losses components reveals that their trends conflict. When the core losses increase, the
copper losses tends to decrease. However, for a given load torque, there is an air-gap flux
density at which the total losses is minimized. Hence, electrical losses minimization process
ultimately comes down to the selection of the appropriate air-gap flux density of operation.
Since the air-gap flux density must be variable when the load is changing, control schemes
in which the (rotor, air-gap) flux linkage is constant will yield sub-optimal efficiency
operation especially when the load is light. Then to improve the motor efficiency, the flux
must be reduced when it operates under light load conditions by obtaining a balance
between copper and iron losses.
The challenge to engineers, however, is to be able to predict the appropriate flux values at
any operating points over the complete torque and speed range which will minimize the
machines losses, hence maximizing the efficiency. In general, there are three different
approaches to improve the induction motor efficiency especially under light-load
conditions.

a. Losses Model Controller (LMC)
This controller depends on a motor losses model to compute the optimum flux analytically.
The main advantage of this approach is its simplicity and it does not require extra hardware.
In addition, it provides smooth and fast adaptation of the flux, and may offer optimal
performance during transient operation. However, the main problem of this approach is
that it requires the exact values of machine parameters. These parameters include the core
losses and the main inductance flux saturation, which are unknown to the users and change
considerably with temperature, saturation, and skin effect. In addition, these parameters
may vary due to changes in the operating conditions. However, with continuing

Particle Swarm Optimization

30

improvement of evolutionary parameter determination algorithms, the disadvantages of
motor parameters dependency are slowly disappearing.

b. Search Controller (SC)
This controller measures the input power of the machine drive regularly at fixed time
intervals and searches for the flux value, which results in minimum power input for given
values of speed and load torque [5]. This particular method does not demand knowledge of
the machine parameters and the search procedure is simple to implement.
However, some disadvantages appear in practice, such as continuous disturbances in the
torque, slow adaptation (7sec.), difficulties in tuning the algorithm for a given application,
and the need for precise load information. In addition, the precision of the measurements
may be poor due to signal noise and disturbances. This in turn may cause the SC method to
give undesirable control performance. Moreover, nominal flux is applied in transient state
and is tuned after the system reaches steady state to an optimal value by numerous
increments, thus lengthening the optimization process. Therefore, the SC technique may be
slow in obtaining the optimal point. In addition, in real systems, it may not reach a steady
state and so cause oscillations in the air gap flux that result in undesirable torque
disturbances. For these reasons, this is not a good method in industrial drives.

c. Look Up Table Scheme
It gives the optimal flux level at different operating points. This table, however, requires
costly and time-consuming prior measurements for each motor . In this section, a new
control strategy uses the loss model controller based on PSO is proposed. This strategy is
simple in structure and has the straightforward goal of maximizing the efficiency for a given
load torque. The resulting induction motor efficiency is reasonably close to optimal. It is
well known that the presence of uncertainties ,the rotor resistance, for instance makes the
result no more optimal. Digital computer simulation results are obtained to demonstrate the
effectiveness of the proposed method.

3.1 Differences between PSO and Other Evolutionary Computation (EC) Techniques
The most striking difference between PSO and the other evolutionary algorithms is that PSO
chooses the path of cooperation over competition. The other algorithms commonly use some
form of decimation, survival of the fittest. In contrast, the PSO population is stable and
individuals are not destroyed or created. Individuals are influenced by the best
performance of their neighbors. Individuals eventually converge on optimal points in the
problem domain. In addition, the PSO traditionally does not have genetic operators like
crossover between individuals and mutation, and other individuals never substitute
particles during the run. Instead, the PSO refines its search by attracting the particles to
positions with good solutions. Moreover, compared with genetic algorithms (GAs), the
information sharing mechanism in PSO is significantly different. In GAs, chromosomes
share information with each other. So the whole population moves like a one group towards
an optimal area. In PSO, only Gbest (or Pbest) gives out the information to others. It is a one-
way information sharing mechanism. The evolution only looks for the best solution. In PSO,
all the particles tend to converge to the best solution quickly, comparing with GA, even in
the local version in most cases [7, 8].

Swarm Intelligence Applications in Electric Machines

31

3.2 Definition of Operating Strategies
The following definitions are useful in subsequent analyses. Referring to the analysis of the
induction motor presented in [3], the per-unit frequency is

 (34)

The slip is defined by

(35)

The rotor current is given by

 (36)

The electromagnetic torque is given by

(37)

The stator current is related to the air gap flux and the electromagnetic torque as:

 (38)

Where

The air gap flux is related to the electromagnetic torque as:

 (
39)

Particle Swarm Optimization

32

The efficiency is defined as the output power divided by the electric power supplied to the
stator (inverter losses are included):

(40)

3.1.1 Maximum Efficiency Strategy
In MES (Maximum Efficiency Strategy), the slip frequency is adjusted so that the efficiency
of the induction motor drive system is maximized.
The induction motor losses are the following:
1. Copper losses: these are due to flow of the electric current through the stator and rotor

windings and are given by:

 (41)

2. Iron losses: these are the losses due to eddy current and hysteresis, given by

 (42)

3. Stray losses: these arise on the copper and iron of the motor and are given by:

 (43)

4. Mechanical losses: these are due to the friction of the machine rotor with the bearings
and are given by

 (44)

5. Inverter losses : The approximate inverter loss as a function of stator current is given
by:

 (45)

Where: K1inv, K2inv are coefficients determined by the electrical characteristics of a switching
element where: K1inv= 3.1307e-005, K2inv=0.0250.
The total power losses are expressed as:

(46)

Swarm Intelligence Applications in Electric Machines

33

The output power is given by:

 (47)

The input power is given by:

(48)

The efficiency is expressed as:

(49)

The efficiency maximization of the induction motor problem can be formulated as follows:

 (50)

The maximization should observe the fact that the amplitude of the stator current and flux
cannot exceed their specified maximum point.

3.2.2 Minimum Operating Cost Strategy
In Minimum Operating cost Strategy (MOCS), the slip frequency is adjusted so that the
operating cost of the induction motor is minimized. The operating cost of the induction
machine should be calculated over the whole life cycle of the machine. That calculation can
be made to evaluate the cost of the consumed electrical energy. The value of average energy
cost considering the power factor penalties can be determined by the following stages:
1. If 0 ≤ PF < 0.7

(51)

Particle Swarm Optimization

34

2. If 0.7 ≤ PF ≤ 0.92, If PF ≥ 0.9, PF = 0.9

(52)

3. If 0.9 ≤ PF ≤ 1, If 0.95 ≤ PF ≤ 1, PF = 0.95

(53)

If the average energy cost C is calculated, it can be used to establish the present value of
losses. The total cost of the machine is the sum of its initial cost plus the present worth value
of losses and maintenance costs.

(54)

Where:
PWL = present worth value of losses
C0 = energy cost (L.E/KwH), L.E is the Egyptian Pound
C = modified energy cost (L.E/KwH)
T = running time per year (Hrs / year)
N = evaluation life (years)
Pout = the output power (Kwatt)
η = the efficiency
The operating cost minimization of the induction motor problem can be formulated as follows:

(55)

The optimization in each case should observe the fact that the amplitude of the stator
current and flux cannot exceed their specified maximum.

3.3 Simulation Results
The simulation is carried out on a three-phase, 380 V, 1-HP, 50 Hz, and 4-pole, squirrel cage
induction motor. The motor parameters are Rs=0.0598, Xls=0.0364, Xm=0.8564, Xlr=0.0546,
Rr=0.0403, Ke=0.0380, Kh=0.0380, Cstr =0.0150, Cfw=0.0093, S1=1.07, S2=-0.69, S3=0.77. For
cost analysis, the following values were assumed: C0=0.05, N=15, T=8000. Figure 12 shows
the efficiency variation with respect to the rotor and slip speed at various levels of load
torque. At certain load torque and rotor speed, a certain value of slip frequency at which
the maximum efficiency occurs is optimal. The task of PSO controller is to find that value of
slip at which the maximum efficiency occurs. At certain load torque and rotor speed, the
PSO controller determines the slip frequency ωs at which the maximum efficiency and
minimum operating cost occur. The block diagram of the optimization process based on

Swarm Intelligence Applications in Electric Machines

35

PSO is shown in fig.13. In the proposed controller, the PSO algorithm receives the rotor
speed, load torque, and the fitness function (efficiency equation).
The PSO determines the slip frequency at which the maximum efficiency or minimum
operating cost occurs at that rotor speed and load torque. Figures (14) and (15) show the
efficiency of the machine as a function of the load torque and rotor speed under constant
voltage to frequency ratio strategy and field oriented control strategy. From these figures it
is obvious that, the efficiency decreases substantially when either the torque or rotor speed
is small. On the other hand, fig. 16 shows the efficiency versus the load torque and rotor
speed using the proposed technique (MES). This figure shows a great improving in
efficiency especially at light loads and small rotor speed. To observe the improvements in
efficiency using the suggested PSO controller, fig. 17 shows the efficiency of the selected
machine for all operating conditions using conventional methods (constant voltage to
frequency ratio, field oriented control strategy) and using the proposed PSO controller at
different rotor speed levels, Wr = 0.2 PU, and Wr = 1 PU respectively. This figure shows that
a considerable energy saving is achieved in comparison with the conventional method (field
oriented control strategy and constant voltage to frequency ratio). Table (1) shows the
efficiency comparison using few examples of operating points.

Figure 12. Efficiency versus rotor speed and slip speed at load torque TL = 1 PU

Figure 13. The proposed drive system based on PSO

Particle Swarm Optimization

36

Figure 14. Efficiency versus rotor speed and load torque under constant voltage to
frequency ratio strategy

Figure 15. Efficiency versus rotor speed and load torque under field Oriented control strategy

Figure 8. Efficiency versus rotor speed and load torque using the Proposed PSO controller (MES)

Swarm Intelligence Applications in Electric Machines

37

Table 1. Some examples of efficiency comparison under different Load torque levels
and Wr = 1 PU

Figure (10) compares the efficiency of the induction motor drive system under the
maximum efficiency strategy with the minimum operating cost strategy at Wr = 0.2 PU and
Wr = 1 PU, respectively. It is obvious from the figure that the efficiency is almost the same
for both strategies for all operating points. On the other hand, fig. 11 shows the percentage
of the operating cost saving for the two strategies for Wr = 0.2 and Wr = 1 PU respectively.
The percentage of the operating cost saving is calculated according to the following
equation:

(56)

Where: PWlMES is the present worth value of losses under MES, and PWlMOCS is the present
worth value of losses under MOCS. It is obvious from fig (11) that the saving has a
noticeable value especially at light loads and rated speed that can as high as 11.2 %. It is
clear that the PWL using the minimum operating cost strategy is less than the PWL using
the maximum efficiency strategy. This difference in operating cost is shown in table (2). The
reason for that difference is due to the difference in their power factor values. The difference
in power factor values is shown in fig.12.

Particle Swarm Optimization

38

Figure 9. The efficiency of the induction motor using the maximum efficiency strategy
compared with the efficiency using the conventional methods (field oriented control
strategy and constant voltage to frequency ratio) for different rotor speed levels.
(a) Wr = 0.2 PU, (b) Wr= 1 PU

Swarm Intelligence Applications in Electric Machines

39

Figure 10. the efficiency of the induction motor using the maximum efficiency strategy
compared with the efficiency using minimum operating cost strategy for different rotor
speed levels. (a) Wr = 0.2 PU, (b) Wr= 1 PU

Particle Swarm Optimization

40

Table 2. Some examples of operating cost comparison under different load torque levels and
Wr = 1 PU

Figure 11. the PWL using maximum efficiency strategy compared with the PWL using the
minimum operating cost strategy for different rotor speed levels.
(a) Wr = 0.2 PU, (b) Wr= 1 PU

Swarm Intelligence Applications in Electric Machines

41

Figure 12. The Power factor of the induction motor using the maximum efficiency strategy
compared with the Power factor using minimum operating cost strategy for different rotor
speed levels, (a) Wr = 0.2 PU, (b) Wr= 1 PU

Finally, this section presents the application of PSO for losses and operating cost
minimization control in the induction motor drives. Two strategies for induction motor
speed control are proposed. Those two strategies are based on PSO and called Maximum
Efficiency Strategy and Minimum Operating Cost Strategy. The proposed PSO-controller
adaptively adjusts the slip frequency such that the drive system is operated at the minimum
loss and minimum operating cost. It was found that the optimal system slip changes with
variations in speed and load torque. When comparing the proposed strategy with the
conventional methods field oriented control strategy and constant voltage to frequency
ratio), It was found that a significant efficiency improvement It was found that a significant
efficiency improvement is found at light loads for all speeds. On the other hand, small
efficiency improvement is achieved at near rated loads. Finally, when comparing the MOCS
with MES, it was found that, the saving in PWL using the MOCS is greater than that of the
MES, especially at light loads and rated speed.

Particle Swarm Optimization

42

4. Particle Swarm Optimized Direct Torque Control of Induction Motors
The flux and torque hysteresis bands are the only adjustable parameters in direct
torque control (DTC) of induction motors. Their selection greatly influences the inverter
switching loss, motor harmonic loss and motor torque ripples, which are major performance
criteria. In this section, the effects of flux and torque hysteresis bands on these criteria
are investigated and optimized via the minimization, by the particle swarm optimization
(PSO) technique, of a suitably selected cost function. A DTC control strategy with variable
hysteresis bands, which improves the drive performance compared to the classical DTC, is
proposed. Online operating Artificial Neural Networks (ANNs) use the offline optimum
values obtained by PSO, to modify the hysteresis bands in order to improve the
performance. The implementation of the proposed scheme is illustrated by simulation
results [9].
In this section, the effects of flux and torque hysteresis bands on inverter switching loss,
motor harmonic loss and motor torque ripple of induction motor are investigated. To reduce
speed and torque ripples it is desirable to make the hysteresis band as small as possible,
thus increasing the switching frequency, which results in reduced efficiency of the drive by
enlarging the inverter switching and motor harmonic losses. Hence, these hysteresis bands
should be optimized in order to achieve a suitable compromise between efficiency and
dynamic performance. In order to find their optimum values at each operating condition, a
cost function combining losses and torque ripples is defined and optimized. A DTC control
strategy with variable hysteresis bands is proposed, such that the optimum hysteresis band
values are used at each operating condition. The proposed method combines the emerging
Particle Swarm Optimization (PSO) for offline optimization of the cost function and the
ANN technique for online determination of the suitable hysteresis band values at the
operating point.

4.1 DTC Performance Cost Function Optimization
The design of the DTC involves the selection of suitable hysteresis band. In this section, the
hysteresis band is selected so that it results in an optimal performance cost function. Since
the optimal hysteresis bands depend on the operating conditions, the optimization
procedure is implemented via PSO at several operating conditions that covers the possible
working conditions of the drive system [9, 10, 11]. Fig. 13 shows the flow chart of the
optimization method. A computer model of the overall drive system has been
developed using MATLAB/SIMULINK software. The simulations have been
performed for a 10 Hp induction motor (the motor parameters are given in the appendix).
The cost function is expressed as follows:

 (57)

Where:
ΔTe: is the torque hysteresis band,
Δλs : is the flux hysteresis band,
PIL: is inverter switching loss,
PC: is core loss, and
Wi : is a designer specified weighting factor.

Swarm Intelligence Applications in Electric Machines

43

The weighting terms are selected to be W1 = 0.2, W2 = 0.2 and W3 = 0.6. The reduction of
torque ripples is the most important objective of the optimization. In the thirty-six different
operating conditions, corresponding to the combination of six different speed and six
different load torque values, are considered. The harmonic spectrum of the motor stator flux
is calculated up to 30th harmonic and the Simulink model is run for 2.5 seconds. For PSO,
the following parameters are used: Size of the swarm = 10, maximum number of
iterations = 100, maximum inertia weight’s value = 1.2, minimum inertia weight’s value =
0.1, C1 =C2 = 0.5 ,lower and upper bound for initial position of the swarm are 0 and 20
respectively maximum initial velocities value = 2 and the weight vary linearly from 1.2 to
0.1. Table 1 presents the optimum torque and flux hysteresis bands (TB, and FB
respectively) obtained by PSO.

Table 3. The optimum hysteresis bands obtained by PSO optimization process

4.2 Neural Network Controller For DTC
In the previous section, PSO is used as an offline optimization technique that determines the
optimal values of the hysteresis bands. These bands depend on loading conditions. To
ensure keeping the drive system running at the optimal performance cost function, the
hysteresis band must be changed online depending on the current operating conditions.
Neural networks (NNs) have good approximation ability and can interpolate and
extrapolate its training data. Hence, to achieve the online selection of the hysteresis bands,
two neural networks are trained by the offline optimum results obtained by PSO for flux
and torque bands respectively. The inputs of these NN are the desired motor speed and the
desired load torque.
The two considered NN's are Feed-forward type networks. Each NN has two inputs, one
output, and two layers. The flux neural network has 8 neurons in the input layer and one
neuron in the output layer. The torque neural network has 9 neurons in the input layer and
one neuron in the output layer. The activation function of the hidden layer is log sigmoid
while the output layer is linear. For both networks, the Neural Network Matlab Toolbox is
used for the training. The training algorithm selected is Levenberg-Marquarbt back
propagation, the adaptation learning function is "trains" sequential order incremental
update, and the performance function is the sum-squared error.

Particle Swarm Optimization

44

Figure 13. The flow chart of the optimization process

Swarm Intelligence Applications in Electric Machines

45

4.3 Comparison Between Classical and the Neural Network Controller for DTC
Simulations have been performed for the above mentioned 10 Hp induction motor to
compare between the classical and the neural network controller for direct torque controlled
IM. For classical DTC the results have been obtained for flux and torque hysteresis band
amplitude equal to 2 %. In neural network Controller the above flux and torque neural
networks are used to set the optimal hysteresis bands. Fig. 14 and Fig. 15 show the
simulation results for the classical and the neural network controller respectively for a test
run that covers wide operating range. It is clear that, the proposed scheme achieves a
considerable reduction in inverter switching loss, motor harmonic loss, and motor torque
ripple of the direct torque controlled induction motor drives compared to the
Classical DTC. Table 4 shows the comparison between classical DTC and NN DTC

Table 4. Comparison between classical and NN controller for DTC

Figure 14. The classical direct torque controlled IM simulation results

Particle Swarm Optimization

46

Figure 15. The neural network direct torque controlled IM simulation results

Finally, the DTC control strategy with variable hysteresis bands, which improves the drive
performance compared to the classical DTC, is proposed. Particle swarm optimization is
used offline to minimize a cost function that represents the effect of the hysteresis band on
the inverter switching loss, motor harmonic loss and motor torque ripples at different
operating conditions. Online operating ANNs use the offline optimum values obtained by
PSO, to decide the suitable hysteresis bands based on the current operating condition.
Simulation results indicate the validity of the proposed scheme in achieving better
performance of the drive system in a wide operating range.

5. Index I
List of principal symbols

ωe : synchronous speed
ωr : rotor speed
p : differential operator
rm , ra : main, auxiliary stator windings resistance
rr : rotor winding resistance
Rfeq,d : equivalent iron-loss resistance(d and q axis)
Llm ,Lla : main, auxiliary stator leakage inductance

Swarm Intelligence Applications in Electric Machines

47

Lmd ,Lm q : magnetizing inductance (d& q axis)
Llr : rotor leakage inductance
K : turns ratio auxiliary/main windings
Te : electromagnetic torque
J : inertia of motor
λds,qs : stator flux(d and q axis)
λdr,qr : rotor flux(d and q axis)
Vds,qs : stator voltage (d and q axis)
ids,qs : stator current (d and q axis)
M : mutual inductance

6. References
A. M. A. Amin, M. I. Korfally, A. A. Sayed, and O.T. M.Hegazy, Losses Minimization of

Two Asymmetrical Windings Induction Motor Based on Swarm Intelligence,
Proceedings of IEEE- IECON 06 , pp 1150 – 1155, Paris , France , Nov. 2006 . [1]

A. M. A. Amin, M. I. Korfally, A. A. Sayed, and O.T. M.Hegazy, Swarm Intelligence-Based
Controller of Two-Asymmetrical Windings Induction Motor, accepted for IEEE.
EMDC07, pp 953 –958, Turkey, May 2007. [2]

M. Popescu, A. Arkkio, E. Demeter, D. Micu, V. Navrapescu. Development of an inverter
fed two-phase variable speed induction motor drive, in Conference Records of
PEMC‘98, pp.4-132 - 4-136 Sept. 1998, Prague, Czech Republic ISBN–80-01-01832-6.
[3]

Ahmed A. A. Esmin, Germano Lambert-Torres, and Antônio C. Zambroni de Souza, A
Hybrid Particle Swarm Optimization Applied to Loss Power Minimization IEEE
Transactions on Power Systems, Vol. 20, No. 2, May 2005. [4]

Radwan H. A. Hamid, Amr M. A. Amin, Refaat S. Ahmed, and Adel A. A. El-Gammal,
New Technique For Maximum Efficiency And Minimum Operating Cost Of
Induction Motors Based On Particle Swarm Optimization (PSO), Proceedings of
IEEE- IECON 06 , pp 1029 – 1034, Paris , France , Nov. 2006. [5]

Zhao, B.; Guo, C.X.; Cao, Y.J.; A Multiagent-Based Particle Swarm Optimization Approach
For Optimal Reactive Power Dispatch,Power Systems, IEEE Transactions on Volume
20, Issue 2, May 2005 Page(s):1070 – 1078. [6]

Cui Naxin; Zhang Chenghui; Zhao Min; Optimal Efficiency Control Of Field-Oriented
Induction Motor Drive And Rotor Resistance Adaptive Identifying, Power
Electronics and Motion Control Conference, 2004. IPEMC 2004. The 4th International
Volume 1, 2004. [7]

Chakraborty, C.; Hori, Y.; Fast Efficiency Optimization Techniques for the Indirect Vector-
Controlled Induction Motor Drives, Industry Applications, IEEE Transactions on,
Volume: 39, Issue: 4, July-Aug. 2003 Pages: 1070 – [8]

O. S. El-Laban, H. A. Abdel Fattah, H. M. Emara, and A. F. Sakr, Particle Swarm
Optimized Direct Torque Control of Induction Motors, Proceedings of IEEE- IECON
06 , pp 1586 – 1591, Paris , France , Nov. 2006 . [9]

Particle Swarm Optimization

48

S. Kaboli, M.R. Zolghadri and A. Emadi, Hysteresis Band Determination of Direct Torque
Controlled Induction Motor Drives with Torque Ripple and Motor-Inverter Loss
Considerations. Proceeding of the 34th IEEE Power Electronics Specialists Conference,
PESC03, June 2003, pp. 1107,1111. [10]

S. Kaboli, M.R. Zolghadri, S. Haghbin and A. Emadi, Torque Ripple Minimization in DTC of
Induction Motor Based on Optimized Flux value Determination, Proceeding of 29th
Conference of IEEE Industrial Electronics Society IECON03, pp.431-435. [11]

3

Particle Swarm Optimization for HW/SW
Partitioning

M. B. Abdelhalim and S. E. –D. Habib
Electronics and Communications Department, Faculty of Engineering - Cairo University

Egypt

1. Introduction

Embedded systems typically consist of application specific hardware parts and
programmable parts, e.g. processors like DSPs, core processors or ASIPs. In comparison to
the hardware parts, the software parts are much easier to develop and modify. Thus,
software is less expensive in terms of costs and development time. Hardware, however,
provides better performance. For this reason, a system designer's goal is to design a system
fulfilling all system constraints. The co-design phase, during which the system specification
is partitioned onto hardware and programmable parts of the target architecture, is called
Hardware/Software partitioning. This phase represents one key issue during the design
process of heterogeneous systems. Some early co-design approaches [Marrec et al. 1998,
Cloute et al. 1999] carried out the HW/SW partitioning task manually. This manual
approach is limited to small design problems with small number of constituent modules.
Additionally, automatic Hardware/Software partitioning is of large interest because the
problem itself is a very complex optimization problem.
Varieties of Hardware/Software partitioning approaches are available in the literature.
Following Nieman [1998], these approaches can be distinguished by the following aspects:
1. The complexity of the supported partitioning problem, e.g. whether the target

architecture is fixed or optimized during partitioning.
2. The supported target architecture, e.g. single-processor or multi-processor, ASIC or

FPGA-based hardware.
3. The application domain, e.g. either data-flow or control-flow dominated systems.
4. The optimization goal determined by the chosen cost function, e.g. hardware

minimization under timing (performance) constraints, performance maximization
under resource constraints, or low power solutions.

5. The optimization technique, including heuristic, probabilistic or exact methods,
compared by computation time and the quality of results.

6. The optimization aspects, e.g. whether communication and/or hardware sharing are
taken into account.

7. The granularity of the pieces for which costs are estimated for partitioning, e.g. granules
at the statement, basic block, function, process or task level.

8. The estimation method itself, whether the estimations are computed by special
estimation tools or by analyzing the results of synthesis tools and compilers.

Particle Swarm Optimization

50

9. The cost metrics used during partitioning, including cost metrics for hardware
implementations (e.g. execution time, chip area, pin requirements, power consumption,
testability metrics), software cost metrics (e.g. execution time, power consumption,
program and data memory usage) and interface metrics (e.g. communication time or
additional resource-power costs).

10. The number of these cost metrics, e.g. whether only one hardware solution is
considered for each granule or a complete Area/Time curve.

11. The degree of automation.
12. The degree of user-interaction to exploit the valuable experience of the designer.
13. The ability for Design-Space-Exploration (DSE) enabling the designer to compare

different partitions and to find alternative solutions for different objective functions in
short computation time.

In this Chapter, we investigate the application of the Particle Swarm Optimization (PSO)
technique for solving the Hardware/Software partitioning problem. The PSO is attractive
for the Hardware/Software partitioning problem as it offers reasonable coverage of the
design space together with O(n) main loop's execution time, where n is the number of
proposed solutions that will evolve to provide the final solution.
This Chapter is an extended version of the authors’ 2006 paper [Abdelhalim et al. 2006]. The
organization of this chapter is as follows: In Section 2, we introduce the HW/SW
partitioning problem. Section 3 introduces the Particle Swarm Optimization formulation for
HW/SW Partitioning problem followed by a case study. Section 4 introduces the technique
extensions, namely, hardware implementation alternatives, HW/SW communications
modeling, and fine tuning algorithm. Finally, Section 5 gives the conclusions of our work.

2. HW/SW Partitioning
The most important challenge in the embedded system design is partitioning; i.e. deciding
which components (or operations) of the system should be implemented in hardware and
which ones in software. The granularity of each component can be a single instruction, a
short sequence of instructions, a basic block or a function (procedure). To clarify the
HW/SW partitioning problem, let us represent the system by a Data Flow Graph (DFG) that
defines the sequencing of the operations starting from the input capture to the output
evaluation. Each node in this DFG represents a component (or operation). Implementing a
given component in HW or in SW implies different delay/ area/ power/ design-time/
time-to-market/ … design costs. The HW/SW partitioning problem is, thus, an
optimization problem where we seek to find the partition (an assignment vector of each
component to HW or SW) that minimizes a user-defined global cost function (or functions)
subject to given area/ power/ delay …constraints. Finding an optimal HW/SW partition is
hard because of the large number of possible solutions for a given granularity of the
“components” and the many different alternatives for these granularities. In other words,
the HW/SW partitioning problem is hard since the design (search) space is typically huge.
The following survey overviews the main algorithms used to solve the HW/SW partitioning
problem. However, this survey is by no means comprehensive.
Traditionally, partitioning was carried out manually as in the work of Marrec et al. [1998]
and Cloute et al. [1999]. However, because of the increase of complexity of the systems,
many research efforts aimed at automating the partitioning as much as possible. The
suggested partition approaches differ significantly according to the definition they used to

Particle Swarm Optimization for HW/SW Partitioning

51

the problem. One of the main differences is whether to include other tasks (such as scheduling
where starting times of the components should be determined) as in Lopez-Vallejo et al [2003]
and in Mie et al. [2000], or just map components to hardware or software only as in the work
of Vahid [2002] and Madsen et al [1997]. Some formulations assign communication events to
links between hardware and/or software units as in Jha and Dick [1998]. The system to be
partitioned is generally given in the form of task graph, the graph nodes are determined by the
model granularity, i.e. the semantic of a node. The node could represent a single instruction,
short sequence of instructions [Stitt et al. 2005], basic block [Knudsen et al. 1996], a function or
procedure [Ditzel 2004, and Armstrong et al. 2002]. A flexible granularity may also be used
where a node can represent any of the above [Vahid 2002; Henkel and Ernst 2001]. Regarding
the suggested algorithms, one can differentiate between exact and heuristic methods. The
proposed exact algorithms include, but are not limited to, branch-and-bound [Binh et al 1996],
dynamic programming [Madsen et al. 1997], and integer linear programming [Nieman 1998;
Ditzel 2004]. Due to the slow performance of the exact algorithms, heuristic-based algorithms
are proposed. In particular, Genetic algorithms are widely used [Nieman 1998; Mann 2004] as
well as simulated annealing [Armstrong et al 2002; Eles et al. 1997], hierarchical clustering
[Eles et al. 1997], and Kernighan-Lin based algorithms such as in [Mann 2004]. Less popular
heuristics are used such as Tabu search [Eles et al. 1997] and greedy algorithms [Chatha and
Vemuri 2001]. Some researchers used custom heuristics, such as Maximum Flow-Minimum
Communications (MFMC) [Mann 2004], Global Criticality/Local Phase (GCLP) [Kalavade and
Lee 1994], process complexity [Adhipathi 2004], the expert system presented in [Lopez-Vallejo
et al. 2003], and Balanced/Unbalanced partitioning (BUB) [Stitt 2008].
The ideal Hardware/Software partitioning tool produces automatically a set of high-quality
partitions in a short, predictable computation time. Such tool would also allow the designer to
interact with the partitioning algorithm.
De Souza et al. [2003] propose the concepts of ”quality requisites” and a method based on
Quality Function Deployment (QFD) as references to represent both the advantages and
disadvantages of existing HW/SW partitioning methods, as well as, to define a set of features
for an optimized partitioning algorithm. They classified the algorithms according to the
following criterion:
1. Application domain: whether they are "multi-domain" (conceived for more than one or

any application domain, thus not considering particularities of these domains and being
technology-independent) or "specific domain" approaches.

2. The target architecture type.
3. Consideration for the HW-SW communication costs.
4. Possibility of choosing the best implementation alternative of HW nodes.
5. Possibility of sharing HW resources among two or more nodes.
6. Exploitation of HW-SW parallelism.
7. Single-mode or multi-mode systems with respect to the clock domains.
In this Chapter, we present the use of the Particle Swarm Optimization techniques to solve the
HW/SW partitioning problem. The aforementioned criterions will be implicitly considered
along the algorithm presentation.

3. Particle swarm optimization
Particle swarm optimization (PSO) is a population based stochastic optimization technique
developed by Eberhart and Kennedy in 1995 [Kennedy and Eberhart 1995; Eberhart and

Particle Swarm Optimization

52

Kennedy 1995; Eberhart and Shi 2001]. The PSO algorithm is inspired by social behavior of
bird flocking, animal hording, or fish schooling. In PSO, the potential solutions, called
particles, fly through the problem space by following the current optimum particles. PSO
has been successfully applied in many areas. A good bibliography of PSO applications could
be found in the work done by Poli [2007].

3.1 PSO algorithm
As stated before, PSO simulates the behavior of bird flocking. Suppose the following
scenario: a group of birds is randomly searching for food in an area. There is only one piece
of food in the area being searched. Not all the birds know where the food is. However,
during every iteration, they learn via their inter-communications, how far the food is.
Therefore, the best strategy to find the food is to follow the bird that is nearest to the food.
PSO learned from this bird-flocking scenario, and used it to solve optimization problems. In
PSO, each single solution is a "bird" in the search space. We call it "particle". All of particles
have fitness values which are evaluated by the fitness function (the cost function to be
optimized), and have velocities which direct the flying of the particles. The particles fly
through the problem space by following the current optimum particles.
PSO is initialized with a group of random particles (solutions) and then searches for optima
by updating generations. During every iteration, each particle is updated by following two
"best" values. The first one is the position vector of the best solution (fitness) this particle has
achieved so far. The fitness value is also stored. This position is called pbest. Another "best"
position that is tracked by the particle swarm optimizer is the best position, obtained so far,
by any particle in the population. This best position is the current global best and is called
gbest.
After finding the two best values, the particle updates its velocity and position according to
equations (1) and (2) respectively.

)xgbest(rc)xpbest(rcwvv i
kk22

i
k

i
11

i
k

i
1k −+−+=+ (1)

 i
1k

i
k

i
1k vxx ++ += (2)

where i
kv is the velocity of ith particle at the kth iteration, i

kx is current the solution (or
position) of the ith particle. r1 and r2 are random numbers generated uniformly between 0
and 1. c1 is the self-confidence (cognitive) factor and c2 is the swarm confidence (social)
factor. Usually c1 and c2 are in the range from 1.5 to 2.5. Finally, w is the inertia factor that
takes linearly decreasing values downward from 1 to 0 according to a predefined number of
iterations as recommended by Haupt and Haupt [2004].
The 1st term in equation (1) represents the effect of the inertia of the particle, the 2nd term
represents the particle memory influence, and the 3rd term represents the swarm (society)
influence. The flow chart of the procedure is shown in Fig. 1.
The velocities of the particles on each dimension may be clamped to a maximum velocity
Vmax, which is a parameter specified by the user. If the sum of accelerations causes the
velocity on that dimension to exceed Vmax, then this velocity is limited to Vmax [Haupt and
Haupt 2004]. Another type of clamping is to clamp the position of the current solution to a
certain range in which the solution has valid value, otherwise the solution is meaningless
[Haupt and Haupt 2004]. In this Chapter, position clamping is applied with no limitation on
the velocity values.

Particle Swarm Optimization for HW/SW Partitioning

53

Figure 1. PSO Flow chart

3.2 Comparisons between GA and PSO
The Genetic Algorithm (GA) is an evolutionary optimizer (EO) that takes a sample of
possible solutions (individuals) and employs mutation, crossover, and selection as the
primary operators for optimization. The details of GA are beyond the scope of this chapter,
but interested readers can refer to Haupt and Haupt [2004]. In general, most of evolutionary
techniques have the following steps:

1. Random generation of an initial population.
2. Reckoning of a fitness value for each subject. This fitness value depends directly on

the distance to the optimum.
3. Reproduction of the population based on fitness values.
4. If requirements are met, then stop. Otherwise go back to step 2.

From this procedure, we can learn that PSO shares many common points with GA. Both
algorithms start with a group of randomly generated population and both algorithms have
fitness values to evaluate the population, update the population and search for the optimum
with random techniques, and finally, check for the attainment of a valid solution.
On the other hand, PSO does not have genetic operators like crossover and mutation. Particles
update themselves with the internal velocity. They also have memory, which is important to
the algorithm (even if this memory is very simple as it stores only pbesti and gbestk positions).

Particle Swarm Optimization

54

Also, the information sharing mechanism in PSO is significantly different: In GAs,
chromosomes share information with each other. So the whole population moves like one
group towards an optimal area even if this move is slow. In PSO, only gbest gives out the
information to others. It is a one-way information sharing mechanism. The evolution only
looks for the best solution. Compared with GA, all the particles tend to converge to the best
solution quickly in most cases as shown by Eberhart and Shi [1998] and Hassan et al. [2004].
When comparing the run-time complexity of the two algorithms, we should exclude the
similar operations (initialization, fitness evaluation, and termination) form our comparison.
We exclude also the number of generations, as it depends on the optimization problem
complexity and termination criteria (our experiments in Section 3.4.2 indicate that PSO needs
lower number of generations than GA to reach a given solution quality). Therefore, we focus
our comparison to the main loop of the two algorithms. We consider the most time-consuming
processes (recombination in GA as well as velocity and position update in PSO).
For GA, if the new generation replaces the older one, the recombination complexity is O(q),
where q is group size for tournament selection. In our case, q equals the Selection rate*n,
where n is the size of population. However, if the replacement strategy depends on the
fitness of the individual, a sorting process is needed to determine which individuals to be
replaced by which new individuals. This sorting is important to guarantee the solution
quality. Another sorting process is needed any way to update the rank of the individuals at
the end of each generation. Note that the quick sorting complexity ranges from O(n2) to
O(nlog2 n) [Jensen 2003, Harris and Ross 2006].
In the other hand, for PSO, the velocity and position update processes complexity is O(n) as
there is no need for pre-sorting. The algorithm operates according to equations (1) and (2)
on each individual (particle) [Rodriguez et al. 2008].
From the above discussion, GA's complexity is larger than that of PSO. Therefore, PSO is
simpler and faster than GA.

3.3 Algorithm Implementation
The PSO algorithm is written in the MATLAB program environment. The input to the
program is a design that consists of the number of nodes. Each node is associated with cost
parameters. For experimental purpose, these parameters are randomly generated. The used
cost parameters are:
A Hardware implementation cost: which is the cost of implementing that node in hardware
(e.g. number of gates, area, or number of logic elements). This hardware cost is uniformly
and randomly generated in the range from 1 to 99 [Mann 2004].
A Software implementation cost: which is the cost of implementing that node in software
(e.g. execution delay or number of clock cycles). This software cost is uniformly and
randomly generated in the range from 1 to 99 [Mann 2004].
A Power implementation cost: which is the power consumption if the node is implemented
in hardware or software. This power cost is uniformly and randomly generated in the range
from 1 to 9. We use a different range for Power consumption values to test the addition of
other cost terms with different range characteristics.
Consider a design consisting of m nodes. A possible solution (particle) is a vector of m
elements, where each element is associated to a given node. The elements assume a “0”
value (if node is implemented in software) or a “1” value (if the node is implemented in
hardware). There are n initial particles; the particles (solutions) are initialized randomly.

Particle Swarm Optimization for HW/SW Partitioning

55

The velocity of each node is initialized in the range from (-1) to (1), where negative velocity
means moving the particle toward 0 and positive velocity means moving the particle toward
1.
For the main loop, equations (1), (2) are evaluated in each loop. If the particle goes outside
the permissible region (position from 0 to 1), it will be kept on the nearest limit by the
aforementioned clamping technique.
The cost function is called for each particle, the used cost function is a normalized weighted
sum of the hardware, software, and power cost of each particle according to equation (3).

⎭
⎬
⎫

⎩
⎨
⎧ γ+β+α=

tcosallPOWER
tcosPOWER

tcosallSW
tcosSW

tcosallHW
tcosHW*100Cost (3)

where allHWcost (allSWcost) is the Maximum Hardware (Software) cost when all nodes
are mapped to Hardware (Software), and allPOWERcost is the average of the power cost of
all-Hardware solution and all-Software solution. α, β, and γ are weighting factors. They are
set by the user according to his/her critical design parameters. For the rest of this chapter,
all the weighting factors are considered equal unless otherwise mentioned. The
multiplication by 100 is for readability only.
The HWCost (SWCost) term represent the cost of the partition implemented in hardware
(software), it could represent the area and the delay of the partition (the area and the delay
of the software partition). However, the software cost has a fixed (CPU area) term that is
independent on the problem size.
The weighted sum of normalized metrics is a classical approach to transform Multi-objective
Optimization problems into a single objective optimization [Donoso and Fabregat 2007]
The PSO algorithm proceeds according to the flow chart shown in Fig. 1. For simplicity, the
cost value could be considered as the inverse of the fitness where good solutions have low
cost values.
According to equations (1) and (2), the particle nodes values could take any value between 0
and 1. However, as a discrete, i.e. binary, partitioning problem, the nodes values must take
values of 1 or 0. Therefore, the position value is rounded to the nearest integer [Hassan et al.
2004].
The main loop is terminated when the improvement in the global best solution gbest for the
last number iterations is less than a predefined value (ε). The number of these iterations and
the value of (ε) are user controlled parameters.
For GA parameters, the most important parameters are:

• Selection rate which is the percentage of the population members that are kept
unchanged while the others go under the crossover operators.

• Mutation rate which is the percentage of the population that undergo the gene
alteration process after each generation.

• The mating technique which determines the mechanism of generating new
children form the selected parents.

3.4 Results

3.4.1 Algorithms parameters
The following experiments are performed on a Pentium-4 PC with 3GHz processor speed, 1
GB RAM and WinXP operating system. The experiments were performed using MATLAB 7

Particle Swarm Optimization

56

program. The PSO results are compared with the GA. Common parameters between the two
algorithms are as follows:
No. of particles (Population size) n = 60, design size m = 512 nodes, ε = 100 * eps, where eps
is defined in MATLAB as a very small (numerical resolution) value and equals 2.2204*10-16
[Hanselman and Littlefield 2001].
For PSO, c1 = c2 = 2, w starts at 1 and decreases linearly until reaching 0 after 100 iterations.
Those values are suggested in [Shi and Eberhart 1998; Shi and Eberhart 1999; Zheng et al.
2003].
To get the best results for GA, the parameters values are chosen as suggested in [Mann 2004;
Haupt and Haupt 2004] where Selection rate = 0.5, Mutation rate = 0.05 , and The mating is
performed using randomly selected single point crossover.
The termination criterion is the same for both PSO and GA. The algorithm stops after 50
unchanged iterations, but at least 100 iterations must be performed to avoid quick
stagnation.

3.4.2 Algorithm results
Figures 2 and 3 shows the best cost as well as average population cost of GA and PSO
respectively.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0
1 3 0

1 3 5

1 4 0

1 4 5

1 5 0

1 5 5
H W / S W p a rt i t io n in g u s in g G A

G e n e ra t io n

C
os

t

B e s t
P o p u la t io n A ve ra g e

Figure 2. GA Solution

As shown in the figures, the initialization is the same, but at the end, the best cost of GA is
143.1 while for PSO it is 131.6. This result represents around 8% improvement in the result
quality in favor of PSO. Another advantage of PSO is its performance (speed), as it
terminates after 0.609 seconds while GA terminates after 0.984 seconds. This result
represents around 38% improvement in performance in favor of PSO.
The results vary slightly from one run to another due to the random initialization. Hence,
decisions based on a single run are doubtful. Therefore, we ran the two algorithms 100 times
for the same input and took the average of the final costs. We found the average best cost of
GA is 143 and it terminates after 155 seconds, while for the PSO the average best cost was
131.6 and it terminates after 110.6 seconds. Thus, there are 8% improvement in the result
quality and 29% speed improvement.

Particle Swarm Optimization for HW/SW Partitioning

57

0 20 40 60 80 100 120
130

135

140

145

150

155

Generation

C
os

t

HW/SW partitioning using PSO

Best
Population average
Global Best

Figure 3. PSO Solution

3.4.3 Improved Algorithms.
To further enhance the quality of the results, we tried cascading two runs of the same
algorithm or of different algorithms. There are four possible cascades of this type: GA
followed by another GA run (GA-GA algorithm), GA followed by PSO run (GA – PSO
algorithm), PSO followed by GA run (PSO-GA algorithm), and finally PSO followed by
another PSO run (PSO-PSO algorithm). For these cascaded algorithms, we kept the
parameters values the same as in the Section 3.4.1.
Only the last combination, PSO-PSO algorithm proved successful. For GA-GA algorithm,
the second GA run is initialized with the final results of the first GA run. This result can be
explained as follows. When the population individuals are similar, the crossover operator
yields no improvements and the GA technique depends on the mutation process to escape
such cases, and hence, it slowly escapes local minimums. Therefore, cascading several GA
runs takes a very long time to yield significant improvement in results.
The PSO-GA algorithm did not fair any better. This negative result can be explained as
follows. At the end of the first PSO run, the whole swarm particles converge around a
certain point (solution) as shown in Fig. 3. Thus, the GA is initialized with population
members of close fitness with small or no diversity. In fact, this is a poor initialization of the
GA, and hence it is not expected to improve the PSO results of the first step of this algorithm
significantly. Our numerical results confirmed this conclusion
The GA-PSO algorithm was not also successful. Figures 4 and 5 depict typical results for this
algorithm. PSO starts with the final solutions of the GA stage (The GA best output cost is
~143, and the population final average is ~147) and continues the optimization until it
terminates with a best output cost equals ~132. However, this best output cost value is
achieved by PSO alone as shown in Fig. 3. This final result could be explained as the PSO
behavior is not strongly dependent on the initial particles position obtained by GA due to
the random velocities assigned to the particles at the beginning of PSO phase. Notice that, in
Fig. 5, the cost increases at the beginning due to the random velocities that force the particles
to move away from the positions obtained by GA phase.

Particle Swarm Optimization

58

0 50 100 150
130

132

134

136

138

140

142

144

146

148

150

152
HW /S W part it ioning us ing G A

G eneration

C
os

t

B est
P opula tion A verage

Figure 4. GA output of GA-PSO

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0
1 3 0

1 3 2

1 3 4

1 3 6

1 3 8

1 4 0

1 4 2

1 4 4

1 4 6

1 4 8

1 5 0

1 5 2

G e n e r a t i o n

C
os

t

H W / S W p a r t i t i o n in g u s in g P S

B e s t
P o p u la t i o n A v e r a g e
G lo b a l B e s t

Figure 5. PSO output of GA-PSO

3.4.4 Re-exited PSO algorithm.
As the PSO proceeds, the effect of the inertia factor (w) is decreased until reaching 0.
Therefore, i

1kv + at the late iterations depends only on the particle memory influence and the
swarm influence (2nd and 3rd terms in equation (1)). Hence, the algorithm may give non-
global optimum results. A hill-climbing algorithm is proposed, this algorithm is based on
the assumption that if we take the run's final results (particles positions) and start allover
again with (w) = 1 and re-initialize the velocity (v) with new random values, and keeping
the pbest and gbest vectors in the particles memories, the results can be improved. We
found that the result quality is improved with each new round until it settles around a
certain value. Fig. 6 plots the best cost in each round. The curve starts with cost ~133 and
settles at round number 30 with cost value ~116.5 which is significantly below the results
obtained in the previous two subsections (about 15% quality improvement). The program

Particle Swarm Optimization for HW/SW Partitioning

59

performed 100 rounds, but it could be modified to stop earlier by using a different
termination criterion (i.e. if the result remains unchanged for a certain number of rounds).

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
1 1 6

1 1 8

1 2 0

1 2 2

1 2 4

1 2 6

1 2 8

1 3 0

1 3 2

1 3 4

R o u n d

B
es

t C
os

t

H W / S W p a r t i t i o n i n g u s in g r e - e x c i t e d P S O

Figure 6. Successive improvements in Re-excited PSO

As the new algorithm depends on re-exciting new randomized particle velocities at the
beginning of each round, while keeping the particle positions obtained so far, it allows
another round of domain exploration. We propose to name this successive PSO algorithm as
the Re-excited PSO algorithm. In nature, this algorithm looks like giving the birds a big
push after they are settled in their best position. This push re-initializes the inertia and
speed of the birds so they are able to explore new areas, unexplored before. Hence, if the
birds find a better place, they will go there, otherwise they will return back to the place from
where they were pushed.
The main reason of the advantage of re-excited PSO over successive GA is as follows: The
PSO algorithm is able to switch a single node from software to hardware or vice versa
during a single iteration. Such single node flipping is difficult in GA as the change is done
through crossover or mutation. However, crossover selects large number of nodes in one
segment as a unit of operation. Mutation toggles the value of a random number of nodes. In
either case, single node switching is difficult and slow.
This re-excited PSO algorithm can be viewed as a variant of the re-start strategies for PSO
published elsewhere. However, our re-excited PSO algorithm is not identical to any of these
previously published re-starting PSO algorithms as discussed below.
In Settles and Soule [2003], the restarting is done with the help of Genetic Algorithm
operators, the goal is to create two new child particles whose position is between the parents
position, but accelerated away from the current direction to increase diversity. The
children’s velocity vectors are exchanged at the same node and the previous best vector is
set to the new position vector, effectively restarting the children’s memory. Obviously, our
restarting strategy is different in that it depends on pure PSO operators.
In Tillett et al. [2005], the restarting is done by spawning a new swarm when stagnation
occurs, i.e. the swarm spawns a new swarm if a new global best fitness is found. When a
swarm spawns a new swarm, the spawning swarm (parent) is unaffected. To form the
spawned (child) swarm, half of the children particles are randomly selected from the parent
swarm and the other half are randomly selected from a random member of the swarm
collection (mate). Swarm creation is suppressed when there are large numbers of swarms in

Particle Swarm Optimization

60

existence. Obviously, our restarting strategy is different in that it depends on a single
swarm.
In Pasupuleti and Battiti [2006], the Gregarious PSO or G-PSO, the population is attracted by
the global best position and each particle is re-initialized with a random velocity if it is stuck
close to the global best position. In this manner, the algorithm proceeds by aggressively and
greedily scouting the local minima whereas Basic-PSO proceeds by trying to avoid them.
Therefore, a re-initialization mechanism is needed to avoid the premature convergence of
the swarm. Our algorithm differs than G-PSO in that the re-initialization strategy depends
on the global best particle not on the particles that stuck close to the global best position
which saves a lot of computations needed to compare each particle position with the global
best one.
Finally, the re-start method of Van den Bergh [2002], the Multi-Start PSO (MPSO), is the
nearest to our approach, except that when the swarm converges to a local optima. The
MPSO records the current position and re-initialize the positions of the particles. The
velocities are not re-initialized as MPSO depends on a different version of the velocity
equation that guarantees that the velocity term will never reach zero. The modified
algorithm is called Guaranteed Convergence PSO (GCPSO). Our algorithm differs in that we
use the velocity update equation defined in Equation (1) and our algorithm re-initializes the
velocity and the inertia of the particles but not the positions at the restart.

3.5 Quality and Speed Comparison between GA, PSO, and re-excited PSO
For the sake of fair comparison, we assumed that we have different designs where their
sizes range from 5 nodes to 1020 nodes. We used the same parameters as described in
previous experiments and we ran the algorithms on each design size 10 times and took the
average results. Another stopping criterion is added to the re-excited PSO where it stops
when the best result is the same for the last 10 rounds. Fig. 7 represents the design quality
improvement of PSO over GA, re-excited PSO over GA, and re-excited PSO over PSO. We
noticed that when the design size is around 512, the improvement is about 8% which
confirms the quality improvement results obtained in Section 3.4.2.

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

Q
ua

lit
y

Im
pr

ov
em

en
t

Design Size in Nodes

PSO over GA
Re-excited PSO over GA
Re-excited PSO over PSO

Figure 7. Quality improvement

Particle Swarm Optimization for HW/SW Partitioning

61

0 100 200 300 400 500 600 700 800 900 1000
-30

-20

-10

0

10

20

30

40

50

60

70

Design Size in Nodes

S
pe

ed
 Im

pr
ov

em
en

t

Figure 8. Speed improvement

Fig. 8 represents the performance (speed) improvement of PSO over GA (original and fitted
curve, the curve fitting is done using MATLAB Basic Fitting tool). Re-excited PSO is not
included as it depends on multi-round scheme where it starts a new round internally when
the previous round terminates, while GA and PSO runs once and produces their outputs
when a termination criterion is met.
It is noticed that in a few number of points in Fig. 8, the speed improvement is negative
which means that GA finishes before PSO, but the design quality in Fig. 7 does not show
any negative values. Fig. 7 also shows that, on the average, PSO outperforms GA by a ratio
of 7.8% improvements in the result quality and Fig. 8 shows that, on the average, PSO
outperforms GA by a ratio 29.3% improvement in speed.
On the other hand, re-excited PSO outperforms GA by an average ratio of 17.4% in design
quality, and outperforms normal PSO by an average ratio of 10.5% in design quality.
Moreover, Fig. 8 could be divided into three regions. The first region is the small size
designs region (lower than 400 nodes) where the speed improvement is large (from 40% to
60%). The medium size design region (from 400 to 600 nodes) depicts an almost linear
decrease in the speed improvement from 40% to 10%. The large size design region (bigger
than 600 nodes) shows an almost constant (around 10%) speed improvement, with some
cases where GA is faster than PSO. Note that most of the practical real life HW/SW
partitioning problems belong to the first region where the number of nodes < 400.

3.6 Constrained Problem Formulation

3.6.1 Constraints definition and violation handling
In embedded systems, the constraints play an important role in the success of a design, where
hard constraints mean higher design effort and therefore a high need for automated tools to
guide the designer in critical design decisions. In most of the cases, the constraints are mainly the
software deadline times (for real-time systems) and the maximum available area for hardware.
For simplicity, we will refer to them as software constraint and hardware constraint respectively.
Mann [2004] divided the HW/SW partitioning problem into 5 sub-problems (P1 – P5). The
unconstrained problem (P5) is discussed in Section 3.3. The P1 problem involves with both

Particle Swarm Optimization

62

Hardware and Software constraints. The P2 (P3) problem deals with hardware (software)
constrained designs. Finally, the P4 problem minimizes HW/SW communications cost while
satisfying hardware and software constraints. The constraints affect directly the cost
function. Hence, equation (3) should be modified to account for constraints violations.
In Lopez-Vallejo et al. [2003] three different techniques are suggested for the cost function
correction and evaluation:
Mean Square Error minimization: This technique is useful for forcing the solution to meet
certain equality, rather than inequality, constraints. The general expression for Mean Square
Error based cost function is:

2

i

2
ii

ii
constraint

)constraint(cost
*k MSE_cost

−
= (4)

where constrainti is the constraint on parameter i and ki is a weighting factor. The costi is the
parameter cost function. costi is calculated using the associated term (i.e. area or delay) of
the general cost function (3).
Penalty Methods: These methods punish the solutions that produce medium or large
constraints violations, but allow invalid solutions close to the boundaries defined by the
constraints to be considered as good solutions [Lopez-Vallejo et al. 2003]. The cost function
in this case is formulated as:

 ∑ ∑+=
i ci

ci
i

i
i)x,ci(viol*k

tcosTotal
)x(tcos

*k)x(Cost (5)

where x is the solution vector to be evaluated, ki and kci are weighting factors (100 in our
case). i denotes the design parameters such as: area, delay, power consumption, etc., ci
denotes a constrained parameter, and viol(ci,x) is the correction function of the constrained
parameters. viol(ci,x) could be expressed in terms of the percentage of violation defined by :

⎪
⎪
⎩

⎪⎪
⎨

⎧

>
−

<

=
)ciint(constra)x(tcos

(ci)constraint
(ci)constraint)x(tcos

)ciint(constra)x(tcos0

 x)viol(ci,
i

i

i

 (6)

Lopez-Vallejo and Lopez et al. [2003] proposed to use the squared value of viol(ci,x).
The penalty methods have an important characteristic in which there might be invalid
solutions with better overall cost than valid ones. In other words, the invalid solutions are
penalized but could be ranked better than valid ones.
Barrier Techniques: These methods forbid the exploration of solutions outside the allowed
design-space. The barrier techniques rank the invalid solutions worse than the valid ones.
There are two common forms of the barrier techniques. The first form assigns a constant
high cost to all invalid solutions (for example infinity). This form is unable to differentiate
between near-barrier or far-barrier invalid solutions. it also needs to be initialized with at
least one valid solution, otherwise all the costs are the same (i.e. ∞) and the algorithm fails.
The other form, suggested in Mann [2004], assigns a constant-base barrier to all invalid
solutions. This base barrier could be a constant larger than maximum cost produced by any
valid solution. In our case for example, from equation (3), each cost term is normalized such
that its maximum value is one. Therefore, a good choice of the constant-base penalty is "one"
for each violation ("one" for hardware violation, "one" for software violation, and so on).

Particle Swarm Optimization for HW/SW Partitioning

63

3.6.2 Constraints modeling
In order to determine the best method to be adopted, a comparison between the penalty
methods (first order or second order percentage violation term) and the barrier methods
(infinity vs. constant-base barrier) is performed. The details of the experiments are not
shown here for the sake of brevity.
Our experiments showed that combining the constant-base barrier method with any penalty
method (first-order error or second-order error term) gives higher quality solutions and
guarantees that no invalid solutions beat valid ones. Hence, in the following experiments,
equation (7) will be used as the cost function form. Our experiments further indicate that the
second-order error penalty method gives a slight improvement over first-order one.
For double constraints problem (P1), generating valid initial solutions is hard and time
consuming, and hence, the barrier methods should be ruled out for such problems. When
dealing with single constraint problems (P2 and P3), one can use the Fast Greedy Algorithm
(FGA) proposed by Mann [2004] to generate valid initial solutions. FGA starts by assigning
all nodes to the unconstrained side. It then proceeds by randomly moving nodes to the
constrained side until the constraint is violated.

))ci(viol_Barrier)x,ci(viol_Penalty(k
tcosTotal
)x(tcos*k)x(Cost

i ci
ci

i

i
i ++=∑ ∑ (7)

3.6.3 Single constraint experiments
As P2 and P3 are treated the same in our formulation, we consider the software constrained
problem (P3) only. Two experiments were performed, the first one with relaxed constraint
where the deadline (Maximum delay) is 40% of all-Software solution delay, the second one
is a hard real-time system where the deadline is 15% of the all-Software solution delay. The
parameters used are the same as in Section 3.4. Fast Greedy Algorithm is used to generate
the initial solutions and re-excited PSO is performed for 10 rounds. In the cases of GA and
normal PSO only, all results are based on averaging the results of 100 runs.
For the first experiment; the average quality of the GA is ~ 137.6 while for PSO it is ~ 131.3,
and for re-excited PSO it is ~ 120. All final solutions are valid due to the initialization
scheme used (Fast Greedy Algorithm).
For the second experiment, the average quality of the solution of GA is ~ 147 while for PSO
it is ~ 137 and for re-excited PSO it is ~ 129.
The results confirm our earlier conclusion that the re-excited PSO again outperforms normal
PSO and GA, and that the normal PSO again outperforms GA.

3.6.4 Double constraints experiments
When testing P1 problems, the same parameters as the single-constrained case are used
except that FGA is not used for initialization. Two experiments were performed: balanced
constraints where maximum allowable hardware area is 45% of the area of the all-Hardware
solution and the maximum allowable software delay is 45% of the delay of the all-Software
solution. The other one is an unbalanced-constraints problem where maximum allowable
hardware area is 60% of area of the all-Hardware solution and the maximum allowable
software delay is 20% of the delay of the all-Software solution. Note that these constraints
are used to guarantee that at least a valid solution exists.

Particle Swarm Optimization

64

For the first experiment, the average quality of the solution of GA is ~ 158 and invalid
solutions are obtained during the first 22 runs out of xx total runs. The best valid solution
cost was 137. For PSO the average quality is ~ 131 with valid solutions during all the runs.
The best valid solution cost was 128.6. Finally for the re-excited PSO; the final solution
quality is 119.5. It is clear that re-excited PSO again outperforms both PSO and GA.
For the second experiment; the average quality of the solution of GA is ~ 287 and no valid
solution is obtained during the runs. Note that a constant penalty barrier of value 100 is
added to the cost function in the case of a violation. For PSO the average quality is ~ 251 and
no valid solution is obtained during the runs. Finally, for the re-excited PSO, the final
solution quality is 125 (As valid solution is found in the seventh round). This shows the
performance improvement of re-excited PSO over both PSO and GA.
Hence, for the rest of this Chapter, we will use the terms PSO and re-excited PSO
interchangeably to refer to the re-excited algorithm.

3.7 Real-Life Case Study

Figure 9. CDFG for JPEG encoding system [Lee et al. 2007c]

Particle Swarm Optimization for HW/SW Partitioning

65

To further validate the potential of PSO algorithm for HW/SW partitioning problem we
need to test it on a real-life case study, with a realistic cost function terrain. We also wanted
to verify our PSO generated solutions against a published “benchmark” design. The
HW/SW cost matrix for all the modules of such real life case study should be known. We
carried out a comprehensive literature search in search for such case study. Lee et al. [2007c]
provided such details for a case study of the well-known Joint Picture Expert Group (JPEG)
encoder system. The hardware implementation is written in "Verilog" description language,
while the software is written in "C" language. The Control-Data Flow Graph (CDFG) for this
implementation is shown in Fig. 9. The authors pre-assumed that the RGB to YUV converter
is implemented in SW and will not be subjected to the partitioning process. For more details
regarding JPEG systems, interested readers can refer to Jonsson [2005].
Table 1 shows measured data for the considered cost metrics of the system components.
Including such table in Lee et al. [2007c] allows us to compare directly our PSO search
algorithm with the published ones without re-estimating the HW or SW costs of the design
modules on our platform. Also, armed with this data, there is no need to re-implement the
published algorithms or trying to obtain them from their authors.

Execution Time Cost Percentage Power Consumption Component
HW(ns) SW(us) HW(10-3) SW(10-3) HW(mw) SW(mw)
155.264 9.38 7.31 0.58 4 0.096 Level Offset (FEa)
1844.822 20000 378 2.88 274 45 DCT (FEb)
1844.822 20000 378 2.88 274 45 DCT (FEc)
1844.822 20000 378 2.88 274 45 DCT (FEd)
3512.32 34.7 11 1.93 3 0.26 Quant (FEe)
3512.32 33.44 9.64 1.93 3 0.27 Quant (FEf)
3512.32 33.44 9.64 1.93 3 0.27 Quant (FEg)
5.334 0.94 2.191 0.677 15 0.957 DPCM (FEh)

399.104 13.12 35 0.911 61 0.069 ZigZag (FEi)
5.334 0.94 2.191 0.677 15 0.957 DPCM(FEj)

399.104 13.12 35 0.911 61 0.069 ZigZag (FEk)
5.334 0.94 2.191 0.677 15 0.957 DPCM (FEl)

399.104 13.12 35 0.911 61 0.069 ZigZag (FEm)
2054.748 2.8 7.74 14.4 5 0.321 VLC (FEn)
1148.538 43.12 2.56 6.034 3 0.021 RLE (FEo)
2197.632 2.8 8.62 14.4 5 0.321 VLC (FEp)
1148.538 43.12 2.56 6.034 3 0.021 RLE (FEq)
2197.632 2.8 8.62 14.4 5 0.321 VLC (FEr)
1148.538 43.12 2.56 6.034 3 0.021 RLE (FEs)
2668.288 51.26 19.21 16.7 6 0.018 VLC (FEt)
2668.288 50 1.91 16.7 6 0.018 VLC (FEu)
2668.288 50 1.91 16.7 6 0.018 VLC (FEv)

Table 1. Measured data for JPEG system

Particle Swarm Optimization

66

The data is obtained through implementing the hardware components targeting ML310
board using Xilinx ISE 7.1i design platform. Xilinx Embedded Design Kit (EDK 7.1i) is used
to measure the software implementation costs.
The target board (ML310) contains Virtex2-Pro XC2vP30FF896 FPGA device that contains
13696 programmable logic slices and 2448 Kbytes memory and two embedded IBM Power
PC (PPC) processor cores. In general, one slice approximately represents two 4-input Look-
Up Tables (LUTs) and two Flip-Flops [Xilinx 2007].
The first column in the table shows the component name (cf. Fig. 9) along with a character
unique to each component. The second and third columns show the power consumption in
mWatts for the hardware and software implementations respectively. The fourth column
shows the software cost in terms of memory usage percentage while the fifth column shows
the hardware cost in terms of slices percentage. The last two columns show the execution
time of the hardware and software implementations.
Lee et al. [2007c] also provided detailed comparison of their methodology with another four
approaches. The main problem is that the target architecture in Lee et al. [2007c] has two
processors and allows multi-processor partitioning while our target architecture is based on
a single processor. A slight modification in our cost function is performed that allows up to
two processors to run on the software part concurrently.
Equation (3) is used to model the cost function after adding the memory cost term as shown
in Equation (8)

⎭
⎬
⎫

⎩
⎨
⎧ η+γ+β+α=

tcosallMEM
tcosMEM

tcosallPOWER
tcosPOWER

tcosallSW
tcosSW

tcosallHW
tcosHW*100Cost (8)

The added memory cost term (MEMcost) and its weight factor (η) account for the memory
size (in bits). allMEMcost is the maximum size (upper-bound) of memory bits i.e., memory
size of all software solution.
Another modification to the cost function of Equation (8) is affected if the number of
multiprocessors is limited. Consider that we have only two processors. Thus, only two
modules can be assigned to the SW side at any control step. For example, in the step 3 of Fig.
9, no more than two DCT modules can be assigned to the SW side. The solution that assigns
the three DCT modules of this step to SW side is penalized by a barrier violation term of
value "one".
Finally, as more than one hardware component could run in parallel, the hardware delay is
not additive. Hence, we calculate the hardware delay by accumulation the maximum delay
of each control steps as shown in Fig. 9. In other words, we calculate the critical-path delay.
In Lee et al. [2007c], the results of four different algorithms were presented. However, for
the sake brevity, details of such algorithms are beyond the scope of this chapter. We used
these results and compared them with our algorithm in Table 2.
In our experiments, the parameters used for the PSO are the population size is fixed to 50
particles, the round terminates after 50 unimproved runs, and 100 runs must run at the
beginning to avoid trapping in local minimum. The number of re-excited PSO rounds is
selected by the user.
The power constraint is constrained to 600 mW, area and memory are constrained to the
maximum available FPGA resources, i.e. 100%, and maximum number of concurrent
software tasks is two.

Particle Swarm Optimization for HW/SW Partitioning

67

Method
Results

Lev / DCT / Q / DPCM-Zig /
VLC-RLE / VLC

Execution
Time (us)

Memory
(KB)

Slice use
rate (%)

Power
(mW)

FBP [Lee et al. 2007c] 1/001/111/101111/111101/111 20022.26 51.58 53.9 581.39
GHO [Lee et al.

2007b] 1/010/111/111110/111111/111 20021.66 16.507 54.7 586.069

GA [Lin et al. 2006] 0/010/010/101110/110111/010 20111.26 146.509 47.1 499.121

HOP [Lee et al. 2007a] 0/100/010/101110/110111/010 20066.64 129.68 56.6 599.67

PSO-delay 1/010/111/111110/111111/111 20021.66 16.507 54.7 586.069

PSO-area 0/100/001/111010/110101/010 20111.26 181.6955 44.7 494.442

PSO-power 0/100/001/111010/110101/010 20111.26 181.6955 44.7 494.442

PSO-memory 1/010/111/111110/111111/111 20021. 66 16.507 54.7 586.069

PSO-NoProc 0/000/111/000000/111111/111 20030.9 34.2328 8.6 189.174

PSO-Norm 0/010/111/101110/111111/111 20030.9 19.98 50.6 521.234

Table 2. Comparison of partitioning results

Different configurations of the cost function are tested for different optimization goals. PSO-
delay, PSO-area, PSO-power, and PSO-memory represent the case where the cost function
includes only one term, i.e. delay, area, power, and memory, respectively. PSO-NoProc is
the normal PSO-based algorithm with the cost function shown in equation (7) but the
number of processors is unconstrained. Finally, PSO-Norm is the normal PSO with all
constraints being considered, i.e. the same as PSO-NoProc with maximum number of two
processors.
The second column in Table 2 shows the resulting partition where '0' represents software
and '1' represents hardware. The vector is divided into sets, each set represents a control
step as shown in Fig. 9. The third to fifth columns of this table list the execution time,
memory size, % of slices used and the power consumption respectively of the optimum
solutions obtained according to the algorithms identified in the first column. As shown in
the table, the bold results are the best results obtained for each design metrics.
Regarding PSO performance, all the PSO-based results are found within two or three rounds
of the Re-excited PSO. Moreover, for each individual optimization objective, PSO obtains the
best result for that specific objective. For example, PSO-delay obtains the same results as
GHO algorithm [ref.] does and it outperforms the other solutions in the execution time and
memory utilization and it produces good quality results that meet the constraints. Hence,
our cost function formulation enables us to easily select the optimization criterion that suits
our design goals.
In addition, PSO-a and PSO-p give the same results as they try to move nodes to software
while meeting the power and number of processors constraints. On the other hand, PSO-del
and PSO-mem try to move nodes to hardware to reduce the memory usage and the delay,
so their results are similar.
PSO-NoProc is used as a what-if analysis tool, as its results answer the question of what is
the optimum number of parallel processors that could be used to find the optimum design.

Particle Swarm Optimization

68

In our case, obtaining six processors would yield the results shown in the table even if three
of them will be used only for one task, namely, the DCT.

4. Extensions
4.1 Modeling Hardware Implementation alternatives
As shown previously, HW/SW partitioning depends on the HW area, delay, and power
costs of the individual nodes. Each node represents a grain (from an instruction up to a
procedure), and the grain level is selected by the designer. The initial design is usually
mapped into a sequencing graph that describes the flow dependencies of the individual
nodes. These dependencies limit the maximum degree of parallelism possible between these
nodes. Whereas a sequencing graph denotes the partial order of the operations to be
performed, the scheduling of a sequencing graph determines the detailed starting time for
each operation. Hence, the scheduling task sets the actual degree of concurrency of the
operations, with the attendant delay and area costs [De Micheli 1994]. In short, delay and
area costs needed for the HW/SW partitioning task are only known accurately post the
scheduling task. Obviously, this situation calls for time-wasteful iterations. The other
solution is to prepare a library of many implementations for each node and select one of
them during the HW/SW partitioning task as the work done by Kalavade and Lee [2002].
Again, such approach implies a high design time cost.
Our approach to solve this egg-chicken coupling between the partitioning and scheduling
tasks is as follows: represent the hardware solution of each node by two limiting solutions,
HW1 and HW2, which are automatically generated from the functional specifications. These
two limiting solutions bound the range of all other possible schedules. The partitioning
algorithm is then called on to select the best implementation for the individual nodes: SW,
HW1 or HW2. These two limiting solutions are:
1. Minimum-Latency solution: where As-Soon-As-Possible (ASAP) scheduling algorithm

is applied to find the fastest implementation by allowing unconstrained concurrency.
This solution allows for two alternative implementations, the first where maximum
resource-sharing is allowed. In this implementation, similar operational units are
assigned to the same operation instance whenever data precedence constraints allow.
The other solution, the non-shared parallel solution, forbids resource-sharing altogether
by instantiating a new operational unit for each operation. Which of these two parallel
solutions yields a lower area is difficult to predict as the multiplexer cost of the shared
parallel solution, added to control the access to the shared instances, can offset the extra
area cost of the non-shared solution. Our modeling technique selects the solution with
the lower area. This solution is, henceforth, referred to as the parallel hardware
solution.

2. Maximum Latency solution: where no concurrency is allowed, or all operations are
simply serialized. This solution results in the maximum hardware latency and the
instantiation of only one operational instance for each operation unit. This solution is,
henceforth, referred to as the serial hardware solution.

To illustrate our idea, consider a node that represents the operation y = (a*b) + (c*d). Fig.
10.a (10.b) shows the parallel (serial) hardware implementations.
From Fig. 10 and assuming that each operation takes only one clock cycle, the first
implementation finishes in 2 clock cycles but needs 2 multiplier units and one adder unit.
The second implementation ends in 3 clock cycles but needs only one unit for each operation

Particle Swarm Optimization for HW/SW Partitioning

69

(one adder unit and one multiplier unit). The bold horizontal lines drawn in Fig. 10
represent the clock boundaries.

(a) (b)

Figure 10. Two extreme implementations of y = (a*b) + (c*d)

In general, the parallel and serial HW solutions have different area and delay costs. For
special nodes, these two solutions may have the same area cost, the same delay cost or the
same delay and area costs. The reader is referred to Abdelhalim and Habib [2007] for more
details on such special nodes.
The use of two alternative HW solutions converts the HW/SW optimization problem from a
binary form to a tri-state form. The effectiveness of the PSO algorithm for handling this
extended HW/SW partitioning problem is detailed in Section 4.3.

4.2 Communications Cost Modeling
The Communications cost term in the context of HW/SW partitioning represents the cost
incurred due to the data and control passing from one node to another in the graph
representation of the design. Earlier co-design approaches tend to ignore the effect of
HW/SW communications. However, many recent embedded systems are communications
oriented due to the heavy amount of data to be transferred between system components.
The communications cost should be considered at the early design stages to provide high
quality as well as feasible solutions. The communication cost can be ignored if it is between
two nodes on the same side (i.e., two hardware nodes or two software nodes). However, if
the two nodes lie on different sides; the communication cost cannot be ignored as it affects
the partitioning decisions. Therefore, as communications are based on physical channels, the
nature of the channel determines the communication type (class). In general, the HW/SW
communications between the can be classified into four classes [Ernest 1997]:
1. Point-to-point communications
2. Bus-based communications
3. Shared memory communications
4. Network-based communications
To model the communications cost, a communication class must be selected according to the
target architecture. In general, the model should include one or more of the following cost
terms [Luthra et al. 2003]:
1. Hardware cost: The area needed to implement the HW/SW interface and associated

data transfer delay on the hardware side.

Particle Swarm Optimization

70

2. Software cost: The delay of the software interface driver on the software side.
3. Memory size: The size of the dedicated memory and registers for control and data

transfers as well as shared memory size.
The terms could be easily modeled within the overall delay, hardware area and memory
costs of the system, as shown in equation (8).

4.3 Extended algorithm experiments
As described in Section 3.3, the input to the algorithm is a graph that consists of a number of
nodes and number of edges. Each node (edge) is associated with cost parameters. The used
cost parameters are:
Serial hardware implementation cost: which is the cost of implementing the node in
serialized hardware. The cost includes HW area as well as the associated latency (in clock
cycles).
Parallel hardware implementation cost: which is the cost of implementing the node in
parallel hardware. The cost includes HW area as well as the associated latency (in clock
cycles).
Software implementation cost: the cost of implementing the node in software (e.g.
execution clock cycles and the CPU area).
Communication cost: the cost of the edge if it crosses the boundary between the HW and
the SW sides (interface area and delay, SW driver delay and shared memory size).
For experimental purposes, these parameters are randomly generated after considering the
characteristics of each parameter, i.e. Serial HW area ≤ Parallel HW area, and
SW delay ≤ Serial HW delay ≤ Parallel HW delay.
The needed modification is to allow each node in the PSO solution vector to have three
values: “0” for software, “1” for serial hardware and “2” for parallel hardware.
The parameters used in the implementation are: No. of particles (Population size) n = 50,
No. of design size (m) = 100 nodes, No. of communication edges (e) = 200, No. The number
of re-exited PSO rounds set to a predefined value = 50. All other parameters are taken from
Section 3.4. The constraints are: Maximum hardware area is 65% of the all-Hardware
solution area, and the maximum delay is 25% of the all-Software solution delay.

4.3.1 Results
Three experiments were performed. The first (second) experiment uses the normal PSO with
only the serial (parallel) hardware implementation. The third experiment examines the
proposed tristate formulation where the hardware is represented by two solutions (serial
and parallel solutions). The results are shown in Table 3.

 Area
Cost

Delay
Cost

Comm.
Cost

Serial HW
nodes

Parallel
HW nodes

SW
nodes

Serial HW 34.9% 30.52% 1.43% 99 N/A 1
Parallel HW 57.8% 29.16% 32.88% N/A 69 31

Tri-state formul. 50.64% 23.65% 18.7% 31 55 14

Table 3. Cost result of different hardware alternatives schemes

As shown in this table, the serial hardware solution pushes approximately all nodes to
hardware (99 out of 100) but fails to meet the deadline constraint due to the relatively large

Particle Swarm Optimization for HW/SW Partitioning

71

delay of the serial HW implementations. On the other hand, the parallel HW solution fails to
meet the delay constraint due to the relatively large area of parallel HW. Moreover, It has
large communications cost. Finally, the tri-state formulation meets the constraints and
results in a relatively low communication cost.

4.4 Tuning Algorithm.
As shown in Table 3, the third solution with two limiting HW alternatives has a 23.65%
delay. The algorithm could be tuned to push the delay to the constrained value (25%) by
moving some hardware-mapped nodes from the parallel HW solution to the serial HW
solution. This node switching reduces the hardware area at the expense of increasing the
delay cost within the acceptable limits, while the communication cost is unaffected because
all the moves are between HW implementations.

Figure 11. Tuning heuristic for reducing the hardware area.

The heuristic used to reduce the hardware area is shown Fig. 11. It shares many similarities
with the greedy approaches presented by Gupta et al. [1992].
First, the heuristic calculates the extra delay that the system could tolerate and still achieves
the deadline constraint (delay margin).
It then finds all nodes in parallel HW region with delay range less than delay margin and
selects the node with maximum reduction in HW area cost (hardware range) to be moved to
the serial hardware region. Such selection is carried out to obtain the maximum hardware
reduction while still meeting the deadline.

1) Find all nodes with parallel HW implementation (min_delay_set)
2) Calculate the Delay_margin = Delay deadline – PSO Achieved delay
3) Calculate Hardware_range = Node's Max. area – Node's Min. area.
4) Calculate Delay_range = Node's Max. delay – Node's Min. delay.
5) Create (dedicated_nodes_list) with nodes in (min_delay_set) sorted in ascending
order according to Hardware_rang such that Delay_range<Delay_margin
6) While (dedicated_nodes_list) is not empty
 7) Move node with the maximum Hardware_range to serial HW region.
 8) For many nodes with the same Hardware_range, choose the one with
minimum Delay_range
 9) Re-calculate Delay_margin
 10) Update (dedicated_nodes_list)
11) End While
12) Update (min_delay_set)
13) Calculate Hardware Sensitivity = Hardware range / Delay range

Outputs

1. HW/SW partition
2. The remaining delay range in clock cycles.
3. Remaining parallel hardware nodes and their Hardware Sensitivity

Nodes with high Hardware Sensitivity could be used along with the delay range to
obtain refined implementations (Time Constrained Scheduling Problem)

Particle Swarm Optimization

72

(delay margin) is then re-calculated to find the nodes that are movable after the last
movement.
After moving all allowable nodes, the remaining parallel HW nodes can not move to the
serial HW region due to deadline violation. Therefore, the algorithm reports to the designer
with all the remaining parallel HW nodes, their Hardware Sensitivity (the average
hardware decrease due to the increase in the latency by one clock cycle), and the remaining
delay margin. The user can, then, select a parallel hardware node or more and make a
refined HW implementation with the allowable delay (Time-constrained Scheduling
problem [De Micheli 1994]).
The algorithm can be easily modified for the opposite goals, i.e. to account for reducing the
delay while still meeting the hardware constraint.
The above algorithm could not start if the PSO terminates with invalid solution. Therefore,
we implemented a similar algorithm as a pre-tuning phase but with the opposite goal:
moving nodes form serial HW region to parallel HW region to reduce the delay, hence meet
the deadline constraint if possible, while minimizing the increase in the hardware area.

4.4.1 Results after using the Tuning Algorithm
Two experiments were done: the first one is the tuning of the results shown in Table 3. The
tuning algorithm starts from where PSO ends. The Delay Margin was 1.35% (about 72 clock
cycles). At the end of the algorithm, the Delay margin reaches 1 clock cycles, the area
decreased to 40.09% and the delay reaches 24.98%. 12 parallel HW nodes were moved to the
serial HW implementation. The results show that the area decreases by 10.55% for a very
small delay increase (1.33%).
The constraints are modified such that the deadline constraint is reduced to 22% and the
maximum area constraint is reduced to 55% to test the pre-tuning phase. PSO terminates
with 23.33%delay, 47.68% area, and communications 25.58%. The deadline constraint is
violated by 1.33% (about 71 clock cycles). The pre-tuning phase moves nodes from serial
HW region into parallel HW region until satisfying the deadline constraints (delay is
reduced to 21.95%). It moves 32 nodes and the Area increased to 59.13%. The delay margin
becomes 2 clock cycles. Then the normal tuning heuristic starts with that delay margin and
moves two nodes back to the serial HW region. The final area is 59% and the final delay is
21.99%. Notice that the delay constraint is met while the area constraint becomes violated.

5. Conclusions
In this chapter, the recent introduction of the Particle Swarm Optimization technique to
solve the HW/SW partitioning problem is reviewed, along with its “re-exited PSO”
modification. The re-exited PSO algorithm is a recently-introduced restarting technique for
PSO. The Re-exited PSO proved to be highly effective for solving the HW/SW partitioning
problem.
Efficient cost function formulation is of a paramount importance for an efficient
optimization algorithm. Each component in the design must have hardware as well as
software implementation costs that guide the optimization algorithm. The hardware cost in
our platform is modeled using two extreme implementations that bound all other schedule-
dependent implementations. Communications cost between hardware and software
domains are then proposed in contrast to other approaches that completely ignore such

Particle Swarm Optimization for HW/SW Partitioning

73

term. Finally, a tuning algorithm is proposed to fine tune the results and/or try to meet the
constraints if PSO provides violating solutions.
Finally, JPEG encoder system is used as a real-life case study to test the viability of the PSO
for solving the HW/SW partitioning problems. This case study compares our results with
other published results from the literature. The comparison focuses on the PSO technique
only. The results prove that our algorithm provides better or equal results relative to the
cited results.
The following conclusions can be made:
• PSO is effective for solving the HW/SW Partitioning Problem. The PSO yields better

quality and faster performance relative to the well-known Genetic Algorithm.
• A newly-proposed “Re-exited PSO” restarting technique is effective in escaping local

minimum.
• Formulating the HW/SW partitioning problem using the recently proposed two

extreme hardware alternatives is effective for solving tightly constrained problems. The
introduction of two limiting hardware alternatives provides extra degree of freedom for
the designer without penalizing the designer with excessive computational cost.

• Greedy-like Tuning algorithms are useful for refining the PSO results. Such algorithms
moves hardware-mapped nodes between their two extreme implementations to refine
the solution or even to meet the constraints.

• A JPEG Encoder system is used as a real-life case study to verify the potential of our
methodology for partitioning large HW/SW co-design problems.

6. References
Abdelhalim, M. B, Salama, A. E., and Habib S. E. -D. 2006. Hardware Software Partitioning

using Particle Swarm Optimization Technique. In The 6th International Workshop on
System-on-Chip for Real-Time Applications (Cairo, Egypt). 189-194.

Abdelhalim, M. B, and Habib S. E. -D. 2007. Modeling communication cost and hardware
alternatives in PSO based HW/SW partitioning. In the 19th International Conference
on Microelectronics (Cairo, Egypt). 115-118.

Adhipathi, P. 2004. Model based approach to Hardware/Software Partitioning of SOC Designs.
MSc Thesis, Virginia Polytechnic Institute and State University, USA.

Armstrong, J.R., Adhipathi, P. J.M. Baker, Jr. 2002. Model and synthesis directed task
assignment for systems on a chip. 15th International Conference on Parallel and
Distributed Computing Systems (Cambridge, MA, USA).

Binh, N. N., Imai, M., Shiomi, A., and Hikichi, N. 1996. A hardware/software partitioning
algorithm for designing pipelined ASIPs with least gate counts. Proceedings of 33rd
Design Automation Conference (Las Vegas, NV, USA). 527 - 532.

Chatha, K. S., and Vemuri, R. 2001.MAGELLAN: multiway hardware-software partitioning
and scheduling for latency minimization of hierarchical control-dataflow task
graphs. In proceedings of the 9th International Symposium on Hardware/Software
Codesign (Copenhagen, Denmark). 42 – 47.

Cloute, F., Contensou, J.-N., Esteve, D., Pampagnin, P., Pons, P., and Favard, Y. 1999.
Hardware/software co-design of an avionics communication protocol interface
system: an industrial case study. In proceedings of the 7th International Symposium on
Hardware/Software Codesign (Rome, Italy). 48-52.

Particle Swarm Optimization

74

De Micheli, G. 1994. Synthesis and Optimization of Digital Circuits. McGraw Hill.
De Souza, D. C., De Barros, M. A., Naviner, L. A. B., and Neto, B. G. A. 2003. On relevant

quality criteria for optimized partitioning methods. In proceedings of 45th Midwest
Symposium on Circuits and Systems (Cairo, Egypt). 1502- 1505.

Ditzel, M. 2004. Power-aware architecting for data-dominated applications. PhD thesis, Delft
University of Technology, The Netherlands.

Donoso, Y., and Fabregat, R. 2007. Multi-objective optimization in computer networks using
metaheuristics. Auerbach Publications.

Eberhart, R. C., and Shi, Y. 2001. Particle swarm optimization: developments, applications
and resources. In Processions of 2001 congress on evolutionary computation (Seoul,
Korea). 81-86.

Eberhart, R. C., and Shi, Y. 1998. Comparison between genetic algorithms and particle
swarm optimization. In proceedings of the 7th annual conference on evolutionary
programming (San Diego, CA, USA). 611-616,

Eberhart, R.C., and Kennedy, J. 1995. A new optimizer using particle swarm theory.
Proceedings of the 6th international symposium on micro-machine and human science
(Nagoya, Japan). 39-43.

Eles, P., Peng, Z., Kuchcinski, K., and Doboli, A. 1997. System level HW/SW partitioning
based on simulated annealing and tabu search. Design automation for embedded
systems. Vol. 2, No. 1. 5-32.

Ernest, R. L. 1997. Target architectures in Hardware/Software Co-Design: principles and practice,
Staunstrup, J. and Wolf W. (eds.). Kluwer Academic publishers. 113-148.

Gupta, R.K., and De Micheli, G. 1992. System-level synthesis using re-programmable
components. In Proceedings of the 3rd European Conference on Design Automation
(Brussels, Belgium). 2-7.

Hanselman, D., and Littlefield, B. 2001. Mastering MATLAB 6, Prentice Hall.
Hassan, R., Cohanim, B., de Weck, O., and Venter, G. 2005. A comparison of particle swarm

optimization and the genetic algorithm. 1st AIAA Multidisciplinary Design
Optimization Specialist Conference (Austin, Texas).

Haupt, R. L., and Haupt, S. E. 2004. Practical Genetic Algorithms. Second Edition, Wiley
Interscience.

Henkel, J., and Ernst, R. 2001. An approach to automated hardware/software partitioning
using a flexible granularity that is driven by high-level estimation techniques. IEEE
Transactions on Very Large Scale Integration Systems, Vol. 9, No. 2, 273 - 289.

Jensen, M. T. 2003. Reducing the run-time complexity of multiobjective EAs: The NSGA-II
and other algorithms. IEEE Transactions on Evolutionary Computation, Vol 7, No. 5,
503-515.

Jha, N. K. and Dick, R. P. 1998. MOGAC: a multiobjective genetic algorithm for hardware-
software co-synthesis of distributed embedded systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 17, No. 10. 920 - 935.

Jonsson, B. 2005. A JPEG encoder in SystemC, MSc thesis, Lulea University of Technology,
Sweden.

Kalavade, A. and Lee, E. A. 1994. A global criticality/local phase driven algorithm for the
constrained hardware/software partitioning problem. In Proceedings of Third
International Workshop on Hardware/Software Codesign (Grenoble, France). 42-48.

Particle Swarm Optimization for HW/SW Partitioning

75

Kalavade, A. and Lee, E. A. 2002. The Extended Partitioning Problem: Hardware-software
Mapping and Implementation-Bin Selection. In Readings in hardware/software co-
design, De Micheli, G., Ernest, R. L, and Wolf W.(eds.), Morgan Kaufmann. 293-312.

Kennedy, J., and Eberhart, R.C. 1995. Particle swarm optimization. In proceedings of IEEE
international Conference on Neural Networks (Perth, Australia). 1942-1948.

Knudsen, P. V., and Madsen, J. 1996. PACE: a dynamic programming algorithm for
hardware/software partitioning. Fourth International Workshop on Hardware/Software
Co-Design (Pittsburgh, PA, USA). 85 – 92.

Lee, T.Y., Fan, Y. H., Cheng, Y. M. Tsai, C. C., and Hsiao, R. S. 2007a. Hardware-Oriented
Partition for Embedded Multiprocessor FPGA systems. In Proceedings of the Second
International Conference on Innovative Computing, Information and Control (Kumamoto,
Japan). 65-68.

Lee, T.Y., Fan, Y. H., Cheng, Y. M. Tsai, C. C., and Hsiao, R. S. 2007b. An efficiently
hardware-software partitioning for embedded Multiprocessor FPGA system. In
Proceedings of International Multiconference of Engineers and Computer Scientists (Hong
Kong). 346-351.

Lee, T.Y., Fan, Y. H., Cheng, Y. M., Tsai, C. C., and Hsiao, R. S. 2007c. Enhancement of
Hardware-Software Partition for Embedded Multiprocessor FPGA Systems. In
Proceedings of the 3rd International Conference on International Information Hiding and
Multimedia Signal Processing (Kaohsiung, Taiwan). 19-22.

Lin, T. Y., Hung, Y. T., and Chang, R. G. 2006. Efficient hardware/software partitioning
approach for embedded multiprocessor systems. In Proceedings of International
Symposium on VLSI Design, Automation and Test (Hsinchu, Taiwan). 231-234.

Lopez-Vallejo, M. and Lopez, J. C. 2003. On the hardware-software partitioning problem:
system modeling and partitioning techniques. ACM transactions on design
automation for electronic systems, Vol. 8, No. 3. 269-297.

Luthra, M., Gupta, S., Dutt, N., Gupta, R., and Nicolau, A. 2003. Interface synthesis using
memory mapping for an FPGA platform. In Proceedings of the 21st International
conference on computer design (San Jose, CA, USA). 140 - 145.

Madsen, J., Gorde, J., Knudsen, P. V. Petersen, M. E., and Haxthausen, A. 1997. lycos: The
Lyngby co-synthesis system. Design Automation of Embedded Systems, Vol. 2, No. 2.
195-236.

Mann, Z. A. 2004. Partitioning algorithms for Hardware/Software Co-design. PhD thesis,
Budapest University of Technology and Economics, Hungary.

Marrec, P. L., Valderrama, C. A., Hessel, F., Jerraya, A. A., Attia, M., and Cayrol, O. 1998.
Hardware, software and mechanical cosimulation for automotive applications.
proceedings of 9th International Workshop on Rapid System Prototyping (Leuven,
Belgium). 202 – 206.

Mei, B., Schaumont, P., and Vernalde, S. 2000. A hardware/software partitioning and
scheduling algorithm for dynamically reconfigurable embedded systems. In
Proceedings of 11th ProRISC (Veldhoven, Netherlands).

Nieman, R. 1998. Hardware/Software co-design for data flow dominated embedded systems. Kluwer
Academic publishers.

Pasupuleti, S. and Battiti, R. 2006. The Gregarious Particle Swarm Optimizer (GPSO).
Proceedings of the Genetic and Evolutionary Computation Conference (Seattle, WA,
USA). 67 - 74.

Particle Swarm Optimization

76

Poli, R. 2007. Analysis of the publications on the applications of particle swarm optimization
applications. Tech. Rep. CSM-469, Department of Computing and Electronic
Systems, University of Essex, Colchester, Essex, UK.

Rodriguez, M, A., and Bollen, J. 2008. Simulating Network Influence Algorithms Using Particle-
Swarms: PageRank and PageRank-Priors. Available online @
http://arxiv.org/abs/cs.DS/0602002.

Settles, M., and Soule, T. 2003, A hybrid GA/PSO to evolve artificial recurrent neural
networks. In Intelligent Engineering Systems through Artificial NN (St. Louis, MO,
USA). 51-56.

Shi, Y, and Eberhart, R. C. 1999. Empirical study of particle swarm optimization. In
Proceedings of the 1999 Congress on Evolutionary Computation (Washington, DC,
USA). 1945-1950.

Shi, Y, and Eberhart, R. C. 1998. Parameter selection in particle swarm optimization. In
Proceedings of 7th Annual Conference on Evolutionary Computation (New York, NY,
USA). 591-601.

Stitt, G. 2008. Hardware/Software Partitioning with Multi-Version Implementation
Exploration, In Proceedings ofGreat Lakes Symposium in VLSI (Orlando, FL, USA).
143-146.

Stitt, G., Vahid, F., McGregor, G., and Einloth, B. 2005. Hardware/Software Partitioning of
Software Binaries: A Case Study of H.264 Decoder. IEEE/ACM CODES+ISSS'05
(New York, NY, USA). 285 – 290.

Tillett, J., Rao, T.M., Sahin, F., and Rao, R. 2005, Darwinian particle swarm optimization.
Proceedings of the 2nd Indian Intl. Conference on Artificial Intelligence (Pune, Indi). 1474-
1487.

Vahid, F. 2002.Partitioning Sequential Programs for CAD using a Three-Step Approach.
ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3. 413-429.

Van den Bergh, F. 2002. An Analysis of Particle Swarm Optimizer. PhD thesis, Department of
Computer Science, University of Pretoria, South Africa.

Xilinx Inc., 2007. Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet.
Zheng, Y. L., Ma, L. H., Zhang, L. Y., and Qian, J. X. 2003. On the convergence analysis and

parameter selection in particle swarm optimization. In Proceedings of the 2nd
International Conference on Machine Learning and Cybernetics (Xi-an, China). 1802 -
1807.

Zou, Y. Zhuang, Z., and Cheng, H. HW-SW partitioning based on genetic algorithm. 2004. In
Proceedings of Congress on Evolutionary Computation (Anhui, China). 628- 633.

4

Particle Swarms in Statistical Physics∗
Andrei Băutu 1 and Elena Băutu 2

1 “Mircea cel Batrân” Naval Academy, 2 “Ovidius” University
Romania

1. Introduction
Statistical physics is the area of physics which studies the properties of systems composed of
many microscopic particles (like atoms and molecules). When combined, the interactions
between these particles produce the macroscopic features of the systems. The systems are
usually characterized by a very large number of variables and the limited possibilities for
observing the properties of the components of the system. For these reasons, solving
problems arisen in Statistical Physics with analytical approaches is usually ineffective and
sometimes impossible. However, statistical approaches (such as Monte Carlo simulation)
can provide acceptable approximations for solutions of these problems. Moreover, recent
studies showed that nature inspired metaheuristics (like Genetic Algorithms, Evolutionary
Strategies, Particle Swarm Optimization, etc) can also be used to simulate, analyse, and
optimize such systems, providing fast and accurate results. Apart from physical
implications, problems from Statistical Physics are also important in fields like biology,
chemistry, mathematics, communications, economy, sociology, etc.
We will present two important problems from Statistical Physics and discuss how one can
use Particle Swarm Optimization (PSO) to tackle them. First, we will discuss how the real-
valued version of PSO can be used to minimize the energy of a system composed of
repulsive point charges confined on a sphere. This is known as the Thomson problem and it
is included in Stephen Smale's famous list of 18 unsolved mathematical problems to be
solved in the 21st century. This problem also arises in biology, chemistry, communications,
economy, etc.
Latter on, we will discuss how the binary version of PSO can be used to search ground
states of Ising spin glasses. Spin glasses are materials that simultaneously present
ferromagnetic and anti-ferromagnetic interactions among their atoms. A ground state of a
spin glass is a configuration of the system in which this has the lowest energy possible.
Besides its importance for Statistical Physics, this problem has applications in neural
network theory, computer science, biology, etc.

2. The Basics of Particle Swarm Optimization
Particle Swarm Optimization (PSO) is a metaheuristic inspired by the behaviour of social
creatures, which interact between them in order to achieve a common goal. Such behaviour

∗ This work was in part supported by CNCSIS grants TD 254/2008 and TD 199/2007.

Particle Swarm Optimization

78

can be noticed in flocks of birds searching for food or schools of fish trying to avoid
predators (Eberhart & Kennedy, 1995).
The philosophy of PSO is based on the evolutionary cultural model, which states that in
social environments individuals have two learning sources: individual learning and cultural
transmission (Boyd & Richerson, 1988). Individual learning is an important feature in static
and homogeneous environments, because one individual can learn many things about the
environment from a single interaction with it. However, if the environment is dynamic or
heterogeneous, then that individual needs many interactions with the environment before it
gets to know it. Because a single individual might not get enough chances to interact with
such environment, cultural transmission (meaning learning from the experiences of others)
becomes a requisite, too. In fact, individuals that have more chances to succeed in achieving
their goals are the ones that combine both learning sources, thus increasing their gain in
knowledge.
In order to solve any problem with PSO, we need to define a fitness function which will be
used to measure the quality of possible solutions for that problem. Then, solving the original
problem is equivalent to optimizing parameters of the fitness function, such that we find
one of its minimum or maximum values (depending on the fitness function). By using a set
of possible solutions, PSO will optimize our fitness function, thus solving our original
problem. In PSO terms, each solution is called a particle and the set of particles is called a
swarm. Particles gather and share information about the problem in order to increase their
quality and hopefully become the optimum solution of the problem. Therefore, the driving
force of PSO is the collective swarm intelligence (Clerc, 2006).
The fitness function generates a problem landscape in which each possible solution has a
corresponding fitness value. We can imagine that similar to birds foraging in their
environment, the PSO particles move in this landscape searching locations with higher
rewards and exchanging information about these locations with their neighbours. Their
common goal is to improve the quality of the swarm. During the search process the particles
change their properties (location, speed, memory, etc) to adapt to their environment.

3. Particle Swarm Optimization and the Thompson problem
In 1904, while working on his plum pudding model of the atom, the British physicist Joseph
John Thomson stated the following problem: what is the minimum energy configuration of
N electrons confined on the surface of a sphere? Obviously, each two electrons repel each

other with a force given by Coulomb's law:

 2
0

2 1
4 d
qF e
πε

= , (1)

where 0ε is the electric constant of vacuum, eq is the charge on a single electron, and d is
the distance between the two electrons. Because of these forces, each electron will try to get
as far as possible from the others. However, being confined on the surface of the sphere,
they will settle for a system configuration with minimum potential energy. The potential
energy of a system with N electrons is:

Particle Swarms in Statistical Physics

79

 () ∑ ∑
−

= +=
=

1

1 10

2 1
4

N

j

N

ji ij

e
d

qSU
πε

, (2)

where we consider the electrons numbered in some random fashion, and ijd is the distance
between electrons ith and jth in the system configuration S . Any configuration with
minimum potential energy is called a “ground state” of the system.
Over the years, various generalizations for the Thomson problem have also been studied
from different aspects. The most common generalization involves interactions between
particles with arbitrary potentials. Bowick studied a system of particles constrained to a
sphere and interacting by a γ−d potential, with 20 << γ (Bowick et al, 2002). Travesset
studied the interactions of the particles on topologies other than the 2-sphere (Travesset,
2005). Levin studied the interactions in a system with 1−N particles confined on the sphere
and 1 particle fixed in the centre of the sphere (Levin & Arenzon, 2003). In general, finding
the ground state of a system of N repulsive point charges constrained to the surface of the
2-sphere is a long standing problem, which was ranked 7 in Stephen Smale's famous
list (Smale, 2000) of 18 unsolved mathematical problems to be solved in the 21st century,
along with other famous problems, like the Navier-Stokes equations, Hilbert's sixteenth
problem and the P=NP problem.
Apart from physics, the Thomson problem arises in various forms in many other fields:
biology (determining the arrangements of the protein subunits which comprise the shells of
spherical viruses), telecommunications (designing satellite constellations, selecting locations
for radio relays or access points for wireless communications), structural chemistry (finding
regular arrangements for proteins S-layers), mathematics, economy, sociology, etc. From an
optimization point of view, the Thomson problem is of great interest to computer scientists
also, because it provides an excellent test bed for new optimization algorithms, due to the
exponential growth of the number of minimum energy configurations and to their
characteristics.
The Thomson problem can be solved exactly for small values of N point charges on the
surface of a sphere or a torus. However, for large values of 8>N , exact solutions are not
known. The configurations found so far for such values display a great variety of
geometrical structures. The best known solutions so far for such systems were identified
with numerical simulations, using methods based on Monte Carlo simulations, evolutionary
algorithms, simulated annealing, etc (Carlson et al., 2003; Morris et al., 1996; Perez-Garrido
et al., 1996; Pang, 1997). PSO for the Thompson problem was first introduced in (Băutu &
Băutu, 2007).
We will present in the following how the real-valued version of PSO can be used to tackle
the Thomson problem. In order to avoid confusion, we will use the term “point charges” to
refer to physical particles on the sphere (electrons, for example) and “particles” to refer to
the data structures used by the PSO algorithm.
As mentioned in the previous section, in order to use a PSO algorithm we need to define a
function that will measure the quality of solutions encoded by particles. One can think of
many such functions for the Thompson problem, but a simple and quick solution is to use
the potential energy of a system. We can save some computation time if we ignore the
physical constants and use a simplified version of (2) for our fitness function:

Particle Swarm Optimization

80

 () ∑ ∑
−

= +=
=

1

1 1

1N

j

N

ji ijd
PF (3)

where N is the number of point charges in the system, ijd is the Euclidian distance
between point charges i and j, encoded by the particle P . If we represent our system
configuration in 3D space using a Cartesian coordinate system, then we need to handle N3
real values, for the values on the Ox, Oy and Oz axis of each particle (see Figure 1). We will
also need to explicitly enforce the sphere surface constraints which require additional
computation time.

`

Figure 1. Point charge represented in 3D Cartesian coordinate system

The memory requirements can be reduced and the computation overhead for constraint
enforcing can be avoided, if we scale our system to the unit sphere and represent its
configuration using a Spherical coordinate system. In this way, the sphere surface constraint
is implicitly enforced and since r is constant, the system configuration is encoded with only

N2 real values, representing the azimuth φ and elevation θ angles (see Figure 2).

Figure 2. Point charge represented in 3D Spherical coordinate system

In this case, the distance between point charges i and j located on the surface of the unit
sphere is

)]cos(sinsincos[cos22 jijijiijd θθφφφφ −+−= , (4)

O y

x

z

(r,θ,φ) - point charge
θ

φ

r

O y

x

z

(x,y,z) - point charge

Particle Swarms in Statistical Physics

81

where []ππφφ ,, 21 −∈ is the azimuth angle and []2/,2/, ππθθ −∈ji is the elevation angle.

Thus, PSO particles move in the search space [] N21,0 and the location [] Nx 21,0∈ of a particle
decodes into a system configuration with:

 ππφ −= −122 ii x (5)

 2/2 ππθ −= ii x (6)

With this setup in place, the PSO algorithm begins with a swarm of particles randomly
scattered around the search space. This generic initialization method could be replaced with
a problem specific one (spherical initialization, for example). Each particle has a set of
neighbours with which it will exchange information. An iterative process begins, which
updates the properties of the particles. On each iteration each particle use the information
from its own memory and the information gathered from its neighbours to update its
properties. The equation used for updating the speed is:

 () ()112211111 −−−−− −+−+= tttttt xgRxpRvv φφω , (7)

where tv is the speed at iteration t , tx is the location of the particle at iteration t , tp is the
best location the particle has found until iteration t , tg is the best location the neighbours
of the particle found up to the iteration t . The individual learning and cultural transmission
factors (1φ and 2φ) control the importance of the personal and neighbour's experience on
the search process. Note that although they share the same notation, these are parameters of
the algorithm and are distinct and not related to the azimuth angles of the point charges.
Because the importance of individual learning and cultural transmission is unknown, the
learning factors are weighted by random values)1,0[, 21 ∈RR . Usually the speed is bounded
by some maxv parameter to prevent it from increasing too much because of these random
values.
With the updated speed vector and the old position of the particle, the new position is
computed with:

 tvx tt Δ+= −1tx , (8)

for 1=Δt iteration.
Based on the previous discussion, the PSO algorithm used for the Thomson problem is
summarized in Figure 3. The algorithm is very simple and requires basic programming
skills to be implemented in any programming language. It has many parameters that can be
tuned in order to achieve high performance results. The tuning process of these parameters
is beyond the purpose of this chapter. For now, let’s consider the following setup: 9.0=ω
— will allow the algorithm to avoid rapid changes in the trajectories of the particles;

221 == φφ — gives equal weight to individual and social learning; iterations = 500 — for
small and medium size systems, this should be enough for the particles to discover and
focus on good solutions; NM 2= — increases the swarm size with the size of the system.

Particle Swarm Optimization

82

Figure 3. PSO algorithm for the Thomson problem

Performing 10 runs of the algorithm from Figure 3 for systems with different sizes, we
obtained the results presented in Table 1:

N Minimum known energy Energy of PSO solution
2 0.500000000 0.500000000
3 1.732050808 1.732050808
4 3.674234614 3.674234614
5 6.474691495 6.474691495
6 9.985281374 9.985281374
7 14.452997414 14.452987365
8 19.675287861 19.675287861
9 25.759986531 25.759986599
10 32.716949460 32.717003657
15 80.670244114 80.685310397
20 150.881568334 150.953443814
25 243.812760299 243.898092955
30 359.603945904 359.901863399
35 498.569872491 499.018395878
40 660.675278835 661.666117852
45 846.188401061 847.129739052
50 1055.182314726 1056.517970873

Table 1. Minimum energies for Thomson problem found in experiments

From the results in Table 1, one can see that this simple PSO algorithm can provide high
quality estimates for the ground states of various instances of the Thomson problem. The
algorithm can be further improved not only in its parameters, but also in its structure (using
a more advanced initialization method, for example). Obviously, the Particle Swarm
Optimization algorithm can be applied for generalized forms of Thomson problem and
other related problems, not only from Statistical Physics, but other domains, too.

1. Initialize M random particles
2. for t = 1 to iterations
3. for each particle
4. Update tv according to (7)
5. Update tx according to (8)
6. Decode tx using (5) and (6)
7. Evaluate tx using (3) and (4)
8. Update tp and tg according to their definition
9. next
10. next
11. return solution from the particle with smaller fitness

Particle Swarms in Statistical Physics

83

4. Binary Particle Swarm Optimization and Ising Spin Glasses
Matter is composed of atoms and each atom carries a spin, meaning the magnetic moment
of the microscopic magnetic field around the atom generated by the motion of the electrons
around its nucleus.
If we heat a metal object higher than the Curie point of its material, the object will loose its
ferromagnetic properties and become paramagnetic. At that point, the spins of the atoms
change randomly so erratic that at any time they can point with equal probability to any
possible direction. In this case, the individual microscopic magnetic fields generated by the
spins cancel each other out, such that there is no macroscopic magnetic field (Huang, 1987).
When the temperature is lower than the Curie point, in some metals (iron and nickel, for
example) the spins of the atoms tend to be polarized in the same direction, producing a
measurable macroscopic magnetic field. This is called “ferromagnetic” behaviour. By
contrast, below the Curie point, in spin glasses only some pairs of neighbouring spins prefer
to be aligned, while the others prefer to be anti-aligned, resulting two types of interactions
between atoms: ferromagnetic and anti-ferromagnetic. Because of this mix of interactions,
these systems are called disordered (den Hollander & Toninelli, 2005).
In the past, condensed matter physics has focused mainly on ordered systems, where
symmetry and regularity lead to great mathematical simplification and clear physical
insight. Over the last decades, spin glasses became a thriving area of research in condensed
matter physics, in order to understand disordered systems. Spin glasses are the most
complex kind of condensed state encountered so far in solid state physics (De Simone et al.,
1995). Some examples of spin glasses are metals containing random magnetic impurities
(called disordered magnetic alloys), such as gold with small fractions of iron added (AuFe).
Apart from their central role in Statistical Physics, where they are the subject of extensive
theoretical, experimental and computational investigation, spin glasses also represent a
challenging class of problems for testing optimization algorithms. The problem is interesting
because of the properties of spin glass systems, such as symmetry or large number of
plateaus (Pelikan & Goldberg, 2003).
From an optimization point of view, the main objective is to find the minimum energy for a
given spin glass system (Hartmann, 2001; Pelikan & Goldberg, 2003; Fischer, 2004;
Hartmann & Weigt, 2005). System configurations with the lowest energy are called ground
states and thus the problem of minimizing the energy of spin glass instances can be
formulated as the problem of finding ground states of these instances (Pelikan et al., 2006).
The main difficulties when searching for ground states of spin glasses come from the many
local optima in the energy landscape which are surrounded by high-energy neighbouring
configurations (Pelikan & Goldberg, 2003).
The Ising model is a simplified description of ferromagnetism, yet it is extremely important
because other systems can be mapped exactly or at least approximately to it. Its applications
range from neural nets and protein folding to flocking birds, beating heart cells and more. It
was named after the German physicist Ernst Ising who first discussed it in 1925, although it
was suggested in 1920 by his Ph.D. advisor, Wilhelm Lenz. Ising used it as a mathematical
model for phase transitions with the goal of explaining how long-range correlations are
generated by local interactions.
The Ising model can be formulated for any dimension in graph-theoretic terms. Let us
consider a spin glass system with N spins and no external magnetic field. The interaction
graph ()EVG ,= associated with the system has the vertex set { }NvvV ,,1 K= . Each vertex

Particle Swarm Optimization

84

Vi ∈ can be in one of two states { }1,1−∈iS . Edges in this graph represent bonds between
adjacent atoms in the spin glass system. Each edge Eij ∈ has assigned a coupling constant,
denoted by { }JJJij ,−∈ ; an edge exists between vertices i and j if the interaction between
atoms i and j is not zero. In the classic model, this graph is a standard “square” lattice in
one, two, or three dimensions. Therefore, each atom has two, four, or six nearest neighbours,
respectively (see Figure 4). However, various papers present research done on larger
dimensions (Hartmann, 2001).

Figure 4. Two dimensional Ising spin glass system

Figure 5. Ground state of the system from Figure 4 (values inside circles represent the states
of the spins; dashed lines represent unsatisfied bonds)

For a system configuration S , the interaction between neighbouring vertices i and j
contributes an amount of jiij SSJ− to the total energy of the system, expressed as the
Hamiltonian:

 () ∑
∈

−=
Eij

jiij SSJSH . (9)

The sign of ijJ gives the nature of the interaction between neighbours i and j. If ijJ is
positive, the interaction is ferromagnetic. Having the two neighbours in the same state
(ji SS =) decreases the total energy. If ijJ is negative, the interaction between neighbours i

-1 1 1

-1 -1 1

-1 1 -1

-1

-1 -1

-1

-1 -1

-1

1

1

1

1 1

1
-1

-1

1

1

1

1 2 3

4 5 6

7 8 9

-1

-1 -1

-1

-1 -1

-1

1

1

1

1 1

1
-1

-1

1

1

1

Particle Swarms in Statistical Physics

85

and j is anti-ferromagnetic. The decrease in total energy is obtained if they have opposite
states. When all coupling constants are positive (or negative), a lowest-energy configuration
is obtained when all vertices have the same state. This is the case of ferromagnetic materials.
When the coupling constants are a mix of positive and negative values, as is the case for spin
glasses, finding the “ground state” is a very difficult problem. A ground state of the system
from Figure 4 is presented in Figure 5.
The two-dimensional Ising model of ferromagnetism has been solved exactly by Onsager
(Onsager, 1944). The most common configurations in the literature are 2D Ising spin glasses
on a grid with nearest neighbour interactions. In the case of no periodic boundary
conditions and no exterior magnetic field, the problem reduces to finding a minimum
weight cut in a planar graph for which polynomial time algorithms exist (Orlova &
Dorfman, 1972; Goodman & Hedetniemi, 1973; Hadlock, 1975). Barahona showed that
finding a ground state for the three-value coupling constant ({ }1,0,1−∈ijJ) on a cubic grid is
equivalent to finding a maximum set of independent edges in a graph for which each vertex
has degree 3 (Barahona, 1982). He also showed that computing the minimum value of the
Hamiltonian of a spin glass with an external magnetic field,

 () ∑ ∑
∈ ∈

−−=
Eij Vi

ijiij SShSSJSH 0 , (10)

is equivalent to solving the problem of finding the largest set of disconnected vertices in a
planar, degree-3 graph. This means that finding ground states for three-dimensional spin
glasses on the standard square lattice and for planar spin glasses with an external field are
NP-complete problems. Istrail showed that the essential ingredient for the NP-completeness
of the Ising model is the non planarity of the graph (Istrail, 2000).
Particle Swarm Optimization was introduced as a technique for numerical optimization and
has proved to be very efficient on many real-valued optimization problems. Because finding
the ground state of a spin glass system in the Ising model is a combinatorial problem, we
need to apply a modified version of PSO. We will use the binary version of PSO (Kennedy &
Eberhard, 1997). In this case, the ith component of the position vector of a particle encodes
the state of the ith spin in the system (0 means down, 1 means up), while the ith component of
the velocity vector determines the confidence of the particle that the ith spin should be up.
On each iteration of the search process, each particle updates its velocity vector (meaning its
confidence that the spins should be up) using (7). After that, the particle's position vector
(meaning its decision about spins being up or down) it updated using the component-wise
formula:

 ()()
⎪⎩

⎪
⎨
⎧ −+<=

−

otherwise ,0
exp1 if ,1 1

ti
ti

vRx (11)

where)1,0[∈R is a random value. Once a particle's position is known, its profit can be
computed by:

 () ()()∑
≤<≤

−−−=
Nji

tjtiijt xxJxF
1

1212 , (12)

Particle Swarm Optimization

86

With such fitness function, lower values indicate better solutions. Obviously, this fitness
function is inspired by the Hamiltonian given in (9) and can be adapted easily to external
magnetic field environments using (10).
Based on the previous discussion, the Binary PSO algorithm used for the Ising spin glass
problem is presented in Figure 6. A more advanced PSO algorithm for this problem is
described in (Băutu et al., 2007). It combines the PSO algorithm with a local optimization
technique which allows the resulting hybrid algorithm to fine tune candidate solutions.

Figure 6. PSO algorithm for the Ising spin glass problem

In order to test this algorithm, one can use a spin grass system generator, like the Spin Glass
Server (SGS). SGS can be used to solve exactly 2D and 3D systems with small sizes or to
generate systems for testing. It is available online at http://www.informatik.uni-koeln.de/
ls_juenger/research/sgs/sgs.html.

N SGS minimum
energy per spin

PSO minimum
energy per spin

64 / 3D -1.6875 -1.6875
64 / 3D -1.7500 -1.7500
64 / 3D -1.8750 -1.8750
125 / 3D -1.7040 -1.6720
125 / 3D -1.7680 -1.7360
125 / 3D -1.7360 -1.7040

Table 2. Minimum energies for Ising spin glasses found in experiments

Table 2 presents the energy per spin values obtained for 3D systems of 4x4x4 and 5x5x5
spins using (13). They will give you an idea about the performance of the binary PSO on this
type of problems. The actual values depend on the spin system for which the algorithm is
used.

 () ()
N
xF

xE t
t = (13)

The results from table 2 were obtained without any tuning of the PSO parameters: the
individual and social learning factors are 221 == φφ and the inertia factor is 9.0=ω . The
number of iterations is twice the number of spins, and the number of particles is three times

1. Initialize M random particles
2. for t = 1 to iterations
3. for each particle
4. Update tv according to (7)
5. Update tx according to (11)
6. Evaluate tx using (12)
7. Update tp and tg according to their definition
8. next
9. next
10. return solution from the particle with smaller fitness

Particle Swarms in Statistical Physics

87

the number of spins. SGS provides the minimum energy for these systems using a branch-
and-cut algorithm (De Simone et al., 1995).

5. Conclusions
This chapter presented the basic traits of Particle Swarm Optimization and its applications
for some well known problems in Statistical Physics. Recent research results presented in
the literature for these problems prove that PSO can find high quality solutions in
reasonable times (Băutu et al, 2007; Băutu & Băutu, 2008). However, many questions are still
open: how do the parameters setups relate to the problems tackled? how can we improve
the basic PSO to get state of the are results? how can we tackle very large size systems?

6. References
Barahona, F. (1982). On the Computational Complexity of Ising Spin Glass Models, Journal of

Physics A: Mathematical and General, 15(10), Oct. 1982, pp. 3241-3253
Băutu, A., Băutu, E. & Luchian, H. (2007). Particle Swarm Optimization Hybrids for

Searching Ground States of Ising Spin Glasses, Proceedings of the Ninth International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara,
Romania, pp. 415-418, ISBN 0-7695-3078-8, IEEE Computer Society

Băutu, A. & Băutu, E. (2007). Energy Minimization Of Point Charges On A Sphere With
Particle Swarms, 7th International Balkan Workshop on Applied Physics, Constantza,
Jul. 2007

Băutu, A. & Băutu, E. (2008). Searching Ground States of Ising Spin Glasses with Genetic
Algorithms and Binary Particle Swarm Optimization, Nature Inspired Cooperative
Strategies for Optimization (NICSO 2007), vol. 129, May 2008, pp. 85-94, ISBN 978-3-
540-78986-4, Springer, Berlin

Bowick, M., Cacciuto, A., Nelson, D.R. & Travesset, A. (2002). Crystalline Order on a Sphere
and the Generalized Thomson Problem, Physical Review Letters, 89(18), Oct. 2002,
pp. 185502, ISSN 0031-9007

Boyd, R. & Richerson, P.J. (1988). Culture and the Evolutionary Process, University of Chicago
Press, ISBN 0226069338, Chicago

Carlson, J., Chang, S.Y., Pandharipande, V.R. & Schmidt, K.E. (2003). Superfluid Fermi
Gases with Large Scattering Length, Physical Review Letters, 91(5), Aug. 2003, pp.
050401, ISSN 0031-9007

Clerc, M. (2006). Particle Swarm Optimization, Hermes Science Publishing Ltd., ISBN
1905209045, London

De Simone, C., Diehl, M., Junger, M., Mutzel, P. Reinelt, G., & Rinaldi, G. (1995). Exact
ground states of Ising spin glasses: New experimental results with a branch and cut
algorithm, Journal of Statistical Physics, 80(2), Jul. 1995, pp. 487-496, ISSN 0022-4715

Eberhart, R. & Kennedy, J. (1995). A new optimizer using particle swarm theory, Proceedings
of the Sixth International Symposium on Micro Machine and Human Science, pp. 39-43,
ISBN 0-7803-2676-8, Nagoya, Oct. 1995, IEEE Press, Piscataway

Fischer, S. (2004). A Polynomial Upper Bound for a Mutation-Based Algorithm on the Two-
Dimensional Ising Model, Proceedings of GECCO-2004, Part I, pp. 1100-1112, ISBN 3-
540-22344-4, Genetic and Evolutionary Computation, Jun. 2004, Springer, Berlin

Particle Swarm Optimization

88

Goodman, S. & Hedetniemi, S. (1973). Eulerian walks in graphs, SIAM Journal on Computing,
2(2), Mar. 1973, pp. 16-27, SIAM, ISSN 0097-5397

Hadlock, F. (1975) Finding a Maximum Cut of a Planar Graph in Polynomial Time, SIAM
Journal on Computing, 4(3), Sep.1975, pp. 221-225, SIAM, ISSN 0097-5397

Hartmann, A.K. (2001). Ground-State Clusters of Two-, Three- and Four-dimensional ±J
Ising Spin Glasses, Physical Review E, 63(2), Jan. 2001, pp. 016106, ISSN 0031-9007

Hartmann, A.K. & Weigt, M. (2005). Phase Transitions in Combinatorial Optimization Problems:
Basics, Algorithms and Statistical Mechanics, Wiley, ISBN 3-527-40473-5, New York

den Hollander, F., Toninelli, F. (2005). Spin glasses: A mystery about to be solved, Eur.
Math. Soc. Newsl., vol. 56, pp. 13-17, 2005

Huang, K. (1987) Statistical Mechanics, 2nd ed., Wiley, ISBN 0471815187, New York
Istrail, S. (2000). Universality of Intractability of the Partition Functions of the Ising Model

Across Non-Planar Lattices, Proceedings of the STOC00, pp. 87-96, ISBN 1-58113-184-
4, 32nd ACM Symposium on the Theory of Computing, May 2000, ACM Press

Kennedy, J. & Eberhart, R.C. (1997). A discrete binary version of the particle swarm
algorithm, Proceedings of the World Multiconference on Systemics, Cybernetics and
Informatics, vol. 5, IEEE International Conference on Systems, Man, and
Cybernetics, pp. 4104-4109, ISBN 0-7803-4053-1, IEEE Press, Piscataway

Levin, Y. & Arenzon, J.J. (2003) Why charges go to the surface: A generalized Thomson
problem, Europhysics Letters, 63(3), Aug. 2003, pp. 415-418, ISSN 0295-5075

Morris, J.R., Deaven, D.M. & Ho, K.M. (1996). Genetic-algorithm energy minimization for
point charges on a sphere, Phys. Rev. B, 53(4), pp. 1740-1743, ISSN 0163-1829

Onsager, L. (1944). Crystal statistics in a two-dimensional model with an order-disorder
transition, Physical Review, 65(3), Feb. 1944, pp. 117-149

Orlova, G.I. & Dorfman, Y.G. (1972). Finding the maximum cut in a graph, Engr. Cybernetics,
10, pp. 502-506

Pang, T. (1997). An Introduction to Computational Physics, Cambridge University Press, ISBN
0521825695, New York

Pelikan, M. & Goldberg, D.E. (2003). Hierarchical BOA Solves Ising Spin Glasses and
MAXSAT, Proceedings of GECCO-2003, pp. 1271-1282, ISBN 3-540-40603-4, Genetic
and Evolutionary Computation, Jul. 2003, Springer, Berlin

Pelikan, M. Hartmann, A.K., & Sastry, K. (2006). Hierarchical BOA, Cluster Exact
Approximation, and Ising Spin Glasses, Proceedings of PPSN 2006, pp. 122-131, ISBN
978-3-540-38990-3, Parallel Problem Solving from Nature - IX, Springer, Berlin

Perez-Garrido, A., Ortuno, M., Cuevas, E. & Ruiz, J. (1996). Many-particle jumps algorithm
and Thomson's problem, Journal of Physics A: Mathematical and General, 29(9), May
1996, pp. 1973-1978, ISSN 0305-4470

Smale, S. (2000), Mathematical problems for the next century, In: Mathematics: frontiers and
perspectives, V.I. Arnold, M. Atiyah, P. Lax, B. Mazur (Ed.), pp. 271-294, American
Mathematical Society, ISBN 0821820702, Providence, USA

Travesset, A. (2005). Ground state of a large number of particles on a frozen topography,
Physical Review E, 72(3), September, 2005, pp. 036110, ISSN 0031-9007

5

Individual Parameter Selection Strategy for
Particle Swarm Optimization

Xingjuan Cai, Zhihua Cui, Jianchao Zeng and Ying Tan
Division of System Simulation and Computer Application, Taiyuan University of Science

and Technology
P.R.China

1. Brief Survey of Particle Swarm Optimization
With the industrial and scientific developments, many new optimization problems are
needed to be solved. Several of them are complex multi-modal, high dimensional, non-
differential problems. Therefore, some new optimization techniques have been designed,
such as genetic algorithm (Holland, 1992), ant colony optimization (Dorigo & Gambardella,
1997), etc. However, due to the large linkage and correlation among different variables,
these algorithms are easily trapped to a local optimum and failed to obtain the reasonable
solution.
Particle swarm optimization (PSO) (Eberhart & Kennedy, 1995; Kennedy & Eberhart, 1995)
is a population-based, self-adaptive search optimization method motivated by the
observation of simplified animal social behaviors such as fish schooling, bird flocking, etc. It
is becoming very popular due to its simplicity of implementation and ability to quickly
converge to a reasonably good solution (Shen et al., 2005; Eberhart & Shi, 1998; Li et al.,
2005).
In a PSO system, multiple candidate solutions coexist and collaborate simultaneously. Each
solution called a "particle", flies in the problem search space looking for the optimal position
to land. A particle, as time passes through its quest, adjusts its position according to its own
"experience" as well as the experience of neighboring particles. Tracking and memorizing
the best position encountered build particle's experience. For that reason, PSO possesses a
memory (i.e. every particle remembers the best position it reached during the past) . PSO
system combines local search method (through self experience) with global search methods
(through neighboring experience), attempting to balance exploration and exploitation.
A particle status on the search space is characterized by two factors: its position and
velocity, which are updated by following equations:

 (1)

 (2)
where and represent the velocity and position vectors of particle j at time t,
respectively. means the best position vector which particle j had been found, as well as

 denotes the corresponding best position found by the whole swarm. Cognitive

Particle Swarm Optimization

90

coefficient c1 and social coefficient c2 are constants known as acceleration coefficients, and r1
and r2 are two separately generated uniformly distributed random numbers in the range [0, 1].
To keep the moving stability, a limited coefficient vmax is introduced to restrict the size of velocity.

 (3)
The first part of (1) represents the previous velocity, which provides the necessary
momentum for particles to roam across the search space. The second part, known as the
"cognitive" component, represents the personal thinking of each particle. The cognitive
component encourages the particles to move toward their own best positions found so far.
The third part is known as the "social" component, which represents the collaborative effect
of the particles, in finding the global optimal solution. The social component always pulls
the particles toward the global best particle found so far.
Since particle swarm optimization is a new swarm intelligent technique, many researchers
focus their attentions to this new area. One famous improvement is the introduction of the
inertia weight (Shi & Eberhart, 1998a), similarly with temperature schedule in the simulated
annealing algorithm. Empirical results showed the linearly decreased setting of inertia
weight can give a better performance, such as from 1.4 to 0 (Shi & Eberhart, 1998a), and 0.9
to 0.4 (Shi & Eberhart, 1998b, Shi & Eberhart, 1999). In 1999, Suganthan (Suganthan,1999)
proposed a time-varying acceleration coefficients automation strategy in which both c1 and
c2 are linearly decreased during the course of run. Simulation results show the fixed
acceleration coefficients at 2.0 generate better solutions. Following Suganthan's method,
Venter (Venter, 2002) found that the small cognitive coefficient and large social coefficient
could improve the performance significantly. Further, Ratnaweera (Ratnaweera et al., 2004)
investigated a time-varying acceleration coefficients. In this automation strategy, the
cognitive coefficient is linearly decreased during the course of run, however, the social
coefficient is linearly increased inversely.
Hybrid with Kalman filter, Monson designed a new Kalman filter particle swarm
optimization algorithm (Monson & Seppi, 2004) . Similarly, Sun proposed a new quantum
particle swarm optimization (Sun et al., 2004) in 2004. From the convergence point, Cui
designed a global convergence algorithm — stochastic particle swarm optimization (Cui &
Zeng, 2004). There are still many other modified methods, such as fast PSO (Cui et al.,
2006a), predicted PSO (Cui et al.,2006b), etc. The details of these algorithms can be found in
corresponding references.
The PSO algorithm has been empirically shown to perform well on many optimization
problems. However, it may easily get trapped in a local optimum for high dimensional
multi-modal problems. With respect to the PSO model, several papers have been written on
the subject to deal with premature convergence, such as the addition of a queen particle
(Mendes et al., 2004), the alternation of the neighborhood topology (Kennedy, 1999), the
introduction of subpopulation and giving the particles a physical extension (Lovbjerg et al.,
2001), etc. In this paper, an individual parameter selection strategy is designed to improve
the performance when solving high dimensional multi-modal problems.
The rest of this chapter is organized as follows: the section 2 analyzes the disadvantages of
the standard particle swarm optimization parameter selection strategies; the individual
inertia weight selection strategy is designed in section 3; whereas section 4 provides the
cognitive parameter selection strategy. In section 5, the individual social parameter selection
strategies is designed. Finally, conclusion and future research are discussed.

Individual Parameter Selection Strategy for Particle Swarm Optimization

91

2. The Disadvantages of Standard Particle Swarm Optimization
Partly due to the differences among individuals, swarm collective behaviors are complex
processes. Fig.l and Fig.2 provide an insight of the special swarm behaviors about birds
flocking and fish schooling. For a group of birds or fish families, there exist many
differences. Firstly, in nature, there are many internal differences among birds (or fish), such
as ages, catching skills, flying experiences, and muscles' stretching, etc. Furthermore, the
lying positions also provide an important influence on individuals. For example,
individuals, lying in the side of the swarm, can make several choices differing from center
others. Both of these differences mentioned above provide a marked contribution to the
swarm complex behaviors.

Figure 1. Fish's Swimming Process

Figure 2. Birds' Flying Process

Particle Swarm Optimization

92

For standard particle swarm optimization, each particle maintains the same flying (or
swimming) rules according to (1), (2) and (3). At each iteration, the inertia weight w,
cognitive learning factor c1 and social learning factor c2 are the same values within the whole
swarm, thus the differences among particles are omitted. Since the complex swarm
behaviors can emerge the adaptation, a more precise model, incorporated with the
differences, can provide a deeper insight of swarm intelligence, and the corresponding
algorithm may be more effective and efficient. Inspired with this method, we propose a new
algorithm in which each particle maintains personal controlled parameter selection setting.

3. Individual Inertia weight Selection Strategy
Without loss of generality, this paper consider the following problem:

 (4)

From the above analysis, the new variant of PSO in this section will incorporate the personal
differences into inertia weight of each particle (called PSO-IIWSS, in briefly) (Cai et al.,
2008), providing a more precise model simulating the swarm behaviors. However, as a new
modified PSO, PSO-IIWSS should consider two problems listed as follows:
1. How to define the characteristic differences of each particle?
2. How to use the characteristic difference to control inertia weight, so as to affect its

behaviors?

3.1 How to define the characteristic differences?
If the fitness value of particle u is better than which of particle m, the probability that global
optima falls into u’s neighborhood is larger than that of particle m. In this manner, the
particle u should pay more attentions to exploit its neighborhood. On the contrary, it may
tend to explore other region with a larger probability than exploitation. Thus the
information index is defined as follows:
The information index - score of particle u at time t is defined as

(5)

where xworst(t) and xbest(t) are the worst and best particles' position vectors at time t, respectively.

3.2 How to use the characteristic differences to guild its behaviors?
Since the coefficients setting can control the particles' behaviors, the differences may be
incorporated into the controlled coefficients setting to guide each particle's behavior. The
allowed controlled coefficients contain inertia weight w, two accelerators c1 and c2. In this
section, inertia weight w is selected as a controlled parameter to reflect the personal
characters. Since w is dependent with each particle, we use wu (t) representing the inertia
weight of particle u at time t.
Now, let us consider the adaptive adjustment strategy of inertia weight wu(t). The following
part illustrates three different adaptive adjustment strategies.
Inspired by the ranking selection mechanism of genetic algorithm (Mich ale wicz, 1992), the
first adaptive adjustment of inertia weight is provided as follows:

Individual Parameter Selection Strategy for Particle Swarm Optimization

93

The inertia weight wu(t) of particle u at time t is computed by

 (6)
where wlow(t) and whigh(t) are the lower and upper bounds of the swarm at time t.
This adaptive adjustment strategy states the better particles should tend to exploit its
neighbors, as well as the worse particles prefer to explore other region. This strategy implies
the determination of inertia weight of each particle, may provide a large selection pressure.
Compared with ranking selection, fitness uniform selection scheme (FUSS) is a new
selection strategy measuring the diversity in phenotype space. FUSS works by focusing the
selection intensity on individuals which have uncommon fitness values rather than on those
with highest fitness as is usually done, and the more details can be found in (Marcus, 2002).
Inspired by FUSS, the adaptive adjustment strategy two aims to provide a more chance to
balance exploration and exploitation capabilities.
The inertia weight wu(t) of particle u at time t is computed by

 (7)
where wlow(t) and whigh(t) are the lower and upper bounds of the swarm at time t. Scorerand(t)
is defined as follows.

(8)
where r is a random number sampling uniformly between f(xbest(t)) and f(xworst(t)).
Different from ranking selection and FUSS strategies which need to order the whole swarm,
tournament strategy (Blickle & Thiele, 1995) is another type of selection strategy, it only uses
several particles to determine one particle's selection probability. Analogized with
tournament strategy, the adaptive adjustment strategy three is designed with local
competition, and defined as follows:
The inertia weight wu(t) of particle u at time t is computed by

(9)

where wlow(t) and whigh(t) are the lower and upper bounds of the swarm at time t. ()
1r

x t and

()
1r

x t are two random selected particles uniformly.

3.3 The Step of PSO-IIWSS
The step of PSO-IIWSS is listed as follows.
• Step l. Initializing each coordinate xjk(0) to a value drawn from the uniform random

distribution on the interval [xmin,xmax], for j = 1,2, ...,s and k = 1,2, ...,n. This distributes the
initial position of the particles throughout the search space. Where s is the value of the
swarm, n is the value of dimension. Initializing each vjk(0) to a value drawn from the
uniform random distribution on the interval [—vmax, vmax], for all j and k. This distributes
the initial velocity of the particles.

• Step 2. Computing the fitness of each particle.
• Step 3. Updating the personal historical best positions for each particle and the swarm;

Particle Swarm Optimization

94

• Step 4. Determining the best and worst particles at time t, then, calculate the score of
each particle at time t.

• Step 5. Computing the inertia weight value of each particle according to corresponding
adaptive adjustment strategy one,two and three (section 3.2, respectively) .

• Step 6. Updating the velocity and position vectors with equation (1),(2) and (3) in which
the inertia w is changed with wj(t).

• Step 7. If the stop criteria is satisfied, output the best solution; otherwise, go step 2.

3.4 Simulation Results

3.4.1 Selected Benchmark Functions
In order to certify the efficiency of the PSO-IIWSS, we select five famous benchmark
functions to testify the performance, and compare PSO-IIWSS with stan-
dard PSO (SPSO) and Modified PSO with time- varying accelerator coefficients
(MPSO_TVAC) (Ratnaweera et al, 2004). Combined with different adaptive adjustment
strategy of inertia weight one, two and three, the corresponding versions of PSO-IIWSS are
called PSO-IIWSS1, PSO-IIWSS2, PSO-IIWSS3, respectively.
Sphere Modal:

where 100.0, and

Schwefel Problem 2.22:

where 10.0, and

Schwefel Problem 2.26:

where 500.0, and

Ackley Function:

Individual Parameter Selection Strategy for Particle Swarm Optimization

95

where 32.0, and

Hartman Family:

where jx ∈ [0.0,1.0], and aij is satisfied with the following matrix.

3 10 30
0.1 10 35
3 10 30

0.1 10 35

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

pij is satisfied with the following matrix.

0. 0. 0 0.
0. 0. 0. 0
0. 0 0. 0.

0.0 0. 0.

3687 117 2673
4699 4387 747
1 91 8732 5547
3815 5743 8828

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

ci is satisfied with the following matrix.

1
1.2
3
3.2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Sphere Model and Schwefel Problem 2.22 are unimodel functions. Schwefel Problem 2.26
and Ackley function are multi-model functions with many local minima,as well as Hartman
Family with only several local minima.

3.4.2 Parameter Setting
The coefficients of SPSO,MPSO_TVAC and PSO-IIWSS are set as follows:
The inertia weight w is decreased linearly from 0.9 to 0.4 with SPSO and MPSO_TVAC,
while the inertia weight lower bounds of PSO-IIWSS is set 0.4, and the upper bound of PSO-
IIWSS is set linearly from 0.9 to 0.4. Two accelerator coefficients c1 and c2 are both set to 2.0
with SPSO and PSO-IIWSS, as well as in MPSO_TVAC, c1 decreases from 2.5 to 0.5,while c2

Particle Swarm Optimization

96

increases from 0.5 to 2.5. Total individuals are 100 except Hartman Family with 20, and vmax

is set to the upper bound of domain.The dimensions of Sphere Model, Schwefel Problem
2.22,2.26 and Ackley Function are set to 30,while Hartman Family's is 3.Each experiment the
simulation runs 30 times while each time the largest evolutionary generation is 1000 for
Sphere Model, Schwefel Problem 2.22, Schwefel Problem 2.26, and Ackley Function, and
due to small dimensionality, Hartman Family is set to 100.

3.4.3 Performance Analysis
Table 1 to 5 are the comparison results of five benchmark functions under the same
evolution generations respectively.The average mean value and average
standard deviation of each algorithm are computed with 30 runs and listed as follows.
From the Tables, PSO-IIWSSI maintains a better performance than SPSO and MPSO_TVAC
with the average mean value. For unimodel functions, PSO-IIWSS3 shows preferable
convergence capability than PSO-IIWSS2,while vice versa for the multi-model functions.
From Figure 1 and 2,PSO-IIWSSI and PSO-IIWSS3 can find the global optima with nearly a
line track, while PSO-IIWSSI owns the fast search capability during the whole course of
simulation for figure 3 and 4. PSO-IIWSS2 shows the better search performance with the
increase of generations. In one word, PSO-IIWSSI owns a better performance within the
convergence speed for all functions nearly.

Algorithm Average Mean Value Average Standard Deviation
SPSO 9.9512e-006 1.4809e-005
MPSO_TVAC 4.5945e-018 1.9379e-017
PSO-IIWSSI 1.4251e-023 1.8342e-023
PSO-IIWSS2 1.2429e-012 2.8122e-012
PSO-IIWSS3 1.3374e-019 6.0570e-019

Table 1. Simulation Results of Sphere Model

Algorithm Average Mean Value Average Standard Deviation
SPSO 7.7829e-005 7.5821e-005
MPSO_TVAC 3.0710e-007 1.0386e-006
PSO-IIWSSI 2.4668e-015 2.0972e-015
PSO-IIWSS2 1.9800e-009 1.5506e-009
PSO-IIWSS3 3.2359e-012 4.1253e-012

Table 2. Simulation Results of Schwefel Problem 2.22

Algorithm Average Mean Value Average Standard Deviation
SPSO -6.2474e+003 9.2131e+002
MPSO_TVAC -6.6502e+003 6.0927e+002
PSO-IIWSSI -7.7455e+003 8.0910e+002
PSO-IIWSS2 -6.3898e+003 9.2699e+002
PSO-IIWSS3 -6.1469e+003 9.1679e+002

Table 3. Simulation Results of Schwefel Problem 2.26

Individual Parameter Selection Strategy for Particle Swarm Optimization

97

Algorithm Average Mean Value Average Standard Deviation
SPSO 8.8178e-004 6.8799e-004
MPSO_TVAC 1.8651e-005 1.0176e-004
PSO-IIWSS1 2.9940e-011 4.7552e-011
PSO-IIWSS2 3.8672e-007 5.6462e-007
PSO-IIWSS3 3.3699e-007 5.8155e-007

Table 4. Simulation Results of Ackley Function

Algorithm Average Mean Value Average Standard Deviation
SPSO -3.7507e+000 1.0095e-001
MPSO_TVAC -3.8437e+000 2.9505e-002
PSO-IIWSS1 -3.8562e+000 1.0311e-002
PSO-IIWSS2 -3.8511e+000 1.6755e-002
PSO-IIWSS3 -3.8130e+000 5.2168e-002

Table 5. Simulation Results of Hartman Family

3.5 Individual non-linear inertia weight selection strategy (Cui et al., 2008)

3.5.1 PSO-IIWSS with Different Score Strategies (PSO-INLIWSS)
As mentioned above, the linearly decreased score strategy can not reflect the truly complicated search
process of PSO. To make a deep insight of action for score, three non-linear score strategies are
designed in this paper. These three strategies are unified to a power function, which is set to the
following equation:

 (10)
where k1 and k2 are two integer numbers.
Figure 3 shows the trace of linear and three non-linear score strategies, respectively. In
Figure 1, the value f(xbest(t)) is set 1, as well as f(xworst(t)) is 100. When k1 and k2 are both set to
1, it is just the score strategy proposed in [?], which is also called strategy one in this paper.
While k1 > 1 and k2 = 1, this non-linear score strategy is called strategy two here. And
strategy three corresponds to k1 = 1 and k2 > 1, strategy four corresponds to k1 > k2 > 1.
Description of three non-linear score strategies are listed as follows: Strategy two: the curve
k1 = 2 and k2 = 1 in Figure 3 is an example of strategy two. It can be seen this strategy has a
lower score value than strategy one. However, the increased ratio of score is not a constant
value. For those particles with small fitness values, the corresponding score values are
smaller than strategy one, and they pay more attention to exploit the region near the current
position. However, the particles tends to make a local search is larger than strategy one due
to the lower score values. Therefore, strategy two enhances the local search capability.
Strategy three: the curve k1 = 1 and k2 = 2 in Figure 3 is an example of strategy three. As we
can see, it is a reversed curve compared with strategy two. Therefore, it enhances the global
search capability.
Strategy four: the curve k1 = 2 and k2 = 5 in Figure 3 is an example of strategy four. The first
part of this strategy is similar with strategy two, as well as the later part is similar with
strategy three. Therefore, it augments both the local and global search capabilities.

Particle Swarm Optimization

98

Figure 3. Illustration of Score Strategies

The step of PSO-INLIWSS with different score strategies are listed as follows.
• Step l. Initializing the position and velocity vectors of the swarm, and de termining the

historical best positions of each particle and its neighbors;
• Step 2. Determining the best and worst particles at time t with the following definitions.

 (11)
and

 (12)
• Step 3. Calculate the score of each particle at time t with formula (10) using different

strategies.
• Step 4. Calculating the PSO-INLIWSS inertia weight according to formula (6);
• Step 5. Updating the velocity and position vectors according to formula (1), (2) and (3);
• Step 6. Determining the current personal memory (historical best position);
• Step 7. Determining the historical best position of the swarm;
• Step 8. If the stop criteria is satisfied, output the best solution; otherwise, go step 2.

3.5.2 Simulation Results
To certify the efficiency of the proposed non-linear score strategy, we select five famous
benchmark functions to test the performance, and compared with standard PSO (SPSO),
modified PSO with time- varying accelerator coefficients (MPSO-TVAC) (Ratnaweera et al.,
2004), and comprehensive learning particle swarm optimization (CLPSO) (Liang et al.,
2006). Since we adopt four different score strategies, the proposed methods are called PSO-
INLIWSS1 (with strategy one, in other words, the original linearly PSO-IIWSS1), PSO-
INLIWSS2 (with strategy two), PSO-INLIWSS3 (with strategy three) and PSO-INLIWSS4
(with strategy four), respectively. The details of the experimental environment and results
are explained as follows.

Individual Parameter Selection Strategy for Particle Swarm Optimization

99

In this paper, five typical unconstraint numerical benchmark functions are used to test. They
are: Rosenbrock, Schwefel Problem 2.26, Ackley and two Penalized functions.
Rosenbrock Function:

where 30.0, and

Schwefel Problem 2.26:

where 500.0, and

Ackley Function:

where 32.0, and

Penalized Function l:

where 50.0, and

Particle Swarm Optimization

100

Penalized Function 2:

where 50.0, and

Generally, Rosenbrock is viewed as a unimodal function, however, in recent literatures,
several numerical experiments (Shang & Qiu, 2006) have been made to show Rosenbrock is
a multi-modal function with only two local optima when dimensionality between 4 to 30.
Schwefel problem 2.26, Ackley, and two penalized functions are multi-model functions with
many local minima.
The coefficients of SPSO, MPSO-TVAC, and PSO-INLIWSS are set as follows: inertia weight
w is decreased linearly from 0.9 to 0.4 with SPSO and MPSO-TVAC, while the inertia weight
lower bounds of all version of PSO-INLIWSS are both set to 0.4, and the upper bounds of
PSO-INLIWSS are both set linearly decreased from 0.9 to 0.4. Two accelerator coefficients c1
and c2 are set to 2.0 with SPSO and PSO-INLIWSS, as well as in MPSO-TVAC, c1 decreases
from 2.5 to 0.5, while c2 increases from 0.5 to 2.5. Total individuals are 100, and the velocity
threshold vmax is set to the upper bound of the domain. The dimensionality is 30. In each
experiment, the simulation run 30 times, while each time the largest iteration is 50 x
dimension.

Algorithm Mean Value Std Value
SPSO 5.6170e+001 4.3584e+001
MPSO-TVAC 3.3589e+001 4.1940e+001
CLPSO 5.1948e+001 2.7775e+001
PSO-INLIWSS1 2.3597e+001 2.3238e+001
PSO-INLIWSS2 3.4147e+001 2.9811e+001
PSO-INLIWSS3 4.0342e+001 3.2390e+001
PSO-INLIWSS4 3.1455e+001 2.4259e+001

Table 6. The Comparison Results for Rosenbrock

Algorithm Mean Value Std Value
SPSO -6.2762e+003 1.1354e+003
MPSO-TVAC -6.7672e+003 5.7050e+002
CLPSO -1.0843e+004 3.6105e+002
PSO-INLIWSS1 -7.7885e+003 1.1526e+003
PSO-INLIWSS2 -7.2919e+003 1.1476e+003
PSO-INLIWSS3 -9.0079e+003 7.1024e+002
PSO-INLIWSS4 -9.0064e+003 9.6881e+002

Table 7. The Comparison Results for Schwefel Problem 2.26

Individual Parameter Selection Strategy for Particle Swarm Optimization

101

For Rosenbrock (see Table 6), because there is an additional local optimum near (-1, 0, 0,...,0),
the performance of the MPSO-TVAC, PSO-INLIWSS1 and PSO-INLIWSS4 are better than
others. We also perform several other unimodel and multi-modal functions with only few
local optima, the PSO-INLIWSS1 are always the best one within these seven algorithms.
For Schwefel problem 2.26 (Table 7) and Ackley (Table 8), the performance of PSO-
INLIWSS3 and PDPSO4 are nearly the same. Both of them are better than others.
However, for two penalized functions (Table 9 and 10), the performance of PSO-INLIWSS3
is not the same as the previous two, although PSO-INLIWSS4 is still stable and better than
others. As we known, both of these two penalized functions has strong linkage among
dimensions. This implies PSO-INLIWSS4 is more suit for multi-modal problems.
Based on the above analysis, we can draw the following two conclusions:
(l) PSO-INLIWSSl (the original version of PSO-IIWSS1) is suit for unimodel and multi-
modal functions with a few local optima;
(2) PSO-INLIWSS4 is the most stable and effective among three score strategies. It is fit for
multi-modal functions with many local optima especially for linkages among dimensions;

Algorithm Mean Value Std Value
SPSO 5.8161e-006 4.6415e-006
MPSO-TVAC 7.5381e-007 3.3711e-006
CLPSO 5.6159e-006 4.9649e-006
PSO-INLIWSS1 4.2810e-014 4.3890e-014
PSO-INLIWSS2 1.1696e-011 1.2619e-011
PSO-INLIWSS3 2.2559e-014 8.7745e-015
PSO-INLIWSS4 2.1493e-014 7.8195e-015

Table 8. The Comparison Results for Ackley

Algorithm Mean Value Std Value
SPSO 6.7461e-002 2.3159e-001
MPSO-TVAC 1.8891e-017 6.9756e-017
CLPSO 1.0418e-002 3.1898e-002
PSO-INLIWSS1 1.6477e-025 4.7735e-025
PSO-INLIWSS2 6.2234e-026 1.6641e-025
PSO-INLIWSS3 2.4194e-024 7.6487e-024
PSO-INLIWSS4 2.2684e-027 4.4964e-027

Table 9. The Comparison Results for Penalized Functionl

Algorithm Mean Value Std Value
SPSO 5.4943e-004 2.4568e-003
MPSO-TVAC 9.3610e-027 4.1753e-026
CLPSO 1.1098e-007 2.6748e-007
PSO-INLIWSS1 4.8692e-027 1.3533e-026
PSO-INLIWSS2 2.8092e-028 5.6078e-028
PSO-INLIWSS3 9.0765e-027 2.5940e-026
PSO-INLIWSS4 8.2794e-028 1.6562e-027

Table 10. The Comparison Results for Penalized Function2

Particle Swarm Optimization

102

4. Individual Cognitive Selection Strategy
Because each particle maintains two types of performance at time t: the fitness value

 of historical best position found by particle j and that of current position
, respectively. Similarly, two different rewards of environment are also designed

associated with and . For convenience, the reward based upon
 is called the self-learning strategy one, and the other one is called the self-learning

strategy two. The details of these two strategies are explained as follows.

4.1 Self-learning Strategy One
Let us suppose is the historical best position vector of
the swarm at time t, where n and denote the dimensionality and the historical best
position found by particle j until time t.
The expectation limitation position of particle j of standard version of PSO is

(13)

if c1 and are constant values. Thus, a large c1 makes the moving
towards , and exploits near with more probability, and vice versa. Combined the
better implies the more capability of which global optima falls into, the cognitive
coefficient is set as follows.

 (14)
where clow, and chigh are two predefined lower and upper bounds to control this coefficient.
Reward1j(t) is defined

(15)

where fworst and fbest denote the worst and best values among .

4.2 Self-learning Strategy Two
Let us suppose is the population at time t, where n,

 denote the dimensionality and the position of particle j at time t.
Different from strategy one, if the performance is better than (j and k are
arbitrary chosen from the population), the probability of global optimal fallen near is
larger than , thus, particle j should exploit near its current position with a larger
probability than particle k. It means c1,j (t) should be less than c1,k (t) to provide little affection
of historical best position , and the adjustment is defined as follows

 (16)
where Reward2j(t) is defined as

Individual Parameter Selection Strategy for Particle Swarm Optimization

103

(17)

where fworst and fbest denote the worst and best values among .

4.3 Mutation Strategy
To avoid premature convergence, a mutation strategy is introduced to enhance the ability
escaping from the local optima.
This mutation strategy is designed as follows. At each time, particle j is uniformly random
selected within the whole swarm, as well as the dimensionality k is also uniformly random
selected, then, the vjk(t) is changed as follows.

 (18)
where r1 and r2 are two random numbers generated with uniform distribution within 0 and 1.

4.4 The Steps of PSO-ILCSS
For convenience, we call the individual Linear Cognitive Selection Strategy(Cai X.J. et
al.,2007;Cai X.J. et al.,2008) as ILCSS, and the corresponding variant is called PSO-ILCSS.
The detailed steps of PSO-ILCSS are listed as follows.
• Step l. Initializing each coordinate xjk (0) and vjk (0) sampling within [xmin, xmax], and

[0, vmax], respectively, determining the historical best position by each particle and the
swarm.

• Step 2. Computing the fitness of each particle.
• Step 3. For each dimension k of particle j, the personal historical best position pjk (t) is

updated as follows.

(19)

• Step 4. For each dimension k of particle j, the global best position pgk (t) is updated as

follows.

(20)

• Step 5. Selecting the self-learning strategy:if strategy one is selected, computing the

cognitive coefficient c1,j (t) of each particle according to formula (14) and (15); otherwise,
computing cognitive coefficient c1,j (t) with formula (16) and (17).

• Step 6. Updating the velocity and position vectors with equations (l)-(3).
• Step 7. Making mutation operator described in section 4.3.
• Step 8. If the criteria is satisfied, output the best solution; otherwise, goto step 2.

4.5 Simulation Results
Five famous benchmark functions are used to test the proposed algorithm's efficiency. They
are Schwefel Problem 2.22,2.26, Ackley, and two different Penalized Functions, the global
optima is 0 except Schwefel Problem 2.26 is -12569.5, while Schwefel Problem 2.22 is

Particle Swarm Optimization

104

unimodel function. Schwefel Problem 2.26,Ackley function and two Penalized Functions are
multi-model functions with many local minima.
In order to certify the efficiency, four different versions are used to compare: PSO-ILCSS
with self-learning strategy one (PSO-ILCSSI), PSO-ILCSS with self-learning strategy two
(PSO-ILCSS2),standard PSO (SPSO) and Modified PSO with time-varying accelerator
coefficients (MPSO-TVAC) (Ratnaweera et al., 2004).
The coefficients of SPSO,MPSO-TVAC,PSO-ILCSS1 and PSO-ILCSS2 are set as follows: the
inertia weight w is decreased linearly from 0.9 to 0.4. Two accelerator coefficients c1 and c2
are both set to 2.0 with SPSO, and in MPSO-TVAC, ci decreased from 2.5 to 0.5,while c2
increased from 0.5 to 2.5. In PSO-ILCSSI and PSO-ILCSS2, the lower bounds clow of c1 set to
1.0, and the upper bound chigh set to linearly decreased from 2.0 to 1.0, while c2 is set to 2.0.
Total individual is 100, and the dimensionality is 30, and vmax is set to the upper bound of
domain. In each experiment,the simulation run 30 times, while each time the largest
evolutionary generation is 1000.
Table 2 is the comparison results of five benchmark functions under the same evolution
generations. The average mean value and average standard deviation of each algorithm are
computed with 30 runs and listed as follows.

Function Algorithm Average Mean Value Average Standard Deviation
SPSO 6.6044e-005 4.7092e-005

MPSO-TVAC 3.0710e-007 1.0386e-006
PSO-ILCSS1 2.1542e-007 3.2436e-007 Fl

PSO-ILCSS2 9.0189e-008 1.3398e-007
SPSO -6.2474e+003 9.2131e+002

MPSO-TVAC -6.6502e+003 6.0927e+002
PSO-ILCSS1 -8.1386e+003 6.2219e+002 F2

PSO-ILCSS2 -8.0653e+003 7.2042e+002
SPSO 1.9864e-003 6.0721e-003

MPSO-TVAC 1.8651e-005 1.0176e-004
PSO-ILCSS1 3.8530e-008 3.8205e-008 F3

PSO-ILCSS2 1.3833e-008 1.0414e-008
SPSO 4.3043e-002 6.6204e-002

MPSO-TVAC 1.7278e-002 3.9295e-002
PSO-ILCSS1 9.1694e-012 3.4561e-011 F4

PSO-ILCSS2 9.7771e-014 4.9192e-013
SPSO 4.3662e-003 6.3953e-003

MPSO-TVAC 3.6624e-004 2.0060e-003
PSO-ILCSS1 9.4223e-013 3.9129e-012 F5

PSO-ILCSS2 4.6303e-015 1.0950e-014

Table 11. The Comparison Results of Benchmark Function

From the Table 2, PSO-ILCSSI and PSO-ILCSS2 both maintain better performances than
SPSO and MPSO-TVAC no matter the average mean value or standard deviation. The
dynamic performances of PSO-ILCSSI and PSO-ILCSS2 are near the same with SPSO and
MPSO-TVAC in the first stage, although PSO-ILCSSI and PSO-ILCSS2 maintains quick

Individual Parameter Selection Strategy for Particle Swarm Optimization

105

global search capability in the last period. In one words, the performances of PSO-ILCSSI
and PSO-ILCSS2 surpasses slightly than which of MPSO-TVAC and SPSO a little for
unimodel functions, while for the multi-model functions, PSO-ILCSSI and PSO-ILCSS2
show preferable results.

5. Individual Social Selection Strategy
5.1 Individual Linear Social Selection Strategy (ILSSS)
Similarly with cognitive parameter, a dispersed control manner (Cai et al., 2008) is
introduced, in which each particle selects its social coefficient value to decide the search
direction: or .
Since the literatures only consider the extreme value , however, they neglect the differences
between and . These settings lose some information maybe useful to find the global optima or
escape from a local optima. Thus, we design a new index by introducing the performance differences,
and the definition is provided as follows:

(21)

where fworst(t) and fbest(t) are the worst and best fitness values of the swarm at time t,
respectively. Occasionally, the swarm converges onto one point, that means fworst(t) = fbest(t).
In this case, the value Gradeu (t) of arbitrary particle u is set to 1. Gradeu (t) is an information
index to represent the differences of particle u at time t, according to its fitness value of the
current position. The better the particle is, the larger Gradeu (t) is, and vice versa.
As we known, if the fitness value of particle u is better than which of particle m, the
probability that global optima falls into m’s neighborhood is larger than that of particle m. In
this manner, the particle u should pay more attentions to exploit its neighborhood. On the
contrary, it may tend to explore other region with a larger probability than exploitation.
Thus, for the best solution, it should make complete local search around its historical best
position, as well as for the worst solution, it should make global search around . Then, the
dispersed social coefficient of particle j at time t is set as follows:

 (22)

where cup and clow, are two predefined numbers, and c2,j (t) represents the social coefficient of
particle j at time t.

5.2 Individual Non-linear Social Selection Strategy(INLSSS)
As mentioned before, although the individual linear social parameter selection strategy
improves the performance significantly, however, its linear manner can not meet the
complex optimization tasks. Therefore, in this section, we introduce four different kinds of
non-linear manner, and investigate the affection for the algorithm's performance.
Because there are fruitful results about inertia weight, therefore, an intuitive and simple
method is to introduce some effective non-linear manner of inertia weight into the study of
social parameter automation. Inspired by the previous literatures (Chen et al., 2006; Jiang &
Etorre, 2005), four different kinds of nonlinear manner are designed.

Particle Swarm Optimization

106

The first non-linear social automation strategy is called parabola opening downwards
strategy :

 (23)
The second non-linear social automation strategy is called parabola opening upwards
strategy:

(24)

The third non-linear social automation strategy is called exponential curve strategy:

(25)

The fourth non-linear social automation strategy is called negative-exponential strategy:

 (26)

5.3 The Steps of PSO-INLSSS
The detail steps of PSO-INLSSS are listed as follows:
• Step l. Initializing each coordinate k

jx and k
jv sampling within [xmin, xmax] and

[—vmax,vmax], respectively.
• Step 2. Computing the fitness value of each particle.
• Step 3. For k'th dimensional value of j'th particle, the personal historical best position

is updated as follows.

(27)

• Step 4. For k'th dimensional value of j'th particle, the global best position is updated
as follows.

(28)

• Step 5. Computing the social coefficient c2,j value of each particle according to formula

(23)- (26).
• Step 6. Updating the velocity and position vectors with equation (l)-(3) in which social

coefficient c2 is changed with c2,j.
• Step 7. Making mutation operator described in section 4.3.
• Step 8. If the criteria is satisfied, output the best solution; otherwise, goto step 2.

Individual Parameter Selection Strategy for Particle Swarm Optimization

107

5.4 Simulation Results
To testify the performance of these four proposed non-linear social parameter automation
strategies, three famous benchmark functions are chosen to test the performance, and
compared with standard PSO (SPSO), modified PSO with time- varying accelerator
coefficients (MPSO-TVAC) (Ratnaweera et al., 2004) and individual social selection strategy
(PSO-ILSSS). Since we adopt four different non-linear strategies, the proposed methods are
called PSO-INLSSS-1 (with strategy one), PSO-INLSSS-2 (with strategy two), PSO-INLSSS-3
(with strategy three) and PSO-INLSSS-4 (with strategy four), respectively. The details of the
experimental environment and results are explained as follows.

5.4.1 Benchmarks
In this paper, three typical unconstraint numerical benchmark functions are used to test.
Rastrigin Function:

where 5.12, and

Ackley Function:

where 32.0, and

Penalized Function:

where 50.0, and

Particle Swarm Optimization

108

5.4.2 Parameter Settings
The coefficients of SPSO, MPSO-TVAC, PSO-ILSSS and PSO-INLSSS are set as follows:
The inertia weight w is decreased linearly from 0.9 to 0.4 within SPSO, MPSO-TVAC, PSO-
ILSSS and PSO-INLSSS. Accelerator coefficients c1 and c2 are set to 2.0 within SPSO, as well
as in MPSO-TVAC, ci decreases from 2.5 to 0.5, while c2 increases from 0.5 to 2.5. For PSO-
ILSSS and PSO-INLSSS, cognitive parameter c1 is fixed to 2.0, while social parameter c2 is
decreased, whereas the lower bounds of c2 is set to 1.0, and the upper bounds is set from 2.0
decreased to 1.0. Total individuals are 100, and the velocity threshold vmax is set to the upper
bound of the domain. The dimensionality is 30 and 50. In each experiment, the simulation
run 30 times, while each time the largest iteration is 50 x dimension.

5.4.3 Performance Analysis
The comparison results of these three famous benchmarks are listed as Table 12-14, in which
Dim. represents the dimension, Alg. represents the corresponding algorithm, Mean denotes
the average mean value, while STD denotes the standard variance.
For Rastrigin Function (Table 12), the performances of all non-linear PSO-INLSSS algorithms
are worse than PSO-ILSSS when dimension is 30, although they are better than SPSO and
MPSO-TVAC. However, with the increased dimensionality, the performance of non-linear
modified variant PSO-INLSSS surpasses that of PSO-ILSSS, for example, the best
performance is achieved by PSO-INLSSS-3. This phenomenon implies that non-linear
strategies can exactly affect the performance.
For Ackley Function (Table 13) and Penalized Function (Table 14), the performance of PSO-
INLSSS-3 always wins. Based on the above analysis, we can draw the following two
conclusions:
PSO-INLSSS-3 is the most stable and effective among four non-linear strategies. It is
especially suit for multi-modal functions with many local optima especially.

Dim. Alg. Mean STD
SPSO 1.7961e+001 4.2276e+000

MPSO-TVAC 1.5471e+001 4.2023e+000
PSO-ILSSS 6.4012e+000 5.0712e+000

PSO-INLSSS-1 6.8676e+000 3.1269e+000
PSO-INLSSS-2 8.2583e+000 2.3475e+000
PSO-INLSSS-3 8.8688e+000 1.7600e+000

30

PSO-INLSSS-4 1.0755e+001 4.2686e+000
SPSO 3.9958e+001 7.9258e+000

MPSO-TVAC 3.8007e+001 7.0472e+000
PSO-ILSSS 1.5380e+001 5.5827e+000

PSO-INLSSS-1 1.4329e+001 4.7199e+000
PSO-INLSSS-2 1.5623e+001 4.4020e+000
PSO-INLSSS-3 1.3740e+001 4.3426e+000

50

PSO-INLSSS-4 2.1975e+001 5.6844e+000

Table 12. Comparison Results for Rastrigin Function

Individual Parameter Selection Strategy for Particle Swarm Optimization

109

6. Conclusion and Future Research
This chapter proposes a new model incorporated with the characteristic differences for each
particle, and the individual selection strategy for inertia weight, cognitive learning factor
and social learning factor are discussed, respectively. Simulation results show the individual
selection strategy maintains a fast search speed and robust. Further research should be made
on individual structure for particle swarm optimization.

Dim. Alg. Mean STD
SPSO 5.8161e-006 4.6415e-006

MPSO-TVAC 7.5381e-007 3.3711e-006
PSO-ILSSS 4.7853e-011 9.1554e-011

PSO-INLSSS-1 1.8094e-011 1.8533e-011
PSO-INLSSS-2 1.1870e-011 2.0876e-011
PSO-INLSSS-3 5.2100e-013 5.5185e-013

30

PSO-INLSSS-4 3.2118e-010 2.2272e-010
SPSO 1.7008e-004 1.2781e-004

MPSO-TVAC 4.4132e-002 1.9651e-001
PSO-ILSSS 1.5870e-008 1.7852e-008

PSO-INLSSS-1 2.3084e-008 3.6903e-008
PSO-INLSSS-2 1.1767e-008 1.3027e-008
PSO-INLSSS-3 4.7619e-010 1.4337e-009

50

PSO-INLSSS-4 3.4499e-008 4.7674e-008

Table 13. Comparison Results for Ackley Function

Dim. Alg. Mean STD
SPSO 5.4943e-004 2.45683e-003

MPSO-TVAC 9.3610e-027 4.1753e-026
PSO-ILSSS 5.1601e-023 1.7430e-022

PSO-INLSSS-1 6.0108e-020 1.5299e-019
PSO-INLSSS-2 4.5940e-021 6.2276e-021
PSO-INLSSS-3 9.7927e-024 1.6162e-023

30

PSO-INLSSS-4 1.0051e-016 1.9198e-016
SPSO 6.4279e-003 1.0769e-002

MPSO-TVAC 4.9270e-002 2.0248e-001
PSO-ILSSS 1.6229e-017 3.9301e-017

PSO-INLSSS-1 6.2574e-015 1.3106e-014
PSO-INLSSS-2 1.6869e-014 3.3596e-014
PSO-INLSSS-3 6.2959e-018 5.6981e-018

50

PSO-INLSSS-4 8.0886e-013 3.7972e-013

Table 14. Comparison Results for Penalized Function

Particle Swarm Optimization

110

7. Acknowledgement
This chapter is supported by National Natural Science Foundation of China under Grant
No.60674104, and also supported by Doctoral Scientific Research Starting Foundation of
Taiyuan University of Science and Technology under Grant No.20082010.

8. References
Holland, J.H. (1992). Adaptation in natural and artificial systems: an introductory analysis

with application to biology, control, and artificial intelligence, 2nd Edition,
Cambridge, MA: MIT Press. [1]

Dorigo, M. & Gambardella, L.M. (1997) Ant colony system: a cooperative learning
approach to the traveling salesman problem, IEEE Transactions on Evolutionary
Computation, Vol.1, No.l, 53-66. [2]

Eberhart, R.C. & Kennedy, J. (1995). A new optimizer using particle swarm theory,
Proceedings of 6th International Symposium on Micro Machine and Human Science,
pp.39-43. [3]

Kennedy, J. & Eberhart, R.C. (1995). Particle swarm optimization, Proceedings of IEEE
International Conference on Neural Networks, pp. 1942-1948. [4]

Shen, H.Y.; Peng, X.Q.; Wang, J.N. & Hu, Z.K. (2005). A mountain clustering based on
improved PSO algorithm, Lecture Notes on Computer Science 3612, Changsha,
China, pp.477-481. [5]

Eberhart, R.C. & Shi, Y. (1998). Extracting rules from fuzzy neural network by particle
swarm optimization, Proceedings of IEEE International Conference on Evolutionary
Computation, Anchorage, Alaska, USA. [6]

Li, Q.Y.; Shi, Z.P.; Shi, J. & Shi, Z.Z. (2005). Swarm intelligence clustering algorithm
based on attractor, Lecture Notes on Computer Science 3612,Changsha, China,
pp.496-504. [7]

Shi, Y. & Eberhart, R.C. (1998a). A modified particle swarm optimizer, Proceedings of the
IEEE International Conference on Evolutionary Computation, Anchorage, Alaska,
USA,pp.69-73. [8]

Shi Y. & Eberhart R.C. (1998b). Parameter selection in particle swarm optimization,
Proceedings of the 7th Annual Conference on Evolutionary Programming, pp.591-600.
[9]

Shi Y. & Eberhart R.C. (1999). Empirical study of particle swarm optimization,
Proceedings of the Congress on Evolutionary Computation, pp. 1945-1950. [10]

Suganthan P.N. (1999). Particle swarm optimizer with neighbourhood operator,
Proceedings of the Congress on Evolutionary Computation, pp. 1958-1962. [11]

Venter, G. (2002). Particle swarm optimization, Proceedings of 43rd
AIAA/ASME/ASCE/AHS/ASC Structure, Structures Dynamics and Materials
Conference, pp.22-25. [12]

Ratnaweera, A.; Halgamuge, S.K. & Watson, H.C. (2004). Self-organizing hierarchical
particle swarm opitmizer with time-varying acceleration coefficients, IEEE
Transactions on Evolutionary Computation, Vol.8, No.3, 240-255. [13]

Monson, C.K. & Seppi, K.D. (2004). The Kalman swarm: a new approach to particle
motion in swarm optimization, Proceedings of the Genetic and Evolutionary
Computation Conference,pp. 140-150. [14]

Individual Parameter Selection Strategy for Particle Swarm Optimization

111

Sun, J. et al. (2004). Particle swarm optimization with particles having quantum behavior,
Proceedings of the IEEE Congress on Evolutionary Computation, pp.325-331. [15]

Cui, Z.H. & Zeng, J.C. (2004). A guaranteed global convergence particle swarm
optimizer, Lecture Notes in Artificial Intelligence, vol.3066, Sweden, pp.762-767.
[16]

Cui, Z.H.; Zeng, J.C. & Sun, G.J. (2006a). A fast particle swarm optimization, International
Journal of Innovative Computing, Information and Control, Vol.2, No.6,pp.l365-1380.
[17]

Cui, Z.H.; Cai, X.J.; Zeng, J.C. & Sun, G.J. (2006b). Predicted-velocity particle swarm
optimization using game-theoretic approach, Lecture Notes in Computer Science,
vol.4115, Kunming, China, pp.145-154. [18]

Mendes, R.; Kennedy, J. & Neves, J. (2004). The fully informed particle swarm: simper,
maybe better, IEEE Transactions on Evolutionary Computation, Vol.8, No.3, pp.204-
210. [19]

Kennedy, J. (1999). Small worlds and mega-minds: effects of neighborhood topology on
particle swarm performance, Poceedings of the 1999 Congress on Evolutionary
Computation, pp.1931-1938. [20]

Løvbjerg, M.; Rasmussen, T.K. & Krink, T. (2001). Hybrid particle swarm optimiser with
breeding and subpopulations, Proceedings of the third Genetic and Evolutionary
Computation Conference. [21]

Cai, X.J.; Cui, Z.H.; Zeng, J.C. & Tan Y. (2007a). Performance-dependent adaptive particle
swarm optimization, International Journal of Innovative Computing, Information and
Control, Vol.3, No.GB, 1697-1706. [22]

Michalewicz, Z. (1992). Genetic Algorithm+ Data Structures =Evolution Programs, Springer-
Verlag, Berlin. [23]

Marcus, H. (2002). Fitness uniform selection to preserve genetic diversity, Proceedings of
IEEE Congress on Evolutionary Computation, pp.783-388. [24]

Blickle, T. & Thiele, L. (1995). A mathematical analysis of tournament selection,
Proceedings of the Sixth International Conference on Genetic Algorithms, San
Francisco, California, pp.9-16. [25]

Cui, Z.H; Cai, X.J. & Zeng J.C. (2008). Some Non-linear Score Strategies in PDPSO, ICIC
Express Letters Vol.2, No.3. [26]

Liang, J.J.; Qin, A.K.; Suganthan, P.N. & Baskar, S. (2006). Comprehensive learning
particle swarm optimizer for global optimization of multimodal functions, IEEE
Transactions on Evolutionary Computation, Vol.10, No.3, 281-295. [27]

Shang, Y.W. & Qiu, Y.H. (2006). A note on the extended Rosenbrock function,
Evolutionary Computation, Vol.14, No.l, 119-126. [28]

Cai, X.J.; Cui, Z.H.; Zeng, J.C. & Tan Y. (2007b). Self-learning Particle Swarm
Optimization Based on Environmental FeedbackProceerfzngs of the Second
International Conference on Innovative Computing, Information and Control
(ICICIC2007), Japan. [29]

Cai, X.J.; Cui Z.H.; Zeng, J.C. & Tan, Y. (2008). Particle Swarm Optimization with Self-
adjusting Cognitive Selection Strategy, International Journal of Innovative
Computing, Information and Control (IJICIC), Vol.4, No.4, 943-952. [30]

Particle Swarm Optimization

112

Chen, G.M.; Jia, J.Y. & Han, Q. (2006). Study on the Strategy of Decreasing Inertia Weight
in Particle Swarm Optimization Algorithm, Journal of Xi'an Jiao Tong University,
Vol.40, No.l, pp.53-56. (in Chinese) [31]

Jiang, C.W. & Etorre, B. (2005). A self-adaptive chaotic particle swarm algorithm for
short term hydroelectric system scheduling in deregulated environment, Energy
Conversion and Management, Vol.46, No.17, pp.2689-2696. [32]

6

Personal Best Oriented Particle Swarm
Optimizer

 Chang-Huang Chen1, Jonq-Chin Hwang 2 and Sheng-Nian Yeh2
1Tungnan University, 2National Taiwan University of Science and Technology

Taipei, Taiwan, ROC

1. Introduction
 Optimization problems are frequently encountered in many engineering, economic or
scientific fields that engineers or researchers are seeking to minimize cost or time, or to
maximize profit, quality or efficiency, of a specific problem. For example, economic dispatch
of power generation, optimal allocation of resources for manufacture, design optimal plant
to maximize production, and so many which are unable to enumerate completely. In
addition, many optimization problems are very complex and hard to solve by conventional
gradient-based techniques, particularly the objective function and constraint are not in
closed forms. Thus, the development of a good optimization strategy or algorithm is of great
value.
In the past decade, particle swarm optimization (PSO) algorithm [Eberhart & Kennedy 1995,
Kennedy and Eberhart 1995] attracts many sights around the world due to its powerful
searching ability and simplicity. PSO simulates the swarm behavior of birds flocking and
fish schooling that swarms work in a collaborative manner to search for foods as efficient
and quick as possible. There are three different types of PSO which are frequently
encountered in literature. They are constriction type PSO, constant inertia weight PSO and
linearly decreasing inertia weight PSO. Each of them has been successfully applied to many
optimization problems.
While empirical studies have proven PSO’s usefulness as an optimization algorithm, it does
not always fit all problems. Sometimes, it may also get stuck on local optimal. In order to
improve the performance, many variants of PSO have been proposed. Some of the proposed
algorithms adopted new operations and some of the modifications hybridized with other
algorithm. Although they are claimed better than original PSO algorithm, most of them will
introduce extra mathematical or logical operations, which, in turn, making algorithm more
complicate and spending more computing time. Especially, they, in general, did not present
any theoretical models to describe its behavior and support such modifications.
Many researchers have devoted to study how PSO works. They intended to discover the
implicit properties of PSO and its weakness and strength via theoretical analysis. The first
attempt to analysis PSO is made by Kenndey [Kennedy, 1998]. Meanwhile, Ozcan and
Mohan showed that a particle in a simple one-dimensional PSO system follows a path
defined by a sinusoidal wave with random amplitude and frequency. However, the effects
of inertia weight are not addressed in that paper [Ozcan & Mohan, 1999]. In order to analyze

Particle Swarm Optimization

114

the dynamics of PSO, Yasuda proposed a generalized reduced model of PSO accounting for
the inertia weight. The stability analysis is carried out on the basis of both the eigenvalue
analysis and numerical simulation [Yasuda et al., 2003]. Trelea has carried out a convergence
analysis of PSO and then derived a graphical parameter selection guideline to facilitate
choosing parameters [Trelea, 2003].
A formal analysis of the PSO is carried out by Clerc and Kennedy [Clerc & Kennedy, 2002].
By treating the random coefficients as constants, the analysis started from converting the
standard stochastic PSO to a deterministic dynamical system. The resulting system was a
second-order linear dynamic system whose stability depended on the system’s eigenvalues.
The parameter space that guarantees stability is also identified. A similar analysis based on
deterministic model of the PSO was also carried out in identifying regions in the parameter
space that guarantee stability [van den Berg, 2002]. Recently, stochastic convergence analysis
of the standard PSO is reported in [Jian, 2007], where a parameter selection guide is also
provided to ensure the convergence.
Similar to genetic algorithm or evolutionary algorithm, PSO is also a population-based
optimization technique. PSO searches for optimal solution via collaborating with
individuals within a swarm of population. Each individual, called particle, is made of two
parts, the position and velocity, and proceeds according to two major operations, velocity
and position updating rules. Position and velocity represent the candidate solution and step
size, a particle will advance in the next iteration, respectively. For an n-dimensional problem
and a swarm of m particles, the i-th particle’s position and velocity, in general, are denoted
as xi=[xi1, xi2, …, xin]T and vi=[vi1, vi2, …, vin]T, for i=1, 2, …, m, respectively, where m is the
number of particles, and superscript T stands for the transpose operator. Considering on the
inertia weight PSO, the operations of position and velocity are expressed as:

 (t))x(prnd(1)c(t))x(prnd(1)c(t)vω1)(tv idid2idgd1idid −⋅⋅+−⋅⋅+⋅=+ (1)

 1)(tv(t)x1)(tx ididid ++=+ (2)

where ω is the inertia weight; c1 and c2 are two positive constants called acceleration
constants; rnd(1) is a uniform random number in (0,1); d is the index of dimension; pg and pi
are the best position ever found by all particles and the best position a particle ever found so
far, respectively; t is the iteration count. Hereafter, pg and pi will be called the global best
and personal best particle of the swarm, respectively, in this chapter.
Personal best oriented particle swarm optimizer (PPSO), also a varient of particle swarm
optimization, is a newly developed optimization solver [Chen & Yeh, 2006a]. PPSO uses the
same velocity updating rule as PSO. However, the position updating rule is replaced by (3).

 1)(tvp1)(tx ididid ++=+ (3)

The modification came from the observation that since pid is the best particle ever found so
far, it may locate around the vinicity of the optimal solution. Fotunately, previous studies
showed that PPSO performs well both in testing on a suite of benchmark functions and
applying to economic dispatch problems of the power system and others [Chen & Yeh,
2006a, 2006b, 2007, 2008]. However, all the results were obtained from emperical studies.
The main drawback of PPSO may lie in a fragile theory basis at first galance. No theoretical

Personal Best Oriented Particle Swarm Optimizer

115

analysis has been found in literature, although it not only can help reveal the behavior of
particles but also the convergent property of the proposed approach.
This chapter presents a therotical analysis of PPSO. Based on the analysis, the implicit
behavior of PPSO will be revealed. Meanwhile, it also provide a guideline for parameters
selection. It is well-known that the particle’s trajectory of PSO is characterized by a second-
order difference equation. However, it will be clear later that a first order difference
equation is sufficient to characterize the particle’s behavior of PPSO. A simple mathematical
model can help one easily grasp the features of PPSO and convergent tendency.

2. Analysis of PPSO
This section intends to construct the mathematical model of PPSO and, based on the
developed model, study the property of PPSO. The analysis is started from a simplified
deterministic model, a single particle and one dimension case, keeping all the parameters
constants. After that, assuming some parameters be uniformly distributed random numbers,
a stochastic model is then built to simulate the nature of PPSO in the next section.

2.1 Simple PPSO: one particle and one dimension case
Each particle in PPSO represents a candidate solution of a specific problem. In other words,
a particle is a position in a multidimensional search space in which each particle attempts to
explore for an optimal solution with respect to a fitness function or objective function. In this
section, a simple PPSO is first derived on which the following analysis is based.
The canonical form of PPSO is represented as .

 () ()(t)xpφ(t)xpφ(t)vω1)(tv idid2idgd1idid −⋅+−⋅+⋅=+ (4)

 ididid p1)(tv1)(tx ++=+ (5)

where ϕ1 = c1⋅rnd(1) and ϕ2 = c2⋅rnd(1) are two random numbers drawn uniformly from (0,
c1) and (0, c2), respectively.
Since (4) and (5) operate on each dimension exclusively, for notation simplicity, one can
omit the subscript i and d of xid and vid, and retain subscript g and i of pg and pi to
emphasize the difference between them. The analysis given below considers only one
particle and one dimensional case. However, the results can easily be extended to
multidimensional case without losing generality.
Eqations (4) and (5) can now be rewritten as:

 () ()x(t)pφx(t)pφv(t)ω1)v(t i2g1 −⋅+−⋅+⋅=+ (6)

 ip1)v(t1)x(t ++=+ (7)

Substituting (6) into (7), one has:

 () () ii2g1 px(t)pφx(t)pφv(t)ω1)x(t +−⋅+−⋅+⋅=+ (8)

Since

 ipv(t)x(t) += (9)

Particle Swarm Optimization

116

It has

 ipx(t)v(t) −= (10)

and

 () () () ii2g1i px(t)pφx(t)pφpx(t)ω1)x(t +−⋅+−⋅+−⋅=+ (11)

Rearranging (11), it becomes

 i2g1 pω)φ(1pφφ)x(t)(ω1)x(t ⋅−++⋅=−−+ (12)

where ϕ = ϕ1 + ϕ2. Obviously, a first-order linear difference equation is sufficient to
characterize the dynamic behaviors of the simple PPSO.

2.2 Deterministic model of PPSO
Now assume that both pi and pg are constants. Also assume that ϕ1 and ϕ2 are two
constants. It turns out that the PPSO becomes a deterministic model described by a first-
order linear difference equation with constant coefficients. If the right-hand side of (12) is
nonzero, it is a nonhomogeneous linear difference equation. The total solution of a
nonhomogeneous linear difference equation with constant coefficients is the sum of two
parts, the homogeneous solution, which satisfies the difference equation when the right-
hand side of the equation is zero, and the particular solution, which satisfies the difference
equation with a nonzero function F(t) on the right-hand side.
The homogeneous solution of a difference equation with constant coefficient is of the form
Aλt, where λ is called the characteristic root of the difference equation and A is a constant to
be determined by the boundary (initial) condition.
The homogeneous solution and particlar solution of (12) can be obtained readily

 t
h φ)A(ω(t)x −= (13)

and

 ω)φ]/(1pω)φ(1p[φ(t)x i2g1p −+⋅−++⋅= (14)

Here, subscript h and p are used to denote the homogeneous solution and particular
solution. The total solution of (12) become

 w
t pφ)A(ωx(t) +−= (15)

where

 ω)φ]/(1pω)φ(1p[φp i2g1w −+⋅−++⋅= (16)

is called the weighted mean of pg and pi. Given the initial condition x(0)=x0, the dynamic
property of a particle is completely characterized by

 w
t

w0 pφ))(ωp(xx(t) +−−= (17)

Personal Best Oriented Particle Swarm Optimizer

117

where x0 is the initial vale of x(t) and A = (x0 - pw). Equation (12) and (17) represent the
position or trajectory that a particle may explore in implicit and explicit form.

2.2.1 Convergence property of the deterministic PPSO
Apparently, if (ω - φ) satisfies the following condition

 1φ)(ω <− (18)

or

 1φ)(ω1 <−<− (19)

Then

 () wt
px(t)lim =

∞→
 (20)

The limit does exist whenever pw is an arbitrary point in the search space, i.e., pw is finite. It
is obvious that if 0 < ω < 1, it leads to (1 + ϕ - ω) > 0 since ϕ = ϕ1 + ϕ2 > 0, and the weighted
mean pw is finite.
Hereafter, finite pw and 0 < ω < 1 are assumed, unless stated explicitly. The feasible region in
which x(t) is strictly converges for 0<ω<1 and -1<ϕ< 2 is plotted in Fig.1, where the gray
area is the feasible region if stability is concerned, and the dark line on the center
corresponds to ω = ϕ.

Figure 1. The gray region is the feasible region which particle strictly converges for 0 < ω < 1
and -1< ϕ < 2. The centered dark-line on the gray area corresponds to ω = ϕ

2.2.2 Step size
The span the particle advances in the next step is calculated using the successive positions at
t and (t+1),

Particle Swarm Optimization

118

 w
t

w0 pφ))(ωp(xx(t) +−−= (21)

and

 w
1t

w0 pφ))(ωp(x1)x(t +−−=+ +
 (22)

Define the step size as

 t
w0 φ))(ωp1)(xφ(ω

x(t)1)x(tΔx(t)

−−−−=

−+≡
 (23)

Since

 x(t))(pφ))(ωp(x w
t

w0 −−=−− (24)

It has

 dx1)φ(ωΔx(t) ⋅−−−= (25)

where

 x(t))(pdx w −≡ (26)

is the distance between the current position x(t) and the weighted mean, pw. Equation (26)
tells that the step size is a multiple, defined by –(ω - ϕ - 1), of the distance between x(t) and
pw. If –(ω - ϕ - 1) is positive, x(t) moves in aligning with the direction from current position
to pw and, if –(ω - ϕ - 1) is negative, x(t) moves on the opposite side. The former make
particles moving close to pw and the latter make particles get far way from pw.
Now, define a step size control factor, δ, as:

 1)φ(ωδ −−−≡ (27)

Then

 dxδΔx(t) ⋅= (28)

Obviously, how long a particle will advance in next turn is controlled by the step size
control factor δ. A large δ makes a particle to move far away from current position and a
small value of δ makes a particle moving to nearby area.
Meanwhile, it is interesting to note that if 0 < δ < 2, (27) becomes to

 21)φ(ω0 <−−−< (29)

or

 1φ)(ω1 <−<− (30)

This agrees with (19). In other words, if the step size control factor satisfies 0 < δ < 2, the
deterministic PPSO converges to pw. Otherwise, it diverges.

Personal Best Oriented Particle Swarm Optimizer

119

Clearly, under condition 0 < δ < 2, the deterministic PPSO is stable, otherwise, it is unstable.
Since δ is a function of ω and ϕ, the choices of ω and ϕ affect the magnitude of the step size
control factor, or, in other words, affect the stability of PPSO.
Returning to (30), there are two cases are especially worthy to pay attention:
(a) 0< (ω - ϕ) < 1

This case corresponds to

 1δ011)φ(ω0 <<⇒<−−−< (31)

In such situation, x(t+1) moves to the region to the left of pw whenever pw is greater than
x(t), or the region to the right of pw whenever pw is less then x(t).
(b) -1 < (ω - ϕ) < 0

This case corresponds to

 2δ121)φ(ω1 <<⇒<−−−< (32)

This means that x(t+1) advances to the region to the right of pw whenever pw is less than x(t),
or the region to the left of pw whenever pw is greater then x(t).
These two cases are illustrated in Figs.2 and 3. It is apparent that the step size control factor
affects how far the particle moves. Since the step size is proportional to δ, a large δ
corresponds to advancing in a large step and small δ corresponds to small step. Moreover, a
positive δ makes x(t) move along the direction from x(t) to pw ,while a negative δ causes it
move along the opposite direction. By controlling δ, or equivalently (ω - ϕ), particles
movement will be totally grasped. It is expected that if δ is uniformly changed in (0, 2), then
x(t) will vibrate around the center position, pw, the weighted midpoint of pg and pi. This is a
very important property of PPSO. Similar phenomenon has been observed [Kennedy, 2003]
and verified theoretically in PSO [Clerc & Kennedy, 2002].

2.2.3 Parameters selection
Equation (27) defines the step size control factor. It provides clues for determining
parameters. First, confine the step size control factor within (δmin, δmax), where δmin and δmax
are the lower and upper limits of the step size control factor, respectively, it turns out that

 maxmin δ1)φ(ωδ <−−−< (33)

After proper rearrangement, (33) becomes

 1)ω(δφ1)ω(δ maxmin −+<<−+ (34)

According to (34), once the lower and upper bounds of the step size control factor are
specified, the range of ϕ depends on ω. The most important is that a stable PPSO requires,
based on (29), δmin = 0 and δmax =2. Substituting these two values into into (34), it has

 ω1φ1ω +<<− (35)

Equation (35) says that, if ϕ uniformly varies from (ω - 1) to (ω + 1), x(t) will explore the
region from (pw - dx) to (pw + dx). It also implies that it is possible to use a negative value of
ϕ while PPSO is still stable. This fact has been shown in Fig.1.

Particle Swarm Optimization

120

Figure 2. The next position, x(t+1), a particle will move to for 0 < δ < 1, (a) pw > x(t) and (b)
pw < x(t)

Figure 3. The next position, x(t+1), a particle will move to for 1 < δ < 2, (a) pw > x(t) and (b)
pw < x(t)

Since ϕ1 and ϕ2 are both positive numbers, so is ϕ. Fig.4 shows the case that ϕ is positive
and is restricted to 0 < ϕ < 2.
If ω is assigned, from (27), one also has

 ϕmin +1 - ω < δ < ϕmax +1 - ω (36)
where ϕmin and ϕmax are the lower and upper limits of ϕ. Thus, one can use (36) to predict
the range the particle attempts to explore for a specific range of ϕ, if ω is given. From (36),
one can also readily verify that ϕmin = ω - 1 and ϕmax = ω + 1 result in δ = 0 and 2,
respectively, agreeing with (29).
A graph of step size control factor versus φ with ω as parameter is plotted in Fig.5 for 0 < ϕ <
2 and 0 < ω < 1. The gray area corresponds to convergent condition since 0 < δ < 2. One can
use this graph to evaluate whether the selected parameters result in convergence or not.

Figure 4. The feasible region for 0 < ω < 1 and 0 < ϕ < 2

Personal Best Oriented Particle Swarm Optimizer

121

Figure 5. A plot of step size control factor δ versus ϕ with ω as parameter

2.2.4 Stability
The stability criterion imposed upon the deterministic PPSO is directly obtained from (18),
i.e, |(ω - ϕ)| < 1. However, based on (29), an implication of stability means that the step size
control factor needs to meet the requirement 0 < δ < 2. Hence, stability of the deterministic
PPSO can be described by one of the following rules:

(a) | (ω - ϕ)| < 1
or

(b) 0 < -(ω - ϕ - 1) < 2

2.2.5 Equilibrium point
According to the above analysis, one can conclude that, for a stable deterministic PPSO, each
particle moves in discrete time along the trajectory defined by (12) or (17), with specific step
size, and finally settles down at an equilibrium point pw. The equilibrium point is a function
of ϕ1 and ϕ2. Referring to (16), one can readily verify that if ϕ1 > (1 + ϕ2 - ω), the equilibrium
point pw biases to pg, and biases to pi if ϕ1 ≤ (1 + ϕ2 - ω). However, the equilibrium point
found in PSO is the midpoint of pg and pi since ϕ1 = ϕ2 is usually used in PSO.

3.Stochastic PPSO
Instead of constants, now, restore both ϕ1 and ϕ2 to be uniform random numbers in (0, c1)
and (0, c2), respectively. The model of (12) and (17) are still applied except that ϕ1 and ϕ2 are
now two uniform random numbers. Analysis of the dynamic behavior of this stochastic
PPSO will be given by extending the analysis provided in the previous section, with the
replacement of expectation value for ϕ1 and ϕ2 as well as x(t) from the probabilistic point of
view. In the following analysis, the terms mean value, or simply mean, and expectation
value will be used alternatively, in a looser mathematical standard, in the context.

3.1 Convergent property
Considering the explicit representation, Eq.(17), of the trajectory of a particle, since ϕ1 and ϕ2
are both uniform random numbers, the averaged dynamic behavior of a particle can be
observed by its expectation value, i.e.

Particle Swarm Optimization

122

() ()

()()

t
0 w w

t
0 w w

E x(t) E (x p)(ω φ) p

x E(p) ω E(φ) E(p)

= − − +

= − − +
 (37)

where E(x(t)), E(pw), and E(ϕ) are the expectation value of x(t), pw and ϕ, respectively. Here,
ϕ1 and ϕ2 are assumed to be two exclusive uniform random numbers; and E(ϕ) = E(ϕ1) +
E(ϕ2). Apparently, if the condition

 1 < ω - E(ϕ)) < 1 (38)

is true, then

 ())E(px(t)Elim wt
=

∞→
 (39)

According to (39), the trajectory of each particle converges to a random weighted mean,
E(pw), of pg and pi, where

()

ω)E(φ)E(φ1
pω))E(φ(1p)E(φ

ω)φ]/(1pω)φ(1p[φE)E(p

21

i2g1

i2g1w

−++
⋅−++⋅

=

−+⋅−++⋅=
 (40)

Since
 1ω0ifω)E(φ)E(φ1 21 <<>++ (41)

E(pw) is finite for 0 < ω < 1, 0 < E(ϕ1) and 0 < E(ϕ2) as well as finite pi and pg.
Owing to ϕ1 and ϕ2 are both uniform random numbers in (0, c1) and (0, c2), respectively, it
has E(ϕ1) = 0.5c1, E(ϕ2) = 0.5c2 and E(ϕ) = E(ϕ1 + ϕ2) = 0.5(c1 + c2). Thus, (40) becomes

ω)c0.5(c1
pω)0.5c(1p0.5c

ω)E(φ)E(φ1
pω))E(φ(1p)E(φ

)E(p

21

i2g1

21

i2g1
w

−++
⋅−++⋅

=

−++
⋅−++⋅

=
 (42)

Obviously, for a stochastic model of PPSO, the random weighted mean pw is different from
that obtained by deterministic model of PSO and PPSO. Meanwhile, for 0 < ω < 1, E(pw)
bias to pi. This means that particle will cluster to pi instead of pg.

3.2 Step size
Similar to deterministic PPSO, the step size of the stochastic PPSO can be computed by

()E Δx(t) = E(x(t+1))-E(x(t))
 = - (ω - E(ϕ) - 1)(E(pw) - E(x(t))) (43)

 = - (ω - 0.5(c1 + c2) - 1)E(dx)
where

 E(x(t)))E(pE(dx) w −= (44)

Personal Best Oriented Particle Swarm Optimizer

123

For a stochastic PPSO, the mean (expectant) step size a particle will move in next turn is
computed from (43), which is a multiple of the mean distance between the random weighted
mean E(pw) and mean current position E(x(t)). Similar to deterministic PPSO, the mean step
size control factor is defined as

 E(δ) = - (ω - E(ϕ) - 1) (45)

The step size and step size control factor are no longer static values but stochastic ones.
Furthermore, for 0 < E(δ) < 2, from (45), it also has

 -1 < -(ω - E(ϕ)) < 1 (46)

Actually, (46) is the same as (38). Rearranging (46), one has

 ω1)E(φ1ω +<<− (47)

Equations (46) and (47) are similar to (30) and (35), respectively, except that the constant ϕ
(=ϕ1 + ϕ2) is replaced by sum of the expectation values of two random numbers. As
concluded in the previous section, a stable stochastic PPSO equivalently means that the
mean step size control factor of each particle’s movement must be within the range of 0 <
E(δ) < 2. In other words, if E(ϕ) lies between (ω -1) and (1 + ω), the system is stable.

3.3 Parameter selection for stochastic PPSO
This subsection discusses how to choose proper parameters for PPSO.

3.3.1 Inertia weight
Recall that E(ϕ) is a positive number since ϕ is the sum of two uniformly random numbers
varying between (0, c1) and (0, c2), where c1 and c2 are two positive numbers. Now, consider
the step size control factor governed by (45) for ω chosen from the following ranges:
(a) 1 < ω, it has

 E(δ) < E(ϕ) (48)
(b) 0 < ω < 1, it has

 ()φE1)E(δ)E(φ +<< (49)

(c) -1 < ω < 0, it has

 1 + E(ϕ) < E(δ) < 2 + E(ϕ) (50)
(d) ω < -1, it has

 2 + E(ϕ) < E(δ) (51)
If E(ϕ) is assigned, Eqs.(48)-(51) specify the average possible value of step size control factor
for different choosing ranges of inertia weight ω. For example, if E(ϕ) =1.5, E(δ) are 1.25,
1.75, 2.75 and 3.75 for ω = 1.25, 0.75, -0.25 and -1.25, respectively. Clearly, it is improper to
have a minus value of ω since it will make particle violate the stability rule, i.e., the
trajectory of particle diverges.
To have a better vision of parameter selection for ω > 1 and 0 < ω < 1, it is better to explain
with figure as illustrated in Figs.6 and 7 where the dotted lines represent the domain a

Particle Swarm Optimization

124

particle may visit in next turn for the cases ω = 1.25 and 0.75 under the condition of E(ϕ)
=1.5. The cross sign in the midpoint of two ellipses is the center of the search range. Here,
only the case that E(pw) located to the right of E(x(t)) is shown. However, similar aspects can
be observed for E(pw) located to the left of E(x(t)).
Since E(ϕ) =1.5, the uniform random number ϕ varies from 0 to 3. The lower and upper step
size control factors are -0.25 and 2.75, respectively, for ω = 1.25. These values are calculated
using Eq.(27) . It is seen then in Fig.6 that the search area extends from -0.25E(dx) to
2.75E(dx). Although the upper value of E(δ) is greater than the upper limit of the step size
control factor, the expectation value of the step size control factor is 1.25, which obeys the
stability rule given in Eq.(38). From Fig.6, one can also find that if ω is greater than unity,
particle is possible to search the region to the left of E(x(t)). Meanwhile, the greater ω is, the
more the search area shift to left of E(x(t)), which will reduce diversity of particle because
particles move to the vinicity of E(x(t)). Now, refer to Fig.7, for ω = 0.75 and E(ϕ) =1.5,the
searach domain are in 0.25E(dx) and 3.25E(dx) with mean of 1.75E(dx). This parameter
setting also obeys the stability criterion. It seems both cases of parameter choice is proper.
However, refer to Eq.(37), the trajectory of a particle is mainly governed by the term (ω -
E(ϕ))t. If (ω - E(ϕ)) is too small, E(x(t)) will vanish quickly and particle may get stuck on local
optimum. In other words, the value of (ω - E(ϕ)) represents an index for evaluation of the
prematurity of particles. Therefore, it is better to have 0 < ω < 1, and empirical studies have
shown that it is proper to choice of inertia weight in 0.7 < ω < 0.8.

Figure 6. The area the particle will explore for ω = 1.25 and E(ϕ) = 1.5

Figure 7. The area the particle will explore for ω = 0.75 and E(ϕ) = 1.5

3.3.2 Acceleration coefficient
Recall that c1 and c2 are referred to acceleration coefficients, and ϕ is the sum of two uniform
random numbers in (0, c1) and (0, c2). The lower and upper limits of ϕ are then 0 and (c1+c2),
respectively. To determine c1 and c2, it has to consider from three aspects: prematurity,
population diversity and particle stability.

Personal Best Oriented Particle Swarm Optimizer

125

If ϕ varies from 0 to (c1+c2) uniformly, from Eq.(27), the lower bound of the step size control
factor is determined by the choice of ω, i.e.,

 1ωδmin +−= (52)

while the upper bound is set by ω, c1 and c2, which is

 1)c(cωδ 21max +++−= (53)

For simplicity, it usually has c1=c2=c, Eq.(53) becomes

 1c2ωδmax ++−= (54)

Accounting for stability, in terms of step size control factor, staibility criterion is descibed as

 () 2δE0 << (55)

Approximate the expectation value E(δ) by the average value of δmin and δmax, it has

 () 1c-ωδE ++= (56)

Based on (56), one can determine the acceleration coefficients once ω and E(δ) is assigned.
For example, let ω = 0.75 and E(δ) = 1.75 (stisfies Eq.(55)), solve Eq.(56) for c. It is obtained
c=1.5. The acceleration coefficients are then set to c1=c2=1.5. The lower and upper bounds of
the step size control factor computed by Eq.(52) and Eq.(54) are 0.25 and 3.25, respectively.
The range the particle will search is shown in Fig.7 for this example. It is seen that the search
domain stretchs over from 0.25E(dx) to 3.25E(dx), where E(dx) = E(pw) – E(x(t)) is the
distance between expectation values of the random weighted mean, pw, of pg and pi and
current particle position x(t).
Of course, this is not the unique parameters setting for PPSO. Frequently, it is required to
compare the performances between PSO and PPSO. In such situation, the common used
parameters for PSO (ω=0.729, c1=c2=1.494) fit to PPSO since E(ϕ) = 1.494, and E(δ) = 1.765
which satisfies Eq.(55).

3.4 Equilibrium point
Both PPSO and PSO define the particles as potential solutions to a problem in a multi-
dimensional space with a memory of its ever found best solution and the best solution
among all particles. PPSO generates a sequence of x(t) iteratively, and if x(t) is a stable
sequence, it has

)E(px(t)lim wt
=

∞→
 (57)

where the random weighted mean E(pw) defined in (42) is the equilibrium point of the
sequence. As an optimization solver, it is expected that E(pw) is the optimum solution. It is
seen from (57) that if pg = pi = p, E(pw) = p. This means that particle settles down at the
global best ever found, i.e., PPSO is expected to constantly update the personal best and
global best solutions ever found, and finally converges to E(pw)= pg = pi, the optimum
solution or near optimum solution of the problem at hand.

Particle Swarm Optimization

126

Note that the random weighted mean of PSO is defined as [Kennedy, 1999 and van den
Bergs, 2003]

21

i2g1
w cc

pcpc
p

+
⋅+⋅

= (58)

Oviuously, the particles of PSO and PPSO will converge to different equilibrium points.
Therefore, in additon to the equilibrium points, the trajectories of PSO and PPSO are also
different since trajectories of PPSO and PSO are characterised by a first-order and second-
order difference equations [Trelea, 2003, Yasuda et al., 2003, van den Bergh, 2003],
respectively. These are the distinctive features of PSO and PPSO.

4. Example Trajectories
To see the properties between PSO and PPSO, the trajectories the particle traversed are
investigated by a primitive PSO and PPSO model, where pg and pi are set as two arbitrarily
constants. To keep thing simple and have a better observation, trajectories of one dimension
are considered here. Both the trajectories are generated with same initial condition, i.e., same
initial values for position and velocity. Meanwhile, both PSO and PPSO use the same value
for the parameters, ω, c1 and c2 that they are set as ω=0.729 and c1=c2=1.494. Each of the
trajectories is constructed by 10000 points and, for fair comparison, each points is generated
using the same random numbers for both PSO and PPSO at each time step.
The pseudo-code for generating the trajectories is shown in Fig.8, where x(t) and y(t) are the
positions of PSO and PPSO at time step t; vx(t) and vy(t) represent the velocity of PSO and
PPSO, respectively; x(0) and y(0) is the initial positions, vx(0) and vy(0) are the initial
velocities of PSO and PPSO, respectively.

1 2 g i

1 1 2 2

1 g 2 i

1 g

/* pseudo code for evaluation PSO and PPSO */
Set ω, c , c , p and p ;
Initialize x(0), y(0), vx(0) and vy(0);
For t 1 to 10000 {

c rnd(1); c rnd();
vx(t) ω vx(t 1) (p x(t 1)) (p x(t 1));
vy(t) ω vy(t 1) (p y

−

=
ϕ = ⋅ ϕ = ⋅

= ⋅ − + ϕ ⋅ − − + ϕ ⋅ − −
= ⋅ − + ϕ ⋅ − 2 i

i

(t 1)) (p y(t 1));
x(t) vx(t) x(t 1);
y(t) vy(t) p ;

}
/* End */

− + ϕ ⋅ − −
= + −
= +

Figure 8. Pseudo-code for evaluating the trajectories of PSO and PPSO

Figure 9 and 10 depicted examples of the trajectories of PSO and PPSO. These plots are
obtained with pg, pi, x(0), y(0) vx(0) and vy(0) that are arbitrarily set to -50, 10, 0, 0, 20 and
20, respectively. The gray lines in the centre of the figures represent the mean values of x(t)
and y(t). They are denoted as μx and μy for x(t) and y(t), respectively. It is seen obviously
that both the trajectories of PSO and PPSO randomly vibrate, or oscillate around the mean
values within a limited ranges. The mean values are obtained as μx = -20.009, and μy = -
15.288. These two values very close to the theoretical random weighted mean of pg and pi,
defined in (58) and (42) for PSO and PPSO, which are calculated to be -20 and -15.394.

Personal Best Oriented Particle Swarm Optimizer

127

Furthermore, the minimum and maximum values of x(t) are -697.131 and 706.212, while the
minimum and maximum values of y(t) are -713.624 and 676.268.

Figure 9. Sample trajectory of x(t) for PSO with pg=-50, pi=10, x(0)=0 and vx(0)=20

Figure 10. Sample trajectory of y(t) for PPSO with pg=-50, pi=10, y(0)=0 and vy(0)=20

Recall that PSO has bell-shaped distribution of the trajectory centred approximately at pw,
i.e., the weighted mean which equals to the midpoint of pg and pi [Kennedy, 2003]. This
feature also has been observed in PPSO. Refer to Figs.(11) and (12), the histogram plots of
the distribution of x(t) and y(t) are illustrated. In these figures, the distributions of the
trajectories are drawn in grey lines and the vertical dash-line denoted the mean value of the
trajectory. The horizontal and vertical axes represent the values of the trajectory and the
occurrences a particle ever explored. The plots of the horizontal axis extend from (μx - 3σx) to
(μx + 3σx) and (μy - 3σy) to (μy + 3σy) for PSO and PPSO, respectively, where σx and σy are
the standard deviations of x(t) and y(t). Obviously, the distribution of the trajectory of the
PPSO is also a bell-shaped centred at the random weighted mean. For a comparison, the
normal distribution with mean μx and standard deviation σx for PSO and mean μy and
standard deviation σy for PPSO are drawn in thick solid lines. Clearly, although PSO and
PPSO works based on different mathematical models, they have similar dynamic behaviour.

Particle Swarm Optimization

128

Figure 11. The histogram plot of x(t) for PSO with pg=-50, pi=10, x(0)=0 and vx(0)=20

Figure 12. The histogram plot of y(t) for PPSO with pg=-50, pi=10, y(0)=0 and vy(0)=20

Figure 13. Sample trajectory of x(t) for PSO with pg = 0, pi = 100, x(0) = 10 and vx(0) = -2

Figure 14. Sample trajectory of y(t) for PPSO with pg = 0, pi = 100, y(0) = 10 and vy(0) = -2

Personal Best Oriented Particle Swarm Optimizer

129

Another samples of trajectory for different setting of pg and pi as well as initial condition are
show in Figs.13 and 14 where pg, pi, x(0), y(0) vx(0) and vy(0) are arbitrarily chosen as 0, 100,
10, 10, -2 and -2, respectively. With pg = 0 and pi = 100, the random weighted mean, pw, of
PSO and PPSO are 50 and 57.677. Meanwhile, the mean values, μx and μy, are 50.588 and
57.609 for PSO and PPSO. The minimum and maximum values are -3.249×103 and 3.550×103
for x(t) and -1.639×103 and 2.941×103 for y(t). Apparently, both the trajectories also oscillate
around the random weighted mean within a specific domain, which are verified further in
the histogram plots shown in Figs.(15) and (16).

Figure 15. The histogram plot of x(t) for PSO with pg = 0, pi = 100, x(0) = 10 and vx(0) = -2

Figure 16. The histogram plot of y(t) for PPSO with pg = 0, pi = 100, y(0) = 10 and vy(0)= -2

5. Conclusion
This chapter intends to provide a theoretical analysis of PPSO to clarify the characteristics of
PPSO. The analysis is started from a simplified deterministic model, a single particle and
one dimension case, keeping all the parameters constants. After that, assuming the
acceleration coefficients as uniformly distributed random numbers, a stochastic model is
then built to describe the nature of the PPSO. With the assumption, it is shown that a first-
order difference equation is sufficient to describe the dynamic behaviour of the particles.
Based on the models, the convergence property is studied and the guidance for parameters
selection is provided.
Trajectories comparison between PSO and PPSO are also presented. It is found that, similar
to PSO, the particles of PPSO also stochastically explore for optimal solution within a region
centered approximately equals to a random weighted mean of the best positions found by
an individual (personal best) and its neighbours (global best). Like PSO, bell-shaped
distribution of the particle’s trajectory is also observed in PPSO. However, the centres of the

Particle Swarm Optimization

130

distribution of PSO and PPSO are different so that leading to different equilibrium points
and, hence, different results and performances.
The results derived in this chapter justify the possibility of PPSO to be an optimization
algorithm. Simulation results have been shown that PPSO performs in general better than
PSO on a suite of benchmark functions. However, it does not imply that PPSO is a local or
global search algorithm even the condition of stability is met. Further research is thus
required to improve the search capability.

6. References
Chen, C. H. & Yeh, S. N. (2006a), Personal best oriented constriction type of particle swarm

optimization, The 2nd international conference on cybernetics and intelligent systems,
pp. 167-170, Bangkok, Thailand, 7-9 Jun., 2006.

Chen, C. H. & Yeh, S. N. (2006b), Particle swarm optimization for economic power dispatch
with valve-point effects, 2006 IEEE PES transmission and distribution conference and
exposition : Latin America, 6 pages, Caracas, Venezuela, 16-19 Aug., 2006.

Chen, C. H. & Yeh, S. N., (2007), Simplified personal best oriented particle swarm optimizer
and its applications, The 2nd IEEE Conference on Industrial Electronics and
Applications, pp.2362-2365, Harbin, China, 23-25 May, 2007.

Chen, C. H. & Yeh, S. N. (2008), Personal best oriented particle swarm optimizer for
economic dispatch problem with piecewise quadratic cost functions, International
Journal of Electrical Engineering, vol. 15, no.5, 2008, pp.389-397.

Clerc M. & Kennedy J., (2002), The particle swarm – explosion, stability and convergence in
a multidimensional complex space, IEEE Transaction on Evolutionary Computation,
vol.6, no.1, 2002, pp.58-73.

Eberhart R. C. & Kennedy J. (1995), A new optimizer using particle swarm theory,
Proceedings of the IEEE 6th International Symposium on Micro Machine and Human
Science, pp. 39-43, vol.1, Oct., 1995.

Kennedy J., & Eberhart R. C. (1995), Particle swarm optimization, Proceedings of the IEEE
International Conference on Neural Networks, pp.1942-1948, vol.4, Perth, Australia,
Nov., 1995.

Kennedy J. (1998), The behaviour of particle, Proceedings of the 7th Annual Conference on
Evolutionary Programming, pp.581-589, 1998.

Kennedy J. (2003), Bare bones particle swarms, Proceedings of the IEEE Swarm Symposium,
2003, pp.80-87.

Jiang, M.; Luo Y.P. & Yang S. Y., (2007), Stochastic convergence analysis and parameter
selection of the standard particle swarm optimization algorithm, Information
Processing Letters, vol.102, 2007, pp.8-16.

Ozcan E. & Mohan C. K., (1999), Particle swarm optimization: surfing the waves, Proceedings
of the IEEE Congress on Evolutionary Computation, pp.1939-1944, vol.3, Jul., 1999.

Trelea I. C., (2003), The particle swarm optimization algorithm: convergence analysis and
parameter selection, Information Processing Letters, vol.85, 2003, pp.317-325.

van den Bergh F. (2002), Analysis of particle swarm optimization, Ph.D. dissertation,
University of Pretoria, Pretoria, South Africa, 2002.

Yasuda K., Ide A. & Iwasaki N., (2003), Adaptive particle swarm optimization, pp.1554-1559,
IEEE International Conference on Systems, Man and Cybernetics, vol.2, Oct., 2003.

7

Particle Swarm Optimization for Power Dispatch
with Pumped Hydro

Po-Hung Chen
Department of Electrical Engineering, St. John’s University

Taiwan

1. Introduction
Recently, a new evolutionary computation technique, known as particle swarm
optimization (PSO), has become a candidate for many optimization applications due to its
high-performance and flexibility. The PSO technique was developed based on the social
behavior of flocking birds and schooling fish when searching for food (Kennedy & Eberhart,
1995). The PSO technique simulates the behavior of individuals in a group to maximize the
species survival. Each particle “flies” in a direction that is based on its experience and that of
the whole group. Individual particles move stochastically toward the position affected by
the present velocity, previous best performance, and the best previous performance of the
group. The PSO approach is simple in concept and easily implemented with few coding
lines, meaning that many can take advantage of it. Compared with other evolutionary
algorithms, the main advantages of PSO are its robustness in controlling parameters and its
high computational efficiency (Kennedy & Eberhart, 2001). The PSO technique has been
successfully applied in areas such as distribution state estimation (Naka et al., 2003), reactive
power dispatch (Zhao et al., 2005), and electromagnetic devices design (Ho et al., 2006). In
the previous effort, a PSO approach was developed to solve the capacitor allocation and
dispatching problem (Kuo et al., 2005).
This chapter introduces a PSO approach for solving the power dispatch with pumped hydro
(PDWPH) problem. The PDWPH has been reckoned as a difficult task within the operation
planning of a power system. It aims to minimize total fuel costs for a power system while
satisfying hydro and thermal constraints (Wood & Wollenberg, 1996). The optimal solution
to a PDWPH problem can be obtained via exhaustive enumeration of all pumped hydro and
thermal unit combinations at each time period. However, due to the computational burden,
the exhaustive enumeration approach is infeasible in real applications. Conventional
methods (El-Hawary & Ravindranath, 1992; Jeng et al., 1996; Allan & Roman, 1991; Al-
Agtash, 2001) for solving such a non-linear, mix-integer, combinatorial optimization
problem are generally based on decomposition methods that involve a hydro and a thermal
sub-problem. These two sub-problems are usually coordinated by LaGrange multipliers.
The optimal generation schedules for pumped hydro and thermal units are then
sequentially obtained via repetitive hydro-thermal iterations. A well-recognized difficulty is
that solutions to these two sub-problems can oscillate between maximum and minimum
generations with slight changes of multipliers (Guan et al., 1994; Chen, 1989). Consequently,

Particle Swarm Optimization

132

solution cost frequently gets stuck at a local optimum rather than at the global optimum.
However, obtaining an optimal solution is of priority concern to an electric utility. Even
small percentage reduction in production costs typically leads to considerable savings.
Obviously, a comprehensive and efficient algorithm for solving the PDWPH problem is still
in demand. In the previous efforts, a dynamic programming (DP) approach (Chen, 1989)
and a genetic algorithm (GA) technique (Chen & Chang, 1999) have been adopted to solve
the PDWPH problem. Although the GA has been successfully applied to solve the PDWPH
problem, recent studies have identified some deficiencies in GA performance. This
decreased efficiency is apparent in applications in which parameters being optimized are
highly correlated (Eberhart & Shi, 1998; Boeringer & Werner, 2004). Moreover, premature
convergence of the GA reduces its performance and search capability (Angeline, 1998;
Juang, 2004).
This work presents new solution algorithms based on a PSO technique for solving the
PDWPH problem. The proposed approach combines a binary version of the PSO technique
with a mutation operation. Kennedy and Eberhart first introduced the concept of binary
PSO and demonstrated that a binary PSO was successfully applied to solve a discrete binary
problem (Kennedy & Eberhart, 1997). In this work, since all Taipower’s pumped hydro units
are designed for constant power pumping, novel binary encoding/decoding techniques are
judiciously devised to model the discrete characteristic in pumping mode as well as the
continuous characteristic in generating mode. Moreover, since the basic PSO approach
converges fast during the initial period and slows down in the subsequent period and
sometimes lands in a local optimum, this work employs a mutation operation that speeds
up convergence and escapes local optimums. Representative test results based on the actual
Taipower system are presented and analyzed, illustrating the capability of the proposed
PSO approach in practical applications.

2. Modeling and Formulation
2.1 List of symbols

iDR Down ramp rate limits of thermal unit i.

)P(F t
si

t
i Production costs for t

siP .
t
jI Natural inflow into the upper reservoir of pumped hydro plant j in hour t.

hN Number of pumped hydro units.

sN Number of thermal units.
t
hjP Power generation (positive) or pumping (negative) of pumped hydro plant j in

hour t.
t
LP System load demand in hour t.
t
siP Power generation of thermal unit i in hour t.
t
jQ Water discharge of pumped hydro plant j in hour t.

t
p,jQ Water pumping of pumped hydro plant j in hour t.

Particle Swarm Optimization for Power Dispatch with Pumped Hydro

133

)P(R t
hj

t
hj Spinning reserve contribution of pumped hydro plant j for t

hjP .

t
reqR System’s spinning reserve requirements in hour t.

)P(R t
si

t
si Spinning reserve contribution of thermal unit i for t

siP .
t
jS Water spillage of pumped hydro plant j in hour t.

T Number of scheduling hours.
iUR Up ramp rate limits of thermal unit i.

t
jV Water volume of the upper reservoirs of plant j at the end of hour t.

t
l,jV Water volume of the lower reservoirs of plant j at the end of hour t.

k
iv Velocity of particle i at iteration k.
k
ix Position (coordinate) of particle i at iteration k.

2.2 Modeling a pumped hydro plant
A pumped hydro plant, which consists of an upper and a lower reservoir, is designed to
save fuel costs by generating during peak load hours with water in the upper reservoir,
which is pumped up from the lower reservoir to the upper reservoir during light load hours
(Fig. 1).

G

P

Figure 1. Pumped hydro plant

In generating mode, the equivalent-plant model can be derived using an off-line
mathematical procedure that maximizes total plant generation output under different water
discharge rates (Wood & Wollenberg, 1996). The generation output of an equivalent
pumped hydro plant is a function of water discharged through turbines and the content (or
the net head) of the upper reservoir. The general form is expressed as

)V ,Q(fP 1t
j

t
j

t
hj

−= (1)

The quadratic discharge-generation function, considering the net head effect, utilized in this
work as a good approximation of pumped hydro plant generation characteristics is given as

 1t
j

t
j

1t
j

t
j

1t
j

t
hj QQP

2 −−− ++= γβα (2)

Particle Swarm Optimization

134

where coefficients 1t
j
−α , 1t

j
−β , and 1t

j
−γ depend on the content of the upper reservoir at

the end of hour t-1. In this work, the read-in data includes five groups of α β γ, , coefficients
that are associated with different storage volume, from minimum to maximum, for the
upper reservoir (first quadrant in Fig. 2). Then, the corresponding coefficients for any
reservoir volume are calculated using a linear interpolation (Chen, 1989) between the two
closest volume.
In pumping mode, since all Taipower’s pumped hydro units are designed for constant
power pumping, the characteristic function of a pumped hydro plant is a discrete
distribution (third quadrant in Fig. 2).

Discharge (cubic meter per second)

Output (MW)

Pmax

Vmin

Vmax

Input (MW)

Pumping (cubic meter per second)

Figure 2. Typical input-output characteristic for a pumped hydro plant

2.3 Objective function and constraints
The pumped hydro scheduling attempts seeking the optimal generation schedules for both
pumped hydro and thermal units while satisfying various hydro and thermal constraints.
With division of the total scheduling time into a set of short time intervals, say, one hour as
one time interval, the pumped hydro scheduling can be mathematically formulated as a
constrained nonlinear optimization problem as follows:

 Problem: ∑∑
= =

T

1t

N

1i

t
si

t
i

s
)P(F Minimize (3)

Subject to the following constraints:
System power balance

 0PPP t
L

N

1j

t
hj

N

1i

t
si

hs
=−+ ∑∑

==
 (4)

Water dynamic balance

t
j

t
p,j

t
j

t
j

1t
j

t
j SQQIVV −+−+= − (5)

Particle Swarm Optimization for Power Dispatch with Pumped Hydro

135

t
j

t
p,j

t
j

1t
l,j

t
l,j SQQVV +−+= − (6)

Thermal generation and ramp rate limits

)URP ,P(MinP)DRP ,P(Max i
1t

sisi
t
sii

1t
sisi +≤≤− −− (7)

Water discharge limits

 j
t
jj QQQ ≤≤ (8)

Water pumping limits

 p,j
t

p,jp,j QQQ ≤≤ (9)

Reservoir limits

 j
t
jj VVV ≤≤ (10)

 l,j
t
l,jl,j VVV ≤≤ (11)

System’s spinning reserve requirements

 ∑∑
==

≥+
hs N

1j

t
req

t
hj

t
hj

N

1i

t
si

t
si R)P(R)P(R (12)

3. Refined PSO Solution Methodology
3.1 Basic PSO technique
Consider an optimization problem of D variables. A swarm of N particles is initialized in
which each particle is assigned a random position in the D-dimensional hyperspace such
that each particle’s position corresponds to a candidate solution for the optimization
problem. Let x denote a particle’s position (coordinate) and v denote the particle’s flight
velocity over a solution space. Each individual x in the swarm is scored using a scoring
function that obtains a score (fitness value) representing how good it solves the problem.
The best previous position of a particle is Pbest. The index of the best particle among all
particles in the swarm is Gbest. Each particle records its own personal best position (Pbest),
and knows the best positions found by all particles in the swarm (Gbest). Then, all particles
that fly over the D-dimensional solution space are subject to updated rules for new
positions, until the global optimal position is found. Velocity and position of a particle are
updated by the following stochastic and deterministic update rules:

)xGbest() (Randc

)xPbest() (Randcwvv
k
i

k
2

k
i

k
i1

k
i

1k
i

−×+

−×+=+
 (13)

 1k
i

k
i

1k
i vxx ++ += (14)

where w is an inertia weight, c1 and c2 are acceleration constants, and Rand() is a random
number between 0 and 1.

Particle Swarm Optimization

136

Equation (13) indicates that the velocity of a particle is modified according to three

components. The first component is its previous velocity, k
iv , scaled by an inertia, w. This

component is often known as “habitual behavior.” The second component is a linear

attraction toward its previous best position, k
iPbest , scaled by the product of an acceleration

constant, c1, and a random number. Note that a different random number is assigned for
each dimension. This component is often known as “memory” or “self-knowledge.” The

third component is a linear attraction toward the global best position, kGbest , scaled by the
product of an acceleration constant, c2, and a random number. This component is often
known as “team work” or “social knowledge.” Fig. 3 illustrates a search mechanism of a
PSO technique using the velocity update rule (13) and the position update rule (14).

k
ix

1+k
ix

kGbest
1+k

iv

k
iv

k
jx

k
jv

1+k
jx

1+k
jv

k
jPbest

k
iPbest

Figure 3. Searching mechanism of a PSO

Acceleration constants c1 and c2 represent the weights of the stochastic acceleration terms
that push a particle toward Pbest and Gbest, respectively. Small values allow a particle to
roam far from target regions. Conversely, large values result in the abrupt movement of
particles toward target regions. In this work, constants c1 and c2 are both set at 2.0, following
the typical practice in (Eberhart & Shi, 2001). Suitable correction of inertia w in (13) provides
a balance between global and local explorations, thereby reducing the number of iterations
when finding a sufficiently optimal solution. An inertia correction function called “inertia
weight approach (IWA)” (Kennedy & Eberhart, 2001) is utilized in this work. During the
IWA, the inertia weight w is modified according to the following equation:

 Itr
Itr

ww
ww

max

minmax
max ×

−
−= (15)

where maxw and minw are the initial and final inertia weights, maxItr is the maximum
number of iteration, and Itr is the current number of iteration.

Particle Swarm Optimization for Power Dispatch with Pumped Hydro

137

3.2 Binary encoding
For exposition ease, consider a pumped hydro plant with four units. Fig. 4 presents a
particle string that translates the encoded parameter-water discharges of each plant into
their binary representations.

Hour 1 2 24
 1 0 0 0 1 0 0 0 1 1 1 0 0 1 0

Figure 4. Particle string for a pumped hydro plant with four units

Using a plant’s water discharge instead of the plant’s generation output, the encoded
parameter is more beneficial when dealing with difficult water balance constraints. Each
particle string contains 24 sub-strings that represent the solution for hourly
discharge/pumping schedules of the pumped hydro plant during a 24-hour period. Each
sub-string is assigned the same number of five bits. The first bit is used to identify whether
the plant is in generating or pumping mode. The remaining four bits are used to represent a

normalized water discharge, t
jq , in generating mode, or the number of pumping units in

pumping mode. In generating mode, the resolution equals 1/24 of the discharge difference
from minimum to maximum.

3.3 Decoding of particle string
A particle within a binary PSO approach is evaluated through decoding the encoded
particle string and computing the string’s scoring function using the decoded parameter.
The following steps summarize the detailed decoding procedure.
Step 1. Decode the first bit to determine whether the plant is in generating or pumping

mode:
Hour t

b1 b2 b3 b4 b5
b2=b3=b4=b5=“0” => “idle mode”
b1=“0” => “pumping mode”
b1=“1” => “generating mode”

Step 2. If in idle mode, t
hjP =0, go to Step 10; if in pumping mode, go to Step 3; if in

generating mode, go to Step 6.
Step 3. Decode the remaining four bits of the sub-string to calculate the number of pumping

units, t
pN , and the total volume of pumped water, t

p,jQ :

Hour t
0 b2 b3 b4 b5

 { }1 ,0b)b(N i
5

2i
i

t
p ∈= ∑

=
 (16)

 t
psp,j

t
p,j NQQ ×= (17)

where sp,jQ is the constant volume for pumping per unit.

Particle Swarm Optimization

138

Step 4. Calculate the upper boundary of pumped water:

)]VV(,Q[MinQ l,j
1t

l,jp,j
t

p,j −= − (18)

If the total volume of pumped water exceed the upper boundary, then decrease the
number of pumping units until the upper boundary is satisfied.

Step 5. Calculate the MW power for pumping:

 ()t
psp,j

t
hj NPP ×−= (19)

where sp,jP is the constant power for pumping per unit. Then go to step 10.

Step 6. Decode the remaining four bits of the sub-string to obtain a normalized discharge,
t
jq , in decimal values:

Hour t
1 b2 b3 b4 b5
 × × × ×
 2-1 2-2 2-3 2-4

 ()() { }1 ,0b 2bq i
5

2i

1i
i

t
j ∈×= ∑

=

−− (20)

Step 7. Calculate the upper boundary of discharge:

)]VV(,Q[MinQ 1t
l,jl,jj

t
j

−−= (21)

Step 8. Translate the normalized value, t
jq , to the actual value, t

jQ :

 ⎟
⎠
⎞⎜

⎝
⎛ −+= j

t
j

t
jj

t
j QQqQQ (22)

Step 9. Calculate the generation output, t
hjP , using (2).

Step 10. Calculate the remaining thermal loads, t
rmP :

 PPP t
hj

t
L

t
rm −= (23)

Step 11. Continue with computations of the 10 steps from hour 1 to hour 24.
Step 12. Perform the unit commitment (UC) for the remaining thermal load profile, and

return the corresponding thermal cost. In this work, a UC package based on the
neural network (Chen & Chen, 2006) is used to perform the UC task taking into
account fuel costs, start-up costs, ramp rate limits, and minimal uptime/downtime
constraints.

Step 13. Translate the corresponding thermal cost into the score of the i-th particle using a
scoring function (details are found in the next Section).

Step 14. Repeat these 13 steps for each particle from the first to last particle.

Particle Swarm Optimization for Power Dispatch with Pumped Hydro

139

3.4 Scoring function
The scoring function adopted is based on the corresponding thermal production cost. To
emphasize the “best” particles and speed up convergence of the evolutionary process, the
scoring function is normalized into a range of 0–1. The scoring function for the i-th particle
in the swarm is defined as

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

=
1

)Gbest(cost
)i(costk1

1)i(SCORE

i

 (24)

where SCORE(i) is the score (fitness value) of the i-th particle; cost(i) is the corresponding
thermal cost of the i-th particle; cost(Gbest) is the cost of the highest ranking particle string,
namely, the current best particle; and, ki is a scaling constant (ki =100 in this study).

3.5 Mutation operation
The basic PSO approach typically converges rapidly during the initial search period and
then slows. Then, checking the positions of particles showed that the particles were very
tightly clustered around a local optimum, and the particle velocities were almost zero. This
phenomenon resulted in a slow convergence and trapped the whole swarm at a local
optimum. Mutation operation is capable of overcoming this shortcoming. Mutation
operation is an occasional (with a small probability) random alternation of the Gbest string,
as shown in Fig. 5. This work integrates a PSO technique with a mutation operation
providing background variation and occasionally introduces beneficial materials into the
swarm to speed up convergence and escape local optimums.

Gbest: 1 1 1 1 1 0 0 0 1 0
 ↓

New Particle: 1 1 0 1 1 0 0 0 1 0

Figure 5. Mutation operation

The solution methodology for solving the pumped hydro scheduling problem using the
proposed approach is outlined in the general flow chart (Fig. 6).

4. Test Results
The proposed approach was implemented on a MATLAB software and executed on a
Pentium IV 3.0GHz personal computer. Then, the proposed approach was tested for a
portion of the Taipower system, which consists of 34 thermal units and the Ming-Hu
pumped hydro plant with four units. In addition to the typical constraints listed in Section 2,
the Taipower system has three additional features that increase problem difficulty.
a. The Taipower system is an isolated system. Thus it is self-sufficient at all times. The

300MW system’s spinning reserve requirement must be satisfied each hour.
b. Thermal units, due to their ramp rate limits, have difficulty handling large load

fluctuations, especially at noon lunch break.
c. The lower reservoir of Ming-Hu pumped hydro plant has only a small storage volume.
Table 1 presents detailed data for the Ming-Hu pumped hydro plant. The thermal system
consists of 34 thermal units: six large coal-fired units, eight small coal-fired units, seven oil-

Particle Swarm Optimization

140

fired units, ten gas turbine units, and three combined cycle units. For data on the
characteristics of the 34-unit thermal system, please refer to (Chen & Chang, 1995).

Read in data and define constraints.

 1. Initialize swarm:
(a) Randomize each particle into a binary string.
(b) Randomize velocity of each particle.

 3. Update velocity of particle using (13).

Repeat for each particle.

Gbest is the optimal solution.

 2. Evaluate particles:
(a) Decode each particle to obtain a MW schedule of P/S units.
 (detail in Section 3.3)
(b) Do thermal unit commitment for the remaining thermal
 loads to obtain a production cost.
(c) Score each particle using (24).
(d) Initialize each Pbest to equal the current position of each
 particle.
(e) Gbest equals the best one among all Pbest.

 4. Update position of particle using (14).

 5. Decode and score the new particle position.

 6. Update Pbest if the new position is better than that of Pbest.

Repeat for each iteration.

 8. Mutation operation:
 Perform mutation if Gbest remains unchanged within the
 latest 50 iterations.

 7. Update Gbest if the new position is better than that of Gbest.

Figure 6. General flow chart of the proposed approach

Particle Swarm Optimization for Power Dispatch with Pumped Hydro

141

 Lower Reservoir
Installed
Capacity

Maximal
Discharge

(m3/s)

Maximal
Pumping

(m3/s)

Maximal
Storage
(103 m3)

Minimal
Storage
(103 m3)

Efficiency

250MW×4 380 249 9,756 1,478 ≈ 0.74

Table 1. Characteristics of the Ming-Hu pumped hydro plant

The proposed approach was tested on a summer weekday whose load profile (Fig. 7) was
obtained by subtracting expected generation output of other hydro plants and nuclear units
from the actual system load profile. Fig. 8 and 9 present schematics of test results. Fig. 8
shows the total generation/pumping schedules created by the proposed approach. Fig. 9
shows the remaining thermal load profiles. The optimal schedules for pumped hydro units
and thermal units are obtained within 3 minutes, satisfying Taipower’s time requirement.
To investigate further how the proposed approach and existing methods differ in
performance, this work adopts a DP method (Chen, 1989) and a GA method (Chen &
Chang, 1999) as the benchmark for comparison. Table 2 summarizes the test results obtained
using these three methods.

Load Factor=0.82

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10 12 14 16 18 20 22 24
HOUR

M
W

Figure 7. Summer weekday load profile

Several interesting and important observations are derived from this study and are
summarized as follows:
a. The generation/pumping profile generally follows the load fluctuation, a finding that is

consistent with economic expectations. The Ming-Hu pumped hydro plant generates
3,893 MWh power during peak load hours and pumps up 5,250 MWh power during
light load hours, resulting in a cost saving of NT$5.91 million in one day, where cost
saving = (cost without pumped hydro) - (cost with pumped hydro).

b. The pumped hydro units are the primary source of system spinning reserve due to their fast
response characteristics. The system’s spinning reserve requirement accounts for the fact
that pumped hydro units do not generate power at their maximum during peak load hours.

c. Variation of water storage in the small lower reservoir is always retained within the
maximum and minimum boundaries. The final volume returns to the same as the initial
volume.

d. The load factor is improved from 0.82 to 0.88 due to the contribution of the four
pumped hydro units.

Particle Swarm Optimization

142

e. Notably, both cost saving and execution time for the proposed approach are superior to
either a DP or a GA method.

Total Generation: 3,893 (MW*Hr)
Total Pumping: 5,250 (MW*Hr)

-800
-700
-600
-500
-400
-300
-200
-100

0
100
200
300
400
500
600
700
800

0 2 4 6 8 10 12 14 16 18 20 22 24

HOUR

M
W

Figure 8. Hourly generation/pumping schedules

4000

5000

6000

7000

8000

9000

10000

0 2 4 6 8 10 12 14 16 18 20 22 24
HOUR

M
W

Without pumped hydro (Load Factor=0.82)

With pumped hydro (Load Factor=0.88)

Figure 9. Contrast of two remaining thermal load profiles

Method

Load
Factor

Cost
Saving

(103 NT$)

Execution
Time

(second)
DP 0.87 5,641 336
GA 0.87 5,738 164

RPSO 0.88 5,906 127

Table 2. Performance comparison with existing methods

Particle Swarm Optimization for Power Dispatch with Pumped Hydro

143

5. Conclusion
This work presents a novel methodology based on a refined PSO approach for solving the
power dispatch with pumped hydro problem. An advantage of the proposed technique is
the flexibility of PSO for modeling various constraints. The difficult water dynamic balance
constraints are embedded and satisfied throughout the proposed encoding/decoding
algorithms. The effect of net head, constant power pumping characteristic, thermal ramp
rate limits, minimal uptime/downtime constraints, and system’s spinning reserve
requirements are all considered in this work to make the scheduling more practical.
Numerical results for an actual utility system indicate that the proposed approach has
highly attractive properties, a highly optimal solution and robust convergence behavior for
practical applications.

6. References
Al-Agtash, S. (2001). Hydrothermal scheduling by augmented Lagrangian: consideration of

transmission constraints and pumped-storage units, IEEE Transactions on Power
System, Vol. 16, pp. 750-756

Allan, R. N. & Roman, J. (1991). Reliability assessment of hydrothermal generation systems
containing pumped storage plant, IEE Proceedings-C, Generation, Transmission, and
Distribution, Vol. 138, pp. 471-478

Angeline, P. J. (1998). Evolutionary optimization versus particle swarm optimization:
philosophy and performance differences, Lecture Notes in Computer Science, Vol.
1447, pp. 601–610

Boeringer, D. W. & Werner, D. H. (2004). Particle swarm optimization versus genetic
algorithms for phased array synthesis, IEEE Transactions on Antennas Propagation,
Vol. 52, pp. 771-779

Chen, P. H. (1989). Generation scheduling of hydraulically coupled plants, Master’s thesis,
Dept. Elect. Eng., National Tsing-Hua University, Taiwan

Chen, P. H. & Chang, H. C. (1995). Large-scale economic dispatch by genetic algorithm,
IEEE Transactions on Power System, Vol. 10, pp. 1919-1926

Chen, P. H. & Chang, H. C. (1999). Pumped-storage scheduling using a genetic algorithm,
Proceedings of the Third IASTED International Conference on Power and Energy Systems,
pp. 492-497, USA

Chen, P. H. & Chen, H. C. (2006). Application of evolutionary neural network to power
system unit commitment, Lecture Notes in Computer Science, Vol. 3972, pp. 1296–1303

Eberhart, R. & Shi, Y. (1998). Comparison between genetic algorithms and particle swarm
optimization, Lecture Notes in Computer Science, vol. 1447, pp. 611–616

Eberhart, R. & Shi, Y. (2001). Particle swarm optimization: developments, applications and
resources, Proceedings of IEEE International Congress on Evolutionary Computation,
Vol. 1, pp. 81–86

El-Hawary, M. E. & Ravindranath, K. M. (1992). Hydro-thermal power flow scheduling
accounting for head variations, IEEE Transactions on Power System, Vol. 7, pp. 1232-
1238

Guan, X.; Luh, P. B.; Yen, H. & Rogan, P. (1994). Optimization-based scheduling of
hydrothermal power systems with pumped-storage units, IEEE Transactions on
Power System, Vol. 9, pp. 1023-1029

Particle Swarm Optimization

144

Ho, S. L.; Yang, S.; Ni, G. & Wong, H. C. (2006). A particle swarm optimization method with
enhanced global search ability for design optimizations of electromagnetic devices,
IEEE Transactions on Magnetics, Vol. 42, pp. 1107-1110

Jeng, L. H.; Hsu, Y. Y.; Chang, B. S. & Chen, K. K. (1996). A linear programming method for
the scheduling of pumped-storage units with oscillatory stability constraints, IEEE
Transactions on Power System, Vol. 11, pp. 1705-1710

Juang, C. F. (2004). A hybrid of genetic algorithm and particle swarm optimization for
recurrent network design, IEEE Transactions on Systems, Man, and Cybernetics, Vol.
34, pp. 997-1006

Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization, Proceedings of IEEE
International Conference on Neural Networks, Vol. 4, pp. 1942–1948

Kennedy, J. & Eberhart, R. (1997). A discrete binary version of the particle swarm algorithm,
Proceedings of International Conference on Systems, Man, and Cybernetics, pp. 4104–
4109, Piscataway, NJ

Kennedy, J. & Eberhart, R. (2001). Swarm Intelligence, Morgan Kaufmann, San Francisco
Kuo, C. C.; Chen, P. H.; Hsu, C. L. & Lin, S. S. (2005). Particle swarm optimization for

capacitor allocation and dispatching problem using interactive best-compromise
approach, WSEAS Transactions on System, Vol. 4, pp. 1563-1572

Naka, S.; Genji, T.; Yura, T. & Fukuyama, Y. (2003). A hybrid particle swarm optimization
for distribution state estimation, IEEE Transactions on Power System, Vol. 18, pp. 60-
68

Wood, A. J. & Wollenberg, B. F. (1996). Power Generation, Operation, and Control, 2nd ed., John
Wiley & Sons, New York

Zhao, B.; Guo, C. X. & Cao, Y. J. (2005). A multiagent-based particle swarm optimization
approach for optimal reactive power dispatch, IEEE Transactions on Power System,
Vol. 20, pp. 1070-1078

8

Searching for the best Points of interpolation
using swarm intelligence techniques

Djerou L.1, Khelil N.1, Zerarka A.1 and Batouche M.2
1Labo de Mathématiques Appliquées, Université Med Khider

2Computer Science Department, CCIS-King Saud University
1Algeria, 2Saudi Arabia

1. Introduction
If the values of a function, f(x), are known for a finite set of x values in a given interval, then
a polynomial which takes on the same values at these x values offers a particularly simple
analytic approximation to f(x) throughout the interval. This approximating technique is
called polynomial interpolation. Its effectiveness depends on the smoothness of the function
being sampled (if the function is unknown, some hypothetical smoothness must be chosen),
on the number and choice of points at which the function is sampled.
In practice interpolating polynomials with degrees greater than about 10 are rarely used.
One of the major problems with polynomials of high degree is that they tend to oscillate
wildly. This is clear if they have many roots in the interpolation interval. For example, a
degree 10 polynomial with 10 real roots must cross the x-axis 10 times. Thus, it would not be
suitable for interpolating a monotone decreasing or increasing function on such an interval.
In this chapter we explore the advantage of using the Particle Swarm Optimization (PSO)
interpolation nodes. Our goal is to show that the PSO nodes can approximate functions with
much less error than Chebyshev nodes.
This chapter is organized as follows. In Section 2, we shall present the interpolation
polynomial in the Lagrange form. Section 3 examines the Runge's phenomenon; which
illustrates the error that can occur when constructing a polynomial interpolant of high
degree. Section 4 gives an overview of modern heuristic optimization techniques, including
fundamentals of computational intelligence for PSO. We calculate in Subsection 4.2 the best
interpolating points generated by PSO algorithm. We make in section 5, a comparison of
interpolation methods. The comments and conclusion are made in Section 6.

2. Introduction to the Lagrange interpolation
If x0, x1,xn are distinct real numbers, then for arbitrary values y0, y1,yn, there is a unique
polynomial pn of degree at most n such that pn(xi) = yi (0 i n≤ ≤) (David Kincaid &
Ward Cheney, 2002).
The Lagrange form looks as follows:

Particle Swarm Optimization

146

 () () () ()
n

n n n i i
i

p x y l x y l x y l x0 0
0

...
=

= + + =∑ (1)

Such that coordinal functions can be expressed in the following

 () ()
()

n
j

i
j j i i j

x x
l x

x x0,= ≠

−
=

−
∏ (2)

(David Kincaid & Ward Cheney, 2002), (Roland E. et al 1994).
are coordinal polynomials that satisfy

 { i j
i j i jl x 1,

0,()
=

≠= (3)

The Lagrange form gives an error term of the form

 () ()
() ()

() ()
n

n n n

f c
E x f x p x x

n

1

()
1 !

φ
+

= − =
+

 (4)

Where

 () ()
n

n i
i

x x x
0

φ
=

= −∏ (5)

If we examine the error formula for polynomial interpolation over an interval [a, b] we see
that as we change the interpolation points, we change also the locations c where the
derivative is evaluated; thus that part in the error also changes, and that change is a "black
hole" to us: we never know what the correct value of c is, but only that c is somewhere in the
interval [a, b]. Since we wish to use the interpolating polynomial to approximate the
Equation (4) cannot be used, of course, to calculate the exact value of the error f – Pn, since c,
as a function of x is, in general, not known. (An exception occurs when the (n + 1)st
derivative off is constant). And so we are likely to reduce the error by selecting interpolation

points x0, x1,...,xn so as to minimize the maximum value of product ()n xφ

The most natural idea is to choose them regularly distribute in [a, b].

3. Introduction to the Runge phenomenon and to Chebyshev approximations
3.1 Runge phenomenon

If xk are chosen to be the points ()k
b ax a k k n

n
 0,...,

−
= + = (means that

are equally spaced at a distance 2n + 1 apart), then the interpolating polynomial pn(x) need
not to converge uniformly on [a, b] as n → ∞ for the function f(x).

Searching for the best Points of interpolation using swarm intelligence techniques

147

This phenomenon is known as the Runge phenomenon (RP) and it can be illustrated with
the Runge's "bell" function on the interval [-5, 5] (Fig.1).

-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.5

0

0.5

1

1.5

2
f(x) = 1/(1+x2)

fexact

P10,equidistant

Figure 1. solid blue line: present Runge’s “bell” function. dots red line: present the
polynomial approximation based on equally 11 spaced nodes

3.2 Chebyshev Nodes
The standard remedy against the RP is Chebyshev -type clustering of nodes towards the end
of the interval (Fig.3).

Figure 2. Chebyshev Point Distribution.

To do this, conceptually, we would like to take many points near the endpoints of the
interval and few near the middle. The point distribution that minimizes the maximum

value of product ()n xφ is called the Chebyshev distribution, as shown in (Fig. 2). In the

Chebyshev distribution, we proceed as follows:
1. Draw the semicircle on [a, b].

Particle Swarm Optimization

148

2. To sample n + 1 points, place n equidistant partitions on the arc.
3. Project each partition onto the x-axis: for j =0, 1… n

 j
a b b ax j

n
cos

2 2
π⎛ ⎞+ − ⎟⎜ ⎟= + ⎜ ⎟⎜ ⎟⎜⎝ ⎠

 for j=0,1…n (6)

The nodes xi that will be used in our approximation are:
Chebyshev nodes

-5.0000
-4.2900
-4.0251
-2.6500
-1.4000
0.0000
1.4000
2.6500
4.0451
4.2900
5.0000

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
f(x) = 1/(1+x2)

fexact

P10,Chebyshev

Figure 3. solid blue line: present Runge’s “bell” function. dots red line: present the
polynomial approximation based on 11 Chebyshev nodes

In this study, we have made some numerical computations using the particle swarm
optimization to investigate the best interpolating points and we are showing that PSO nodes
provide smaller approximation error than Chebyshev nodes.

4. Particle swarm optimization
4.1 Overview and strategy of particle swarm optimization

Recently, a new stochastic algorithm has appeared, namely ‘particle swarm optimization’
PSO. The term ‘particle’ means any natural agent that describes the `swarm' behavior. The
PSO model is a particle simulation concept, and was first proposed by Eberhart and
Kennedy (Eberhart, R.C. et al. 1995). Based upon a mathematical description of the social

Searching for the best Points of interpolation using swarm intelligence techniques

149

behavior of swarms, it has been shown that this algorithm can be efficiently generated to
find good solutions to a certain number of complicated situations such as, for instance, the
static optimization problems, the topological optimization and others (Parsopoulos, K.E. et
al., 2001a); (Parsopoulos, K.E.et al. 2001b); (Fourie, P.C. et al., 2000); (Fourie, P.C. et al.,
2001). Since then, several variants of the PSO have been developed (Eberhart,R.C. et al 1996);
(Kennedy, J. et al., 1998); (Kennedy, J. et al., 2001); (Shi, Y.H. et al. 2001); (Shi, Y. et al. 1998a.
); (Shi, Y.H. et al., 1998b); (Clerc, M. 1999). It has been shown that the question of
convergence of the PSO algorithm is implicitly guaranteed if the parameters are adequately
selected (Eberhart, R.C. et al.1998); (Cristian, T.I. 2003). Several kinds of problems solving
start with computer simulations in order to find and analyze the solutions which do not
exist analytically or specifically have been proven to be theoretically intractable.
The particle swarm treatment supposes a population of individuals designed as real valued
vectors - particles, and some iterative sequences of their domain of adaptation must be
established. It is assumed that these individuals have a social behavior, which implies that
the ability of social conditions, for instance, the interaction with the neighborhood, is an
important process in successfully finding good solutions to a given problem.
The strategy of the PSO algorithm is summarized as follows: We assume that each agent
(particle) i can be represented in a N dimension space by its current position

()i i i iNx x x x1 2, ,...,= and its corresponding velocity. Also a memory of its

personal (previous) best position is represented by, ()i i iNp p p p1 2, ,...,= called

(pbest), the subscript i range from 1 to s, where s indicates the size of the swarm.
Commonly, each particle localizes its best value so far (pbest) and its position and
consequently identifies its best value in the group (swarm), called also (sbest) among the set
of values (pbest).
The velocity and position are updated as

 [] []k
ij

k
ij

kk
ij

k
ij

kk
ijjk

ij xsbestrcxpbestrcvwv −+−+=+)()(22111
 (7)

k
ij

k
ij

k
ij xvx += ++ 11

 (8)

where are the position and the velocity vector of particle i respectively at iteration k + 1, c1

et c2 are acceleration coefficients for each term exclusively situated in the range of 2--4,

i jw is the inertia weight with its value that ranges from 0.9 to 1.2, whereas r1 , r2 are

uniform random numbers between zero and one. For more details, the double subscript in
the relations (7) and (8) means that the first subscript is for the particle i and the second one

is for the dimension j. The role of a suitable choice of the inertia weight i jw is important in

the success of the PSO. In the general case, it can be initially set equal to its maximum value,
and progressively we decrease it if the better solution is not reached. Too often, in the

relation (7), ijw is replaced by i jw / σ , where σ denotes the constriction factor that

Particle Swarm Optimization

150

controls the velocity of the particles. This algorithm is successively accomplished with the
following steps (Zerarka, A. et al., 2006):

1. Set the values of the dimension space N and the size s of the swarm (s can be taken
randomly).

2. Initialize the iteration number k (in the general case is set equal to zero).
3. Evaluate for each agent, the velocity vector using its memory and equation (7),

where pbest and sbest can be modified.
4. Each agent must be updated by applying its velocity vector and its previous

position using equation [8].
5. Repeat the above step (3, 4 and 5) until a convergence criterion is reached.

The practical part of using PSO procedure will be examined in the following section, where
we‘ll interpolate Runge’s “bell”, with two manners; using Chebyshev interpolation
approach and PSO approach, all while doing a comparison.

4.2 PSO distribution
So the problem is the choice of the points of interpolation so that quantity

()n xφ deviates from zero on [a, b] the least possible.

Particle Swarm Optimization was used to find the global minimum of the maximum value

of product ()n xφ , where very x is represented as a particle in the swarm.

The PSO parameter values that were used are given in Table 1.

Parameter Setting
Population size 20
Number of iterations 500
C1 and C2 0.5
Inertial Weight 1.2 to 0.4
Desired Accuracy 10-5

Table 1. Particle Swarm Parameter Setting used in the present study

The best interpolating points x generated by PSO algorithm for polynomial of degree 5 and
10 respectively for example are:

Chebyshev Points generated
with PSO

-5.0000 -5.0000
-3.9355 -4.0451
-2.9041 -1.5451
0.9000 1.5451
3.9355 4.0451
5.0000 5.0000

Table 2 Polynomial of degree 5

Searching for the best Points of interpolation using swarm intelligence techniques

151

Chebyshev Points generated with PSO
-5.0000 -5.0000
-4.2900 -4.7553
-4.0251 -4.0451
-2.6500 -2.9389
-1.4000 -1.5451
0.0000 -0.0000
1.4000 1.5451
2.6500 2.9389
4.0451 4.0451
4.2900 4.7553
5.0000 5.0000

Table 3. Polynomial of degree 10

5. Comparison of interpolation methods
How big an effect can the selection of points have? Fig. 4 and Fig. 5 shows Runge's "bell"
function interpolated over [-5, 5] using equidistant points, points selected from the
Chebyshev distribution, and a new method called PSO. The polynomial interpolation using
Chebyshev points does a much better job than the interpolation using equidistant points,
but neither does as well as the PSO method.

-5 0 5
0

0.2

0.4

0.6

0.8

1
f(x) = 1/(1+x2)

P5, equidistant

P5, chebyshev

exact

-5 0 5

0

0.5

1

1.5

f(x) = 1/(1+x2)

P10, equidistant

P10, chebyshev

exact

-5 0 5

0.1

0.2

0.3

0.4

0.5

Error Plot

ab
so

lu
te

 e
rro

r

-5 0 5

0.5

1

1.5

Error Plot

ab
so

lu
te

 e
rro

r

Figure 4. Comparison of interpolation polynomials for equidistant and Chebyshev sample
points

Particle Swarm Optimization

152

Comparing Fig. 4, we see that the maximum deviation of the Chebyshev polynomial from
the true function is considerably less than that of Lagrange polynomial with equidistant
nodes. It can also be seen that increasing the number of the Chebyshev nodes—or,
equivalently, increasing the degree of Chebyshev polynomial—makes a substantial
contribution towards reducing the approximation error.
Comparing Fig. 5, we see that the maximum deviation of the PSO polynomial from the true
function is considerably less than that of Chebyshev polynomial nodes. It can also be seen
that increasing the number of the PSO nodes—or, equivalently, increasing the degree of PSO
polynomial—makes a substantial contribution towards reducing the approximation error.

-5 0 5
0

0.2

0.4

0.6

0.8

1
f(x) = 1/(1+x2)

P5, PSO

P5, Chebyshev

exact

-5 0 5

0.2

0.4

0.6

0.8

1
f(x) = 1/(1+x2)

P10, PSO

P10, Chebyshev

exact

-5 0 5

0.1

0.2

0.3

0.4

0.5

0.6

Error Plot

ab
so

lu
te

 e
rro

r

-5 0 5
0

0.05

0.1

Error Plot

ab
so

lu
te

 e
rro

r

Figure 5. Comparison of interpolation polynomials for PSO and Chebyshev sample points

In this study we take as measure of the error of approximation the greatest vertical distance
between the graph of the function and that of the interpolating polynomial over the entire
interval under consideration (Fig. 4 and Fig. 5).
The calculation of error gives

Degree Error points
equidistant

Error points
Chebychev

Error points
PSO

5 0.4327 0.6386 0.5025
10 1.9156 0.1320 0.1076
15 2.0990 0.0993 0.0704
20 58.5855 0.0177 0.0131

Table 2. The error

Searching for the best Points of interpolation using swarm intelligence techniques

153

6. Conclusion
The particle swarm optimization is used to investigate the best interpolating points. Some
good results are obtained by using the specific PSO approach. It is now known that the PSO
scheme is powerful, and easier to apply specially for this type of problems. Also, the PSO
method can be used directly and in a straightforward manner. The performance of the
scheme shows that the method is reliable and effective.

7. References
Clerc, M. (1999). The swarm and the queen: towards a deterministic and adaptive particle

swarm optimization, Proceedings of the 1999 IEEE Congress on Evolutionary
Computation, pp.1951—1957, Washington DC.

Cristian, T.I. (2003). The particle swarm optimization algorithm: convergence analysis and
parameter selection, Information Processing Letters, Vol. 85, No. 6, pp.317--325.

David Kincaid and Ward Cheney, (2002). Numerical Analysis: Mathematics of Scientific
Computing. Brooks/Cole.

Eberhart, R.C. and Kennedy, J. (1995). A new optimizer using particles swarm theory', Sixth
International Symposium on Micro Machine and Human Science, pp.39--43, Nagoya,
Japan.

Eberhart, R.C. and Shi, Y. (1998). Parameter selection in particle swarm optimization, in
Porto, V.W.,

Eberhart, R.C. et al (1996). Computational Intelligence PC Tools, Academic Press Professional,
Boston.

Fourie, P.C. and Groenwold, A.A. (2000). Particle swarms in size and shape optimization',
Proceedings of the International Workshop on Multi-disciplinary Design Optimization,
August 7--10, pp.97—106, Pretoria, South Africa.

Fourie, P.C. and Groenwold, A.A. (2001). Particle swarms in topology optimization',
Extended Abstracts of the Fourth World Congress of Structural and Multidisciplinary
Optimization, June 4--8, pp.52, 53, Dalian, China.

Hammer, R. Et al (1995). Numerical Toolbox for Verified Computing I, Springer Verlag,
Berlin.

Kennedy, J. 1998. The behavior of particles, Evol. Progr., Vol. VII, pp.581-587.
Kennedy J. and Eberhart, R.C, (1995). Particle swarm optimization, Proc. IEEE Int. Conf.

Neural Networks, Piscataway, NJ, pp.1942--1948, USA.
Kennedy, J. and Eberhart, R.C. (2001). Swarm Intelligence, Morgan Kaufmann Publishers, San

Francisco.
Kennedy, J. and Spears, W.M. (1998). Matching algorithms to problems: an experimental test

of the particle swarm and some genetic algorithms on the multimodal problem
generator, Proceedings of the (1998) IEEE International Conference on Evolutionary
Computation, Anchorage, May 4--9, Alaska.

Kulisch, U. and Miranker, W.L. (1983). A New Approach to Scientific Computation,
Academic Press, New York.

L. N. Trefethen. Spectral Methods in Matlab. SIAM, (2000). 9, Philadelphia
L. Djerou, M. Batouche, N. Khelil and A.Zerarka, (2007). Towards the best points of

interpolation using Particles swarm optimization approach, in proceedings of IEEE
Congress of Evolutionary Computing, CEC 2007, pp. 3211-3214, Singapore.

Particle Swarm Optimization

154

Maron, M. and Lopez, R. (1991). Numerical Analysis, Wadsworth Publishing Company,
Belmont, California.

Parsopoulos, K.E. and Vrahatis, M.N. (2001). `Modification of the particle swarm optimizer
for locating all the global minima', in Kurkova, V. et al. (Eds.): Artificial Neural
Networks and Genetic Algorithms, Springer, pp.324--327, New York.

Parsopoulos, K.E. et al, (2001a). Objective function stretching to alleviate convergence to
local minima, Nonlinear Analysis TMA, Vol. 47, pp.3419--3424.

Parsopoulos, K.E.et al (2001b). Stretching technique for obtaining global minimizers through
particle swarm optimization, Proceedings of the PSO Workshop, pp.22--29,
Indianapolis, USA.

Roland E. Larson, Robert P. Hostetler, Bruch H. Edwards and David E. Heyd, (1994).,
Calculus with Analytic Geometry. D. C. Heath and Company.

Saravanan, N., Waagen, D. and Eiben, A.E. (Eds.): Lecture Notes in Computer Science-
Evolutionary Programming VII, Springer, Vol. 1447, pp.591--600.

Shi, Y. and Eberhart, R.C. (1998a). A modified particle swarm optimizer, Proceedings of the
1998 IEEE International Conference on Evolutionary Computation, May 4—9,
Anchorage, Alaska.

Shi, Y.H. and Eberhart, R.C. (1998b). Parameter selection in particle swarm optimization,
Evolutionary Programming VII, Lecture Notes in Computer Science, pp.591--600.

Shi, Y.H. and Eberhart, R.C. (2001). Fuzzy adaptive particle swarm optimization', IEEE Int.
Conf. on Evolutionary Computation, pp.101--106.

Zerarka, A., Khelil, N. (2006). A generalized integral quadratic method: improvement of the
solution for one dimensional Volterra integral equation using particle swarm
optimization, Int. J. Simulation and Process Modeling, Vol. 2, Nos. 1/2, pp.152-163.

9

Particle Swarm Optimization and Other
Metaheuristic Methods in Hybrid Flow Shop

Scheduling Problem
M. Fikret Ercan

Singapore Polytechnic School of Electrical and Electronic Engineering
Singapore

1. Introduction
Multiprocessor task scheduling is a generalized form of classical machine scheduling where
a task is processed by more than one processor. It is a challenging problem encountered in
wide range of applications and it is vastly studied in the scheduling literature (see for
instance (Chan & Lee, 1999 and Drozdowski, 1996) for a comprehensive introduction on this
topic). However, Drozdowski (1996) shows that multiprocessor task scheduling is difficult
to solve even in its simplest form. Hence, many heuristic algorithms are presented in
literature to tackle multiprocessor task scheduling problem. Jin et al. (2008) present a
performance study of such algorithms. However, most of these studies primarily concerned
with a single stage setting of the processor environment. There are many practical problems
where multiprocessor environment is a flow-shop that is it is made of multiple stages and
tasks have to go through one stage to another.
Flow-shop scheduling problem is also vastly studied in scheduling context though most of
these studies concerned with single processor at each stage (see for instance Linn & Zhang,
1999, Dauzère-Pérès & Paulli, 1997). With the advances made in technology, in many
practical applications, we encounter parallel processors at each stage instead of single
processors such as parallel computing, power system simulations, operating system design
for parallel computers, traffic control in restricted areas, manufacturing and many others
(see for instance (Krawczyk & Kubale, 1985, Lee & Cai, 1999, Ercan & Fung, 2000, Caraffa et.
al.,2001)). This particular problem is defined as hybrid flow-show with multiprocessor tasks
in scheduling terminology and minimizing the schedule length (makespan) is the typical
scheduling problem addressed. However, Brucker & Kramer (1995) show that
multiprocessor flow-shop problem to minimize makespan is also NP-hard. Gupta (1988)
showed that hybrid flow-shop even with two stages is NP-hard. Furthermore, the
complexity of the problem increases with the increasing number of stages.
Multiprocessor task scheduling in a hybrid flow-shop environment has recently gained the
attention of the research community. To the best of our knowledge, one of the earliest
papers that deal with this problem in the scheduling literature is by Oğuz and Ercan, 1997.
However, due to the complexity of the problem, in the early studies (such as (Lee & Cai,
1999, Oğuz et. al., 2003)) researchers targeted two layer flow-shops with multiprocessors.
Simple list based heuristics as well as meta-heuristics were introduced for the solution

Particle Swarm Optimization

156

(Oğuz et al.,2003, Jdrzęjowicz & Jdrzęjowicz,2003, Oğuz et al.,2004). Apparently, a broader
form of the problem will have arbitrary number of stages in the flow-shop environment.
This is also studied recently and typically metaheuristic algorithms applied to minimize the
makespan such as population learning algorithm (Jdrzęjowicz & Jdrzęjowicz, 2003), tabu
search (Oğuz et al.,2004), genetic algorithm (Oğuz & Ercan,2005) and ant colony system
(Ying & Lin,2006). Minimizing the makespan is not the only scheduling problem tackled;
recently Shiau et al. (2008) focused on minimizing the weighted completion time in
proportional flow shops.
These metaheuristic algorithms produce impressive results though they are sophisticated
and require laborious programming effort. However, of late particle swarm optimization
(PSO) is gaining popularity within the research community due to its simplicity. The
algorithm is applied to various scheduling problems with notable performance. For
instance, Sivanandam et al. (2007) applied PSO to typical task allocation problem in
multiprocessor scheduling. Chiang et al. (2006) and Tu et al. (2006) demonstrate application
of PSO to well known job shop scheduling problem.
PSO, introduced by Kennedy & Eberhart (1995), is another evolutionary algorithm which
mimics the behaviour of flying birds and their communication mechanism to solve
optimization problems. It is based on a constructive cooperation between particles instead of
survival of the fittest approach used in other evolutionary methods. PSO has many
advantages therefore it is worth to study its performance for the scheduling problem
presented here. The algorithm is simple, fast and very easy to code. It is not computationally
intensive in terms of memory requirements and time. Furthermore, it has a few parameters
to tune.
This chapter will present the hybrid flow-shop with multiprocessor tasks scheduling
problem and particle swarm optimization algorithm proposed for the solution in details. It
will also introduce other well known heuristics which are reported in literature for the
solution of this problem. Finally, a performance comparison of these algorithms will be
given.

2. Problem definition
The problem considered in this paper is formulated as follows: There is a set J of n
independent and simultaneously available jobs where each job is made of Multi-Processor
Tasks (MPT) to be processed in a multi-stage flow-shop environment, where stage j consists
of mj identical parallel processors (j=1,2,...,k). Each MPTi ∈ J should be processed on pi,j
identical processors simultaneously at stage j without interruption for a period of ti,j
(i=1,2,...,n and j=1,2,...,k). Hence, each MPTi ∈ J is characterized by its processing time, ti,j,
and its processor requirement, pi,j. The scheduling problem is basically finding a sequence of
jobs that can be processed on the system in the shortest possible time. The following
assumptions are made when modeling the problem:
• All the processors are continuously available from time 0 onwards.
• Each processor can handle no more than one task at a time.
• The processing time and the number of processors required at each stage are known in

advance.
• Set-up times and inter-processor communication time are all included in the processing

time and it is independent of the job sequence.

Particle Swarm Optimization and Other Metaheuristic Methods
in Hybrid Flow Shop Scheduling Problem

157

3. Algorithms
3.1 The basic PSO algorithm
PSO is initialized with a population of random solutions which is similar in all the
evolutionary algorithms. Each individual solution flies in the problem space with a velocity
which is adjusted depending on the experiences of the individual and the population. As
mentioned earlier, PSO and its hybrids are gaining popularity in solving scheduling
problems. A few of these works tackle the flow shop problem (Liu et al.,2005) though
application to hybrid flow-shops with multiprocessor tasks is relatively new (Ercan & Fung,
2007, Tseng & Liao, 2008).
In this study, we first employed the global model of the PSO (Ercan & Fung, 2007). In the
basic PSO algorithm, particle velocity and position are calculated as follows:

 Vid=W Vid + C1R1(Pid-Xid)+C2R2(Pgd-Xid) (1)

 Xid=Xid+Vid (2)

In the above equations, Vid is the velocity of particle i and it represents the distance traveled
from the current position. W is inertia weight. Xid represents particle position. Pid is the local
best solution (also called as “pbest”) and Pgd is global best solution (also called as
“qutgbest”). C1 and C2 are acceleration constants which drive particles towards local and
global best positions. R1 and R2 are two random numbers within the range of [0, 1]. This is
the basic form of the PSO algorithm which follows the following steps:

Algorithm 1: The basic PSO
Initialize swarm with random positions and velocities;
begin
repeat
 For each particle evaluate the fitness i.e. makespan of the schedule;
 if current fitness of particle is better than Pid then set Pid to current value;
 if Pid is better than global best then set Pgd to current particle fitness value;
 Change the velocity and position of the particle;
until termination = True
end.

The initial swarm and particle velocity are generated randomly. A key issue is to establish a
suitable way to encode a shedule (or solution) to PSO particle. We employed the method
shown by Xia et al.(2006). Each particle consists of a sequence of job numbers representing
the n number of jobs on a machine with k number of stages where each stage has mj
identical processors (j=1,2,...,k). The fitness of a particle is then measured with the maximum
completion time of all jobs. In our earlier work (Oğuz & Ercan,2005), a list scheduling
algorithm is developed to map a given job sequence to the machine environment and to
compute the maximum completion time (makespan). A particle with the lowest completion
time is a good solution.
Figure 1 shows an example to scheduling done by the list scheduling algorithm. In this
example, number of jobs is n= 5 and a machine is made of two stages k=2 where each stage
contains four identical processors. Table 1 depicts the list of jobs and their processing times
and processor requirements at each stage for this example.

Particle Swarm Optimization

158

Job # Stage 1 (j=1) Stage 2 (j=2)
i pi,1 ti,1 pi,2 ti,2
1 1 1 2 2
2 3 3 4 2
3 3 3 3 2
4 2 1 2 1
5 1 1 1 1

Table 1. Example jobs and their processing time and processor requirements at each stage

For the schedule shown in Figure 1, it is assumed that a job sequence is given as S1
={2,3,1,4,5}. At stage 1, jobs are iteratively allocated to processors from the list starting from
time 0 onwards. As job 2 is the first in the list, it is scheduled at time 0. It is important to note
that although there are enough available processors to schedule job 1 at time 0 this will
violate the precedence relationship established in the list. Therefore, job 1 is scheduled to
time instance 3 together with job 3 and this does not violate the precedence relationship
given in S1 . Once all the jobs are scheduled at first stage, a new list is produced for the
succeeding stage based on the completion of jobs at previous stage and the precedence
relationships given in S1. In the new list for stage 2, S2 ={2,1,3,4,5} , job 1 is scheduled before
job 3 since it is available earlier than job 3. At time instance 7, jobs 3, 4 and 5 are all available
to be processed. Job 3 is scheduled first since its completion time is earlier at stage 1.
Although, there is enough processor to schedule job 5 at time 8 this will again violate the
order given in list S1 , hence it is scheduled together with job 4. In this particular example,
jobs 4 and 5 will be the last to be mapped to stage 2 and the over all completion time of tasks
will be 10 units.
The parameters of PSO are set based on our empirical study as well as referring to the
experiences of other researchers. The acceleration constants C1 and C2 are set to 2.0 and
initial population of swarm is set to 100. Inertia weight, W, determines the search behavior
of the algorithm. Large values for W facilitate searching new locations whereas small values
provide a finer search in the current area. A balance can be established between global and
local exploration by decreasing the inertia weight during the execution of the algorithm.
This way PSO tends to have more global search ability at the beginning and more local
search ability towards the end of the execution. In our PSO algorithm, an exponential
function is used to set the inertia weight and it is defined as:

 max)(x
x

endstartend eWWWW
α−

−+= (3)

where, Wstart is the starting, Wend is the ending inertia values. Wstart are Wend are set as 1.5
and 0.3 respectively. In addition, x shows the current iteration number and xmax shows the
maximum iteration number which is set to 10000. An integer constant α is used to
manipulate the gradient of the exponentially decreasing W value and it is set to 4.
In this application, Xid and Vid are used to generate and modify solutions therefore they are
rounded off to the nearest integer and limited to a maximum value of n which is the
maximum number of jobs. That is position coordinates are translated into job sequence in
our algorithm and a move in search space is obtained by modifying the job sequence.

Particle Swarm Optimization and Other Metaheuristic Methods
in Hybrid Flow Shop Scheduling Problem

159

Figure 1. The schedule of job sequence [2, 3, 1, 4, 5] after being allocated to processors of the
multilayer system using the list scheduling algorithm. Idle periods of the processors are
labeled as idle

3.2 Hybrid PSO algorithms
Although, PSO is very robust and has a well global exploration capability, it has the
tendency of being trapped in local minima and slow convergence. In order to improve its
performance, many researchers experimented with hybrid PSO algorithms. Poli et al. (2007)
give a review on the varations and the hybrids of particle swarm optimisation. Similarly, in
scheduling problems, performance of PSO can be improved further by employing hybrid
techniques. For instance, Xia & Wu (2006) applied PSO-simulated annealing (SA) hybrid to
job shop scheduling problem and test its performance with benchmark problems. Authors
conclude that PSO-SA hybrid delivered equal solution quality as compared to other
metaheuristic algorithms though PSO-SA offered easier modeling, simplicity and ease of
implementation. These findings motivated us to apply PSO and its hybrids to this particular
scheduling problem and study its performance.
The basic idea of the hybrid algorithms presented here is simply based on runnign PSO
algorithm first and then improving the result by employing a simulated annealing (SA) or
tabu search (TS) heuristics. SA and TS introduce a probability to avoid becoming trapped in
a local minimum. In addition, by introducing a neighborhood formation and tuning the

Particle Swarm Optimization

160

parameters, it is also possible to enhance the search process. The initial findings of this study
are briefly presented in (Ercan,2008). The following pseudo codes show the hybrid
algorithms:

Algorithm 2: Hybrid PSO with SA
Initialize swarm with random positions and velocities;
 begin
 initialize PSO and SA;
 while (termination !=true)
 do{
 generate swarm;
 compute and find best Pgd;
 }
 set particle that gives best Pgd as initial solution to SA;
 while (Tcurrent>Temp_end)
 do{
 generate neighborhood;
 evaluate and update best solution and temperature;
 }
 end.

Algorithm 3: Hybrid PSO with TS
Initialize swarm with random positions and velocities;
 begin
 initialize PSO and TS;
 while (termination !=true)
 do{
 generate swarm;
 compute and find best Pgd;
 }
 set particle that gives best Pgd as initial solution to TS;
 while (termination!=true)
 do{
 generate sub set of neighborhoods;
 evaluate and update the best solution;
 update the tabu list;
 }
 end.

The initial temperature for PSO-SA hybrid is estimated after 50 randomly permuted
neighborhood solutions of the initial solution. A ratio of average increase in the cost to
acceptance ratio is used as initial temperature. Temperature is decreased using a simple
cooling strategy Tcurrent = λTcurrent -1 . The best value for lambda is experimentally found and
set as 0.998. The end temperature is set to 0.01.
A neighbor of the current solution is obtained in various ways.

• Interchange neighborhood: Two randomly chosen jobs from the job list are
exchanged.

Particle Swarm Optimization and Other Metaheuristic Methods
in Hybrid Flow Shop Scheduling Problem

161

• Simple switch neighborhood: It is a special case of interchange neighborhood
where a randomly chosen job is exchanged with its predecessor.

• Shift neighborhood: A randomly selected job is removed from one position in the
priority list and put it into another randomly chosen position.

It is experimentally found that interchange method performs the best amongst all three. The
interchange strategy is also found to be the most effective one for generating the sub-
neighborhoods for TS.
In the tabu list, a fixed number of last visited solutions are kept. Two methods for updating
the tabu list are experimented; elimination of the farthest solution stored in the list, and
removing the worst performing solution from the list. In PSO-TS hybrid removing the worst
performing solution from the list method is used as it gave a slightly better result.

4. GA algorithm
Genetic algorithms, introduced by Holland (1975), have been widely applied to many
scheduling problems in literature (see for instance job-shop environment (Della et al.,1995)
and (Dorndorf & Pesch,1995), flow-shop environment (Murata et al., 1996)). Genetic
algorithms are also employed in hybrid flow-shops with multiprocessor environment (Oğuz
& Ercan, 2005). In this work, authors proposed a new crossover operator, NXO, to be used in
the genetic algorithm and compare its performance with well-known PMX crossover. They
employed two selection criteria in NXO to minimize the idle time of the processors. Firstly,
NXO basically aims to keep the best characteristics of the parents in terms of the
neighbouring jobs. That is if two jobs are adjacent to each other in both parents with good
fitness values, then NXO tries to keep this structure in the offspring. If there is no such
structure, then next criteria is employed in which NXO tries to choose the next job that will
fit well in terms of the processor allocations. The results show that the genetic algorithm
performs better in terms of the percentage deviation of the solution from the lower bound
value when new crossover operator is used along with the insertion mutation. Some of the
results from this study are included in this paper for comparison.

5. Other heuristic methods
The ant colony system (Dorigo, 1997) is another popular algorithm which is widely used in
optimisation problems. Recently, Ying & Lin (2006) applied ant colony system (ACS) to
hybrid flow-shops with multiprocessors tasks. Authors determine the jobs-permutation at
the first stage, by ACS approach. Other stages are scheduled using an ordered list which is
obtained by referring to completion times of jobs at the previous stage. Authors also apply
the same procedure to the inverse problem to obtain the backward schedules. After that
they employ a local search approach to improve the best schedule obtained in current
iteration. Their computational results show that ACS has better performance compared to
TS or GA though their algorithm is not any simpler than that of TS or GA.
Recently, Tseng & Liao (2008) tackled the problem by using particle swarm optimization.
Their algorithm differs in terms of encoding scheme to construct a particle, the velocity
equation and local search mechanism when compared to the basic PSO and the hybrid PSO
algorithms presented here. Based on their published experimental results, PSO algorithm
developed by Tseng & Liao (2008) performs well in this scheduling problem. Lately, Ying
(2008) applied iterated greedy (IG) heuristic in search of a simpler and more efficient

Particle Swarm Optimization

162

solution. The IG heuristic also shows a notable performance as it’s tailored to this particular
problem.

6. Experimental results
The performance of all the meta-heuristics described above is tested using intensive
computational experiments. Similarly, performance of the basic PSO and the hybrid PSO
algorithms, in minimizing the overall completion time of all jobs, is also tested using the
same computational experiments. The effects of various parameters such as number of jobs
and processor configurations on the performance of the algorithm are also investigated. The
results are presented in terms of Average Percentage Deviation (APD) of the solution from
the lower bound which is expressed as:

 100max ×
−

=
LB

LBC
APD (3)

Here, Cmax indicates the completion time of the jobs and LB indicates the lower bound
calculated for the problem instance. The lower bounds used in this performance study were
developed by Oğuz et al. (2004) and it is given with the following formula:

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎭
⎬
⎫

⎩
⎨
⎧+×+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= ∑ ∑∑
∈ +=∈

−

=∈∈ Jj

l

il
jlJjjiji

i

i

l
jlJjMi

ttp
m

tLB
1

,,,

1

1
, min1minmax

 (4)

In the above formula, M and J represent the set of stages and set of jobs consecutively. We
used the benchmark data available at Oğuz’s personal web-site
(http://home.ku.edu.tr/~coguz/). Data set contains instances for two types of processor
configurations:

(i) Random processor: In this problem set, the number of processors in each
stage is randomly selected from a set of {1,..., 5}

(ii) Fixed processor: In this case identical number of processors assigned at
each stage which is fixed to 5 processors.

For both configurations, a set of 10 problem instances is randomly produced for various
number of jobs (n=5, 10, 20, 50, 100) and various number of stages (k=2, 5, 8). For each n and
k value, the average APD is taken over 10 problem instances.
Table 2 and 3 presents the APD results obtained for the basic PSO and the hybrid PSO
algorithms. Furthermore, we compare the results with genetic algorithm developed by Oğuz
and Ercan (2005), tabu search by Oğuz et al. (2004), ant colony system developed by Ying
and Lin (2006), iterated greedy algorithm (IG) by Ying (2008) and PSO developed by Tseng
& Liao (2008). The performance of GA (Oğuz and Ercan,2005) is closely related to the control
parameters and the cross over and mutation techniques used. Therefore, in Tables 2 and 3,
we include the best results obtained from four different versions of GA reported. The
performance comparison given in below tables is fair enough as most of the authors were
employing the same problem set. Furthermore, all the algorithms use the same LB. However
there are two exceptions. For the GA, authors use an improved version of the LB than the
one given in equation 4. In addition, the PSO developed by Tseng & Liao (2008) is tested
with different set of problems and with the same LB as in GA. However, these problems

Particle Swarm Optimization and Other Metaheuristic Methods
in Hybrid Flow Shop Scheduling Problem

163

also have the same characteristic in terms of number of stage, generation methods for
processor and processing time requirements, etc.
From the presented results in Table 2 and 3, it can be observed that TS delivers reasonably
good results only in two stage case; whereas GA demonstrates a competitive performance
for small to medium size problems. For large number of jobs (such as n=50, 100) and large
number of stages (k=8), GA did not outperform ACS, IG or PSO. When we compare ACS
with TS and GA, we can observe that it outperforms TS and GA in most of the cases. For
instance, it outperforms GA in 8 out of 12 problems in random processor case (Table 2).
Among those, the performance improvement was more than %50 in six cases. On the other
hand, IG gives a better result when compared to ACS in all most all the cases. The IG
heuristic shows notable performance improvement for large problems (n=50 and n=100).
For example, in n=100 and k=8 case, IG result is %71 better as compared to GA, %95
compared to TS and %7 compared to ACS.
The basic PSO algorithm presented here approximates to GA and ACS results though it did not
show a significant performance improvement. PSO outperformed GA 4 in 12 problems for
random processors and 1 in 12 problems for fixed processors. The best performance
improvement was 54%. On the other hand, PSO-SA hybrid outperformed GA 7 and ACS 3 in 12
problems. In most of the cases, PSO-SA and PSO-TS outperformed the basic PSO algorithm.
Amongst the two hybrids experimented here, PSO-SA gave the best results. The best result
obtained with PSO-SA was in 50-jobs, 5-stages case, where the improvement was about 59%
when compared to GA but this was still not better than ACS or IG. However, PSO developed by
Tseng & Liao (2008) gives much more competitive results. Although thier results are for
different set of problems, it can be seen that their algorithm performance improves when the
problem size increases. Authors compared their algorithm with GA and ACS using the same set
of data and reported that their PSO algorithm supersedes them, in particular for large problems.
From the results, it can also be observed that when the number of processors are fixed, that
is mj =5, the scheduling problem becomes more difficult to solve and APD results are
relatively higher. This is evident in the given results of different metaheuristic algorithms as
well as the basic PSO and the hybrid PSO algorithms presented here. In the fixed processor
case, PSO-SA, which is the best performing algorithm among the three PSO algorithms,
outperformed GA in 3 out of 12 problems and the best improvement achieved was %34. The
performance of ACS is better for large problems though IG is dominant in most of the
problems. For the fixed problem case, PSO algorithm developed by (Tseng & Liao, 2008) did
not show an exceptional performance when compared to GA or ACS for smaller problems
though for large problems (that is n=50 and 100) their PSO algorithm outperforms all.
The execution time of the algorithms is another indicator of the performance though it may not
be a fair comparison as different processors and compilers used for each reported algorithm in
literature. For instance, the basic PSO and the hybrid PSO algorithms presented here are
implemented using Java language and run on a PC with 2GHz Intel Pentium processor (with
1024 MB memory). GA (Oğuz & Ercan, 2005) implemented with C++ and run on a PC with
2GHz Pentium 4 processor (with 256 MB memory), IG (Ying, 2008) with visual C#.net and PC
with 1.5GHz CPU and ACS (Ying & Lin, 2006) with Visual C++ and PC with 1.5 GHz Pentium
4 CPU. However, for the sake of completeness we execute GA, the basic PSO and the hybrid
PSO on the same computing platform using one easy (k=2, n=10) and one difficult problem
(k=8, n=100) for the same termination criterion of 10000 iterations for all the algorithms.
Results are reported in Table 4, which illustrates the speed performance of PSO. It can be seen

Particle Swarm Optimization

164

that PSO is approximately 48% to 35% faster than reported GA CPU timings. The fast
execution time of PSO is also reported by Tseng and Liao (2008). However, in our case hybrid
algorithms were as costly as GA due to computations in SA and TS steps.

k n TS
(Oğuz
et al.
2004)

GA
(Oğuz

&
Ercan,
2005)

ACS
(Ying
& Lin,
2006)

IG
(Ying,
2008)

Basic
PSO

PSO-
SA

PSO-
TS

PSO*
(Tseng

&
Liao,
2008)

 10 3.0 1.60 1.60 1.49 2.7 1.7 2.1 2.8*
2 20 2.88 0.80 1.92 1.87 2.88 1.12 1.92 5.40
 50 2.23 0.69 2.37 2.21 2.38 2.4 2.4 2.30
 100 9.07 0.35 0.91 0.89 1.82 0.82 1.1 1.62

 10 29.42 11.89 9.51 8.73 10.33 9.78 10.4 10.45
5 20 24.40 5.54 3.07 2.97 8.6 3.19 4.53 6.04
 50 10.51 5.11 1.51 1.49 3.31 2.06 2.98 1.44
 100 11.81 3.06 1.05 1.03 2.11 1.05 1.77 2.80

 10 46.53 16.14 16.50 13.91 18.23 16.14 17.5 19.01
8 20 42.47 7.98 6.77 5.83 12.03 6.69 7.03 5.76
 50 21.04 6.03 2.59 2.47 5.98 3.0 4.19 2.91
 100 21.50 4.12 1.33 1.23 8.78 2.11 5.22 1.53

Table 2. APD of the algorithms for 10 random instances. Random processors case (mj ~[1,5])
(*) Different problem set

k n TS
(Oğuz
et al.
2004)

GA
(Oğuz

&
Ercan,
2005)

ACS
(Ying &

Lin,
2006)

IG
(Ying,
2008)

Basic
PSO

PSO-
SA

PSO-
TS

PSO*
(Tseng
& Liao,
2008)

 10 10.82 6.13 12.62 8.85 13.8 10.11 12.8 12.75*
2 20 7.25 7.10 10.73 6.93 10.75 9.59 10.73 6.05
 50 5.80 3.34 8.17 5.66 10.32 7.02 8.82 5.69
 100 5.19 2.87 5.66 5.04 7.43 3.21 6.43 6.56

 10 45.14 11.32 26.09 23.49 29.6 11.32 22.2 19.58
5 20 35.13 10.78 15.11 12.64 19.4 10.77 16.5 12.33
 50 28.64 14.91 13.11 11.29 14.17 13.24 13.86 12.47
 100 26.49 11.02 12.45 10.53 12.45 12.45 12.45 11.49

 10 77.21 25.98 25.14 22.17 30.81 25.83 25.83 33.92
8 20 62.99 24.13 25.18 22.79 26.74 24.34 25.02 24.98
 50 54.25 21.87 22.23 20.71 27.01 23.07 25.11 19.41
 100 36.05 19.46 13.90 12.85 20.39 14.43 17.9 15.93

Table 3. APD of the algorithms for 10 random instances. Fixed processor case (mj =5)
(*) Different problem set

Particle Swarm Optimization and Other Metaheuristic Methods
in Hybrid Flow Shop Scheduling Problem

165

k n GA

PSO PSO-SA PSO-TS

2 10 12.14 6.3 13.5 12.94
8 100 2109.9 1388.67 4029.1 3816.3

Table 4. Average CPU time (in seconds) of GA, TS and PSO. Processors setting is mj=5

18 jobs

3000

3500

4000

4500

5000

5500

6000

1 10 50
100

500
1000

2000
3000

4000
5000

7000
10000

Iterations

C
m

ax
(s

ec
)

TS
GA
PSO
PSO-SA
PSO-TS

12 jobs

2000

2500

3000

3500

4000

4500

1 10 50
100

500
1000

2000
3000

4000
5000

7000
10000

Iterations

C
m

ax
(s

ec
)

TS
GA
PSO
PSO-SA
PSO-TS

Figure 2. Convergence of TS, GA and PSO algorithms for a machine vision system

Lastly, we run the basic PSO and the hybrid PSO algorithms together with genetic algorithm
and tabu search algorithm for the data obtained from a machine-vision system. The system
is a multiprocessor architecture designed mainly for machine vision applications. The
system comprise of two stages where each stage holds four identical DSP processors from
Analog Devices. Data gathered from this system are for 8, 10, 12 and 18 jobs. The number of
job is determined by the number of objects to be detected in a given image. The execution
time and the processor requirements of parallel algorithms for each job are recorded in

Particle Swarm Optimization

166

order to use them as test problems in our scheduling algorithms. By utilizing this data,
which can be obtained from the author, the convergence characteristic of the algorithms is
analyzed. As it can be seen from Figure 2, all the algorithms converge very rapidly.
However, PSO algorithms converge faster than TS and GA. In addition, PSO-SA finds a
slightly better solution for 12 job problem. All the algorithms find a reasonably good
solution within 1000 iterations. Hence, for practical application of the scheduling algorithms
a small value for termination criteria can be selected.

7. Conclusion
In this chapter, a scheduling problem, defined as hybrid flow-shops with multiprocessor
tasks, is presented together with various meta-heuristic algorithms reported for the solution
in literature. As the solution to this scheduling problem has merits in practise, endeavour to
find a good solution is worthy. The basic PSO and the hybrid PSO algorithms are employed
to solve this scheduling problem, as PSO proven to be a simple and effective algorithm
applied in various engineering problems. In this particular scheduling problem, a job is
made up of interrelated multiprocessor tasks and each multiprocessor task is modelled with
its processing requirement and processing time. The objective was to find a schedule in
which completion time of all the tasks will be minimal. We observe that basic PSO has a
competitive performance as compared to GA and ACS algorithms and superior
performance when compared to TS. Considering the simplicity of the basic PSO algorithm,
the performance achieved is in fact impressive. When experimented with the hybrids of
PSO, it is observed that PSO-SA combination gave the best results. Hybrid methods
improved the performance of PSO significantly though this is achieved at the expense of
increased complexity. When compared to other published results on this problem, it can be
concluded that IG algorithm (Ying, 2008) and PSO given by (Tseng & Liao, 2008) are the best
performing algorithms on this problem so far. In terms of effort to develop an algorithm,
execution time of algorithm and simplicity to tune it, PSO tops all the other metaheuristics.
As in many practical scheduling problems, it is likely to have precedence constraints among
the jobs hence in future study hybrid flow-shops with precedence constraints will be
investigated. In addition, PSO may be applied to other scheduling problems and its
performance can be exploited in other engineering problems.

8. References
Brucker, P. & Kramer, B. (1995). Shop scheduling problems with multiprocessor tasks on

dedicated processors, Annals of Operations Research, Vol. 50, 13-27
Caraffa, V.; Ianes, S.; Bagchi, T.P. & Sriskandarajah, C. (2001). Minimizing make-span in

blocking flow-shop using genetic algorithms, International Journal of Production
Economics, Vol. 70, 101-115

Chan, J. & Lee, C. Y. (1999). General multiprocessor task scheduling, Naval Research Logistics,
Vol. 46, 57-74

Chiang, T. C.; Chang, P.Y. & Huang, Y. M. (2006). Multi-processor tasks with resource and
timing constraints using particle swarm optimization, International Journal of
Computer Science and Network Security, Vol.6, No.4, 71-77

Particle Swarm Optimization and Other Metaheuristic Methods
in Hybrid Flow Shop Scheduling Problem

167

Dauzère-Pérès, S. & Paulli, J. (1997). An integrated approach for modelling and solving the
general multiprocessor job-shop scheduling problem using tabu search, Annals of
Operations Research, Vol. 70, 281-306

Dorigo, M. & Gambardella, L.M.(1997). Ant colony system: a cooperative learning approach
to the travelling sales man problem. IEEE Transaction in Evolutionary Computing,
Vol. 1, 53-66

Drozdowski, M. (1996). Scheduling multiprocessor tasks - an overview, European Journal of
Operational Research, Vol. 94, 215-230

Ercan, M.F. & Fung, Y.F. (2000). The design and evaluation of a multiprocessor system for
computer vision, Microprocessors and Microsystems, Vol. 24, 365-377

Ercan, M.F. and Fung, Y.F. (2007). Performance of particle swarm optimisation in scheduling
hybrid flow-shops with multi-processor tasks, Lecture Notes in Computer Science,
Vol. 4706, 309-319

Ercan M. F. (2008). A Performance Comparison of PSO and GA in Scheduling Hybrid Flow-
Shops with Multiprocessor Tasks, ACM Symposium on Applied Computing, Ceara,
Brasil.

Gupta J. N. D. (1988). Two stage hybrid flow shop scheduling problem. Journal of Operational
 Research Society, Vol. 39. No: 4, 359–364.
Holland J. H. (1975). Adaption in Natural and Artificial Systems, University of Michigan Press,

Ann Arbor
Jdrzęjowicz, J. & Jdrzęjowicz, P. (2003). Population-based approach to multiprocessor task

scheduling in multistage hybrid flow shops, Lecture Notes in Computer Science, Vol.
2773, 279-286

Jin, S.; Schiavone, G. & Turgut, D. (2008). A performance study of multiprocessor task
scheduling algorithms, Journal of Supercomputing, Vol. 43, 77–97

Kennedy, J., & Eberhart R. (1995) Particle swarm optimization, Proceedings of IEEE Int. Conf.
on Neural Network, pp. 1942-1948.

Krawczyk, H. & Kubale, M. (1985). An approximation algorithm for diagnostic test
scheduling in multi-computer systems, IEEE Trans. Computers, Vol. 34/9, 869-8

Lee, C.Y. & Cai, X. (1999). Scheduling one and two-processors tasks on two parallel
processors, IIE Transactions, Vol. 31, 445-455

Linn, R. & Zhang, W. (1999). Hybrid flow-shop schedule: a survey, Computers and Industrial
Engineering, Vol. 37, 57-61 [9]

Liu, B.; Wang, L. & Jin, Y.H. (2005). Hybrid particle swarm optimization for flow shop
scheduling with stochastic processing time, Lecture Notes in Artificial Intelligence,
Vol. 3801, 630-637

Murata, T.; Ishibuchi, H. & Tanaka, H. (1996). Multi-objective genetic algorithm and its
application to flow-shop scheduling, Computers and Industrial Engineering, Vol. 30,
957-968

Oğuz C. & Ercan M.F. (1997). Scheduling multiprocessor tasks in a two-stage flow-shop
environment, Computers and Industrial Engineering, Vol. 33, 269-272

Oğuz, C.; Ercan, M.F.; Cheng, T.C.E. & Fung, Y.F. (2003). Heuristic algorithms for
multiprocessor task scheduling in a two stage hybrid flow shop, European Journal of
Operations Research, Vol.149, 390-403

Particle Swarm Optimization

168

Oğuz, C.; Zinder, Y.; Do., V.; Janiak, A. & Lichtenstein, M. (2004). Hybrid flow-shop
scheduling problems with multiprocessor task systems, European Journal of
Operations Research, Vol.152, 115-131

Oğuz, C. & Ercan, M. F. (2005). A genetic algorithm for hybrid flow-shop scheduling with
multiprocessor tasks, Journal of Scheduling, Vol. 8, 323-351

Poli, R.; Kennedy, J. & Blackwell, T. (2007). Particle swarm optimization an overview, Swarm
Intelligence, Vol. 1, No. 3, 33-57.

Salman, A.; Ahmad, I. & Al-Madani, S. (2002). Particle swarm optimization for task
assignment problem, Microprocessors and Microsystems, Vol. 26, 363-371

Shiau, D.F.; Cheng, S.C. & Huang, Y.M. (2008). Proportionate flexible flow shop scheduling
via a hybrid constructive genetic algorithm, Expert Systems with Applications, Vol.
34, 1133-1143

Sivanandam, S.N.; Visalakshi, P. and Bhuvaneswari, A. (2007). Multiprocessor scheduling
using hybrid particle swarm optimization with dynamically varying inertia,
International Journal of Computer Science & Applications, Vol. 4, 95-106

Tseng, C.T. & Liao, C.J. (2008), A particle swarm optimization algorithm for hybrid flow-
shop scheduling with multiprocessor tasks, International Journal of Production
Research, Vol. 46, 4655-4670.

Tu, K.; Hao, Z. & Chen, M. (2006). PSO with improved strategy and topology for job shop
scheduling, Lecture Notes in Computer Science, Vol. 4222, 146-155

Xia, W.J. & Wu, Z.M. (2006). A hybrid particle swarm optimization approach for the job-
shop scheduling problem, International Journal of Advance Manufacturing Technology,
Vol. 29, 360-366

Ying, K.C. & Lin, S.W. (2006). Multiprocessor task scheduling in multistage hybrid flow-
shops: an ant colony system approach, International Journal of Production Research,
Vol. 44, 3161-3177

Ying, K.C. (2008). Iterated greedy heuristic for multiprocessor task scheduling problems,
Journal of the Operations Research Society (online edition), 1-8

10

A Particle Swarm Optimization technique used
for the improvement of analogue circuit

performances
Mourad Fakhfakh1, Yann Cooren2, Mourad Loulou1 and Patrick Siarry2

1University of Sfax, 2University of Paris 12
1Tunisia, 2France

1. Introduction
The importance of the analogue part in integrated electronic systems cannot be
overstressed. Despite its eminence, and unlike the digital design, the analogue design has
not so far been automated to a great extent, mainly due to its towering complexity
(Dastidar et al., 2005). Analogue sizing is a very complicated, iterative and boring process
whose automation is attracting great attention (Medeiro et al., 1994). The analogue design
and sizing process remains characterized by a mixture of experience and intuition of
skilled designers (Tlelo-Cuautle & Duarte-Villaseñor, 2008). As a matter of fact, optimal
design of analogue components is over and over again a bottleneck in the design flow.
Optimizing the sizes of the analogue components automatically is an important issue
towards ability of rapidly designing true high performance circuits (Toumazou & Lidgey,
1993; Conn et al., 1996).
Common approaches are generally either fixed topology ones or/and statistical-based
techniques. They generally start with finding a “good” DC quiescent point, which is
provided by the skilled analogue designer. After that a simulation-based tuning
procedure takes place. However these statistic-based approaches are time consuming and
do not guarantee the convergence towards the global optimum solution (Talbi, 2002).
Some mathematical heuristics were also used, such as Local Search (Aarts & Lenstra,
2003), Simulated Annealing (Kirkpatrick et al., 1983; Siarry(a) et al., 1997), Tabu Search
(Glover, 1989; Glover, 1990), Genetic Algorithms (Grimbleby, 2000; Dréo et al., 2006), etc.
However these techniques do not offer general solution strategies that can be applied to
problem formulations where different types of variables, objectives and constraint
functions are used. In addition, their efficiency is also highly dependent on the algorithm
parameters, the dimension of the solution space, the convexity of the solution space, and
the number of variables.
Actually, most of the circuit design optimization problems simultaneously require
different types of variables, objective and constraint functions in their formulation. Hence,
the abovementioned optimization procedures are generally not adequate or not flexible
enough.
In order to overcome these drawbacks, a new set of nature inspired heuristic optimization
algorithms were proposed. The thought process behind these algorithms is inspired from

Particle Swarm Optimization

170

the collective behaviour of decentralized, self-organized systems. It is known as Swarm
Intelligence (SI) (Bonabeau et al. 1999). SI systems are typically made up of a population
of simple agents (or ‘’particles’’) interacting locally with each other and with their
environment. These particles obey to very simple rules, and although there is no
centralized control structure dictating how each particle should behave, local interactions
between them lead to the emergence of complex global behaviour. Most famous such SIs
are Ant Colony Optimization (ACO) (Dorigo et al., 1999), Stochastic Diffusion Search
(SDS) (Bishop, 1989) and Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 1995;
Clerc, 2006).
PSO, in its current form, has been in existence for almost a decade, which is a relatively
short period when compared to some of the well known natural computing paradigms,
such as evolutionary computation. PSO has gained widespread demand amongst
researchers and has been shown to offer good performance in an assortment of
application domains (Banks et al., 2007).
In this chapter, we focus on the use of PSO technique for the optimal design of analogue
circuits. The practical applicability and suitability of PSO to optimize performances of
such multi-objective problems are highlighted. An example of optimizing performances of
a second generation MOS current conveyor (CCII) is presented. The used PSO algorithm
is detailed and Spice simulation results, performed using the 'optimal' sizing of transistors
forming the CCII and bias current, are presented. Reached performances are discussed
and compared to others presented in some published works, but obtained using classical
approaches.

2. The Sizing Problem
The process of designing an analogue circuit mainly consists of the following steps
(Medeiro et al., 1994) :
• the topology choice: a suitable schematic has to be selected,
• the sizing task: the chosen schematic must be dimensioned to comply with the

required specifications,
• The generation of the layout.
Among these major steps, we focus on the second one, i.e. the optimal sizing of analogue
circuits.
Actually, analogue sizing is a constructive procedure that aims at mapping the circuit
specifications (objectives and constraints on performances) into the design parameter
values. In other words, the performance metrics of the circuit, such as gain, noise figure,
input impedance, occupied area, etc. have to be formulated in terms of the design
variables (Tulunay & Balkir, 2004).
In a generic circuit, the optimization problem consists of finding optimal values of the
design parameters. These variables form a vector { }N

T xxxX ,,, 21=
r

 belonging to an N-
dimensional design space. This set includes transistor geometric dimensions and passive
component values, if any. Hence, performances and objectives involved in the design
objectives are expressed as functions of X.

A Particle Swarm Optimization technique used for
the improvement of analogue circuit performances

171

These performances may belong to the set of constraints ()(Xg
rr

) and/or to the set of

objectives ()(Xf
rr

). Thus, a general optimization problem can be formulated as follows:

 minimize :)(Xfi

r
,],1[ki ∈

 such that: : 0)(≤Xg j

r
,],1[lj ∈

() 0≤Xhm

r
,],1[pm∈

],1[, Nixxx UiiLi ∈≤≤

 (1)

k, l and p denote the numbers of objectives, inequality constraints and equality constraints,
respectively. Lxr and Uxr are lower and upper boundaries vectors of the parameters.
The goal of optimization is usually to minimize an objective function; the problem for
maximizing)(xf

r
 can be transformed into minimizing)(xf

r
− . This goal is reached when

the variables are located in the set of optimal solutions.
For instance, a basic two-stage operational amplifier has around 10 parameters, which
include the widths and lengths of all transistors values which have to be set. The goal is to
achieve around 10 specifications, such as gain, bandwidth, noise, offset, settling time, slew
rate, consumed power, occupied area, CMRR (common-mode rejection ratio) and PSRR
(power supply rejection ratio). Besides, a set of DC equations and constraints, such as
transistors’ saturation conditions, have to be satisfied (Gray & Meyer, 1982).

sp
ec

ifi
ca

tio
ns Selection of candidate

parameters

Computing
Objective functions

op
tim

iz
ed

pa
ra

m
et

er
s

companion formula, OF(s)

optimization criteria

constraints
Verified?

models

techno., constants

Figure 1. Pictorial view of a design optimization approach

The pictorial flow diagram depicted in Fig. 1 summarizes main steps of the sizing approach.
As it was introduced in section 1, there exist many papers and books dealing with
mathematic optimization methods and studying in particular their convergence properties
(see for example (Talbi, 2002; Dréo et al., 2006; Siarry(b) et al., 2007)).
These optimizing methods can be classified into two categories: deterministic methods and
stochastic methods, known as heuristics.
Deterministic methods, such as Simplex (Nelder & Mead, 1965), Branch and Bound (Doig,
1960), Goal Programming (Scniederjans, 1995), Dynamic Programming (Bellman, 2003)…
are effective only for small size problems. They are not efficient when dealing with NP-hard

Particle Swarm Optimization

172

and multi-criteria problems. In addition, it has been proven that these optimization
techniques impose several limitations due to their inherent solution mechanisms and their
tight dependence on the algorithm parameters. Besides they rely on the type of objective, the
type of constraint functions, the number of variables and the size and the structure of the
solution space. Moreover they do not offer general solution strategies.
Most of the optimization problems require different types of variables, objective and
constraint functions simultaneously in their formulation. Therefore, classic optimization
procedures are generally not adequate.
Heuristics are necessary to solve big size problems and/or with many criteria (Basseur et al.,
2006). They can be ‘easily’ modified and adapted to suit specific problem requirements.
Even though they don’t guarantee to find in an exact way the optimal solution(s), they give
‘good’ approximation of it (them) within an acceptable computing time (Chan & Tiwari,
2007). Heuristics can be divided into two classes: on the one hand, there are algorithms
which are specific to a given problem and, on the other hand, there are generic algorithms,
i.e. metaheuristics. Metaheuristics are classified into two categories: local search techniques,
such as Simulated Annealing, Tabu Search … and global search ones, like Evolutionary
techniques, Swarm Intelligence techniques …
ACO and PSO are swarm intelligence techniques. They are inspired from nature and were
proposed by researchers to overcome drawbacks of the aforementioned methods. In the
following, we focus on the use of PSO technique for the optimal design of analogue circuits.

3. Overview of Particle Swarm Optimization
The particle swarm optimization was formulated by (Kennedy & Eberhart, 1995). The
cogitated process behind the PSO algorithm was inspired by the optimal swarm behaviour
of animals such, as birds, fishes and bees.
PSO technique encompasses three main features:
• It is a SI technique; it mimics some animal’s problem solution abilities,
• It is based on a simple concept. Hence, the algorithm is neither time consumer nor

memory absorber,
• It was originally developed for continuous nonlinear optimization problems. As a

matter of fact, it can be easily expanded to discrete problems.
PSO is a stochastic global optimization method. Like in Genetic Algorithms (GA), PSO
exploits a population of potential candidate solutions to investigate the feasible search
space. However, in contrast to GA, in PSO no operators inspired by natural evolution are
applied to extract a new generation of feasible solutions. As a substitute of mutation, PSO
relies on the exchange of information between individuals (particles) of the population
(swarm).
During the search for the promising regions of the landscape, and in order to tune its
trajectory, each particle adjusts its velocity and its position according to its own experience,
as well as the experience of the members of its social neighbourhood. Actually, each particle
remembers its best position, and is informed of the best position reached by the swarm, in
the global version of the algorithm, or by the particle’s neighbourhood, in the local version
of the algorithm. Thus, during the search process, a global sharing of information takes
place and each particle’s experience is thus enriched thanks to its discoveries and those of all
the other particles. Fig. 2 illustrates this principle.

A Particle Swarm Optimization technique used for
the improvement of analogue circuit performances

173

Towards
its best

performance
Towards the best
performance of its

best neighbor

Towards the
point reachable
with its velocity

New
position

Actual
Position

Figure 2. Principle of the movement of a particle

In an N-dimensional search space, the position and the velocity of the ith particle can be
represented as],,,[,2,1, Niiii xxxX K= and],,,[,2,1, Niiii vvvV K= respectively. Each

particle has its own best location],,,[,2,1, Niiii pppP K= , which corresponds to the best

location reached by the ith particle at time t. The global best location is
named],,,[21 Ngggg K= , which represents the best location reached by the entire
swarm. From time t to time t+1, each velocity is updated using the following equation:

44 844 76444 8444 7648476 InfluenceSocial

jii

InfluencePersonal

jiji

inertia

jiji tvgrctvprctvwtv))(())(()()1(,22,,11,, −+−+=+ (2)

where w is a constant known as inertia factor, it controls the impact of the previous velocity
on the current one, so it ensures the diversity of the swarm, which is the main means to
avoid the stagnation of particles at local optima. c1 and c2 are constants called acceleration
coefficients; c1 controls the attitude of the particle of searching around its best location and c2
controls the influence of the swarm on the particle’s behaviour. r1 and r2 are two
independent random numbers uniformly distributed in [0,1].
The computation of the position at time t+1 is derived from expression (2) using:

 , , ,(1) () (1)i j i j i jx t x t v t+ = + + (3)

It is important to put the stress on the fact that the PSO algorithm can be used for both
mono-objective and multi-objective optimization problems.
The driving idea behind the multi-objective version of PSO algorithm (MO-PSO) consists of
the use of an archive, in which each particle deposits its ‘flight’ experience at each running
cycle. The aim of the archive is to store all the non-dominated solutions found during the
optimization process. At the end of the execution, all the positions stored in the archive give
us an approximation of the theoretical Pareto Front. Fig. 3 illustrates the flowchart of the
MO-PSO algorithm. Two points are to be highlighted: the first one is that in order to avoid
excessive growing of the storing memory, its size is fixed according to a crowding rule
(Cooren et al., 2007). The second point is that computed optimal solutions’ inaccuracy
crawls in due to the inaccuracy of the formulated equations.

Particle Swarm Optimization

174

Stopping criterion?

Random Initialization of
the swarm

Computation of the
fitness of each particle

Pi=Xi(i=1..N)
computation of g

Initialization of the
archive

Updating velocities and
positions

"Mutation"
(sharing of experiences)

Computation of the
fitness of each particle

Updating of Pi (i=1..N)
Updating of g

Updating of the archive

End

verified
not verified

Figure 3. Flowchart of a MO-PSO

In the following section we give an application example dealing with optimizing
performances of an analogue circuit, i.e. optimizing the sizing of a MOS inverted current
conveyor in order to maximize/minimize performance functions, while satisfying imposed
and inherent constraints. The problem consists of generating the trade off surface (Pareto
front1) linking two conflicting performances of the CCII, namely the high cut-off current
frequency and the parasitic X-port input resistance.

1 Definition of Pareto optimality is given in Appendix.

A Particle Swarm Optimization technique used for
the improvement of analogue circuit performances

175

4. An Application Example
The problem consists of optimizing performances of a second generation current conveyor
(CCII) (Sedra & Smith, 1970) regarding to its main influencing performances. The aim
consists of maximizing the conveyor high current cut-off frequency and minimizing its
parasitic X-port resistance (Cooren et al., 2007).
In the VLSI realm, circuits are classified according to their operation modes: voltage mode
circuits or current mode circuits. Voltage mode circuits suffer from low bandwidths arising
due to the stray and circuit capacitances and are not suitable for high frequency applications
(Rajput & Jamuar, 2007).
In contrary, current mode circuits enable the design of circuits that can operate over wide
dynamic ranges. Among the set of current mode circuits, the current conveyor (CC) (Smith
& Sedra, 1968; Sedra & Smith, 1970) is the most popular one.
The Current Conveyor (CC) is a three (or more) terminal active block. Its conventional
representation is shown in Fig. 4a. Fig. 4b shows the equivalent nullator/norator
representation (Schmid, 2000) which reproduces the ideal behaviour of the CC. Fig. 4.c
shows a CCII with its parasitic components (Ferry et al. 2002).

C C I I
Z

X

Y (a)
Y

X

Z

 (b)

CC
Xi

Yi

Zi

real CC

Cz Rz
Ry

Cy

RxLx

Cx
X

Y

Zideal

ZX

ZY ZZ (c)

Figure 4. (a) General representation of current conveyor, (b) the nullor equivalency: ideal
CC, (c) parasitic components: real CC

Relations between voltage and current terminals are given by the following matrix relation
(Toumazou & Lidgey, 1993):

()

()
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Z

X

Y

ZZ

X

YY

Z

X

Y

V
I
V

RC

R
RC

I
V
I

//
10

0

0
//
1

β

γ

α

 (4)

For the above matrix representation, α specifies the kind of the conveyor. Indeed, for α =1,
the circuit is considered as a first generation current conveyor (CCI). Whereas when α =0, it
is called a second generation current conveyor (CCII). β characterizes the current transfer
from X to Z ports. For β =+1, the circuit is classified as a positive transfer conveyor. It is
considered as a negative transfer one when β =-1. γ =±1: When γ =-1 the CC is said an
inverted CC, and a direct CC, otherwise.

Particle Swarm Optimization

176

Accordingly, the CCII ensures two functionalities between its terminals:
• A Current follower/Current mirror between terminals X and Z.
• A Voltage follower/Voltage mirror between terminals X and Y.
In order to get ideal transfers, CCII are commonly characterized by low impedance on
terminal X and high impedance on terminals Y and Z.
In this application we deal with optimizing performances of an inverted positive second
generation current conveyor (CCII+) (Sedra & Smith, 1970; Cooren et al., 2007) regarding to
its main influencing performances. The aim consists of determining the optimal Pareto
circuit’s variables, i.e. widths and lengths of each MOS transistor, and the bias current I0,
that maximizes the conveyor high current cut-off frequency and minimizes its parasitic X-
port resistance (RX) (Bensalem et al., 2006; Fakhfakh et al. 2007). Fig. 5 illustrates the CCII+’s
MOS transistor level schema.

I0

M10

M12

M9

M11

M8 M7

M5 M6

M1 M2

M3 M4

ZXY

VSS

VDD

Figure 5. The second generation CMOS current conveyor
Constraints:
• Transistor saturation conditions: all the CCII transistors must operate in the saturation

mode. Saturation constraints of each MOSFET were determined. For instance,
expression (5) gives constraints on M2 and M8 transistors:

NNN

TP
DD

PPP LWK
IVV

LWK
I 00

2
−−≤ (5)

where I0 is the bias current, W(N,P)/L(N,P) is the aspect ratio of the corresponding MOS
transistor. K(N,P) and VTP are technology parameters. VDD is the DC voltage power
supply.

Objective functions:
In order to present simplified expressions of the objective functions, all NMOS transistors
were supposed to have the same size. Ditto for the PMOS transistors.
• RX: the value of the X-port input parasitic resistance has to be minimized,
• fchi: the high current cut-off frequency has to be maximized.

A Particle Swarm Optimization technique used for
the improvement of analogue circuit performances

177

Symbolic expressions of the objective functions are not given due to their large number of
terms.
PSO algorithm was programmed using C++ software. Table 1 gives the algorithm
parameters.
Fig. 6 shows Pareto fronts (RX vs. fci) and optimal variables (WP vs. WN) corresponding to
the bias current I0=50µA (6.a, 6.b), 100µA (6.c, 6.d), 150µA (6.e, 6.f), 200µA (6.g, 6.h), 250µA
(6.i, 6.j) and 300µA (6.k, 6.l). Where values of LN, LP, WN and WP are given in µm, I0 is in µA,
RX in ohms and fci(min, Max) in GHz.
In Fig. 6 clearly appears the high interest of the Pareto front. Indeed, amongst the set of the
non-dominated solutions, the designer can choose, always with respect to imposed
specifications, its best solution since he can add some other criterion choice, such as Y-port
and/or Z-port impedance values, high voltage cut-off frequency, etc.

Fig. 7 shows Spice simulation results performed for both points corresponding to the edge of
the Pareto front, for I0=100µA, where RXmin=493 ohms, RXMax=787 ohms, fcimin=0.165 GHz and
fciMax=1.696 GHz.

Swarm size Number of iterations w c1 c2
20 1000 0.4 1 1

Table 1. The PSO algorithm parameters

Technology CMOS AMS 0.35 µm
Power voltage supply VSS=-2.5V, VDD=2.5V

Table 2. SPICE simulation conditions

WN LN WP LP WN LN WP LP
I0

RXmin fcimin RXMax fciMax
17.21 0.90 28.40 0.50 4.74 0.87 8.40 0.53

50
714 0.027 1376 0.866

20.07 0.57 30.00 0.35 7.28 0.55 12.60 0.35
100

382 0.059 633 1.802
17.65 0.6 28.53 0.35 10.67 0.59 17.77 0.36

150
336 0.078 435 1.721

17.51 0.53 29.55 0.35 12.43 0.53 20.32 0.35
200

285 0.090 338 2.017
18.60 0.54 30.00 0.35 15.78 0.55 24.92 0.35

250
249 0.097 272 1.940

19.17 0.55 29.81 0.35 17.96 0.54 29.16 0.35
300

224 0.107 230 2.042

Table 3. Pareto trade-off surfaces’ boundaries corresponding to some selected results

Particle Swarm Optimization

178

1086420
x 108

700

800

900

1000

1100

1200

1300

1400

fci (Hz)

R
X(

oh
m

)

I0=50µA

(a)
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
-
5

0

0.5

1

1.5

2

2.5

3 x 10
-
5

WN(m)

W
P

(m
)

I0=50µA

(b)

21.510.50
x 109

350

400

450

500

550

600

650

fci(Hz)

R
X

(o
hm

)

I0=100µA

 (c)
0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

x 10-5

0

0.5

1

1.5

2

2.5

3 x 10-5

WN(m)

W
P(

m
)

I0=100µA

(d)

21.510.50
x 109

320

340

360

380

400

420

440

fci (Hz)

R
X(

oh
m

)

I0=150µA

(e)
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

x 10-5

0

0.5

1

1.5

2

2.5

3 x 10-5

WN(m)

W
P(

m
)

I0=150µA

(f)

2.521.510.50
x 109

280

290

300

310

320

330

340

fci (Hz)

R
X(

oh
m

)

I0=200µA

(g)
1.2 1.3 1.4 1.5 1.6 1.7 1.8

x 10-5

0

0.5

1

1.5

2

2.5

3 x 10-5

WN(m)

W
P(

m
)

I0=200µA

(h)

A Particle Swarm Optimization technique used for
the improvement of analogue circuit performances

179

21.510.50
x 109

245

250

255

260

265

270

275

fci (Hz)

R
X(

oh
m

)

I0=250µA

(i)
1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95

x 10-5

0

0.5

1

1.5

2

2.5

3 x 10-5

WN(m)

W
P(

m
)

I0=250µA

(j)

2.521.510.50
x 109

224

225

226

227

228

229

230

231

fci (Hz)

R
X(

oh
m

)

I0=300µA

(k)
1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94

x 10-5

0

0.5

1

1.5

2

2.5

3 x 10-5

WN(m)

W
P(

m
)

I0=300µA

(l)

Figure 6. Pareto fronts and the corresponding variables for various bias currents

Frequency

10Hz 100Hz 1.0KHz 10KHz 100KHz 1.0MHz 10MHz 100MHz 1.0GHz 10GHz
V(V4q:+)/-I(V4q)

0

1.0KR
X

Frequency

10Hz 100Hz 1.0KHz 10KHz 100KHz 1.0MHz 10MHz 100MHz 1.0GHz 10GHz
V(V4q:+)/-I(V4q)

0

1.0KR
X

(a) (b)

Frequency

100Hz 1.0KHz 10KHz 100KHz 1.0MHz 10MHz 100MHz 1.0GHz 10GHz
DB(I(Rin)/-I(Vin))

-20

-10

10

0

 Frequency

100Hz 1.0KHz 10KHz 100KHz 1.0MHz 10MHz 100MHz 1.0GHz 10GHz
DB(I(Rin)/-I(Vin))

-20

-10

0

10

(c) (d)

Figure 7. (RX vs. frequency) Spice simulations

5. Conclusion
The practical applicability and suitability of the particle swarm optimization technique
(PSO) to optimize performances of analog circuits were shown in this chapter. An

Particle Swarm Optimization

180

application example was presented. It deals with computing the Pareto trade-off surface in
the solution space: parasitic input resistance vs. high current cut-off frequency of a positive
second generation current conveyor (CCII+). Optimal parameters (transistors’ widths and
lengths, and bias current), obtained thanks to the PSO algorithm were used to simulate the
CCII+. It was shown that no more than 1000 iterations were necessary for obtaining
‘optimal’ solutions. Besides, it was also proven that the algorithm doesn’t require severe
parameter tuning. Some Spice simulations were presented to show the good agreement
between the computed (optimized) values and the simulation ones.

6. Appendix
In the analogue sizing process, the optimization problem usually deals with the
minimization of several objectives simultaneously. This multi-objective optimization
problem leads to trade-off situations where it is only possible to improve one performance
at the cost of another. Hence, the resort to the concept of Pareto optimality is necessary.
A vector []Tnθθθ L1= is considered superior to a vector []Tnψψψ L1= if it dominatesψ ,

i.e., ψθ p ⇔
{ }

()
{ }

()iiniiini
ψθψθ <∃∧≤∀

∈∈ ,,1,,1 LL

Accordingly, a performance vector •f is Pareto-optimal if and only if it is non-dominated

within the feasible solution space ℑ , i.e., •

ℑ∈
∃¬ ff

f
p .

7. References
Aarts, E. & Lenstra, K. (2003) Local search in combinatorial optimization. Princeton

University Press.
Banks, A.; Vincent, J. & Anyakoha, C. (2007) A review of particle swarm optimization. Part I:

background and development, Natural Computing Review, Vol. 6, N. 4 December
2007. DOI 10.1007/s11047-007-9049-5. pp. 467-484.

Basseur, M.; Talbi, E. G.; Nebro, A. & Alba, E. (2006) Metaheuristics for multiobjective
combinatorial optimization problems : review and recent issues, report n°5978.
National Institute of Research in Informatics and Control (INRIA). September 2006.

Bellman, R. (2003) Dynamic Programming, Princeton University Press, Dover paperback
edition.

BenSalem, S; M. Fakhfakh, Masmoudi, D. S., Loulou, M., Loumeau, P. & Masmoudi, N.
(2006) A High Performances CMOS CCII and High Frequency Applications, Journal
of Analog Integrated Circuits and Signal Processing, Springer US, 2006. vol. 49, no. 1.

Bishop, J.M. (1989) Stochastic searching networks, Proceedings of the IEE International
Conference on Artificial Neural Networks. pp. 329-331, Oct 1989.

Bonabeau, E.; Dorigo, M. & Theraulaz, G. (1999) Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press.

Chan, F. T. S. & Tiwari, M. K. (2007) Swarm Intelligence: focus on ant and particle swarm
optimization, I-Tech Education and Publishing. December 2007. ISBN 978-3-902613-
09-7.

Clerc, M. Particle swarm optimization (2006), International Scientific and Technical
Encyclopedia, ISBN-10: 1905209045.

A Particle Swarm Optimization technique used for
the improvement of analogue circuit performances

181

Conn, A. R.; Coulman, P. K.; Haring, R. A.; Morrill, G. L.; Visweswariah, C. (1996),
Optimization of custom MOS circuits by transistor sizing, Proceedings of ICCAD96.
pp. 174-190, November, 1996. San Jose.

Cooren, Y.; Fakhfakh, M. , Loulou, M. & Siarry, P. (2007) Optimizing second generation
current conveyors using particle swarm optimization, Proceedings of the 19th IEEE
International Conference on Microelectronics. December 29-31, 2007. Cairo, Egypt.

Dastidar, T.R.; Chakrabarti, P. P. & Ray, P. (2005). Synthesis System for Analog Circuits
Based on Evolutionary Search and Topological Reuse, IEEE Transactions on
Evolutionary Computation, Vol. 9, No. 2, April 2005. pp. 211-224, ISSN 1089-778X.

Doig, A.H. Land (1960), An automatic method for solving discrete programming problem,
Econometrica, Vol. 28, pp. 497.

Dorigo, M.; DiCaro G. & Gambardella, L. M. (1999) Ant algorithms for discrete optimization,
Artificial life journal Vol. 5. pp. 137-172.

Dréo, J.; Petrowski, A.; Siarry, P.; Taillard, E. (2006) Metaheuristics for Hard Optimization:
methods and case studies, Springer. ISBN: 354023022X.

Fakhfakh M., Loulou M. & Tlelo-Cuautle E. (2007) Synthesis of CCIIs and Design of
Simulated CCII based Floating Inductances, Proceedings of the 14th IEEE International
Conference on Electronics, Circuits and Systems. December 2007. Marrakech, Morocco.

Ferri, G.; Guerrinin, N. & Piccirilli, M. C. (2002) Low voltage current conveyor-based biquad
filter, Proceedings of the IEEE International Symposium on Industrial Electronics. Vol. 4.
pp. 1331-1334.

Glover, F. (1989) Tabu search- part I, ORSA Journal on Computing. Vol. 1, N° 3. Summer 1989.
Glover, F. (1990) Tabu search- part II, ORSA Journal on Computing. Vol. 2, N° 1. Winter 1990.
Gray, P. R.; Meyer, R. G.(1982) MOS operational amplifier design-a tutorial overview, IEEE

Solid-State Circuits, Vol. 17, Issue 6, December 1982. pp. 969-982.
Grimbleby, J. B. (2000) Automatic analogue circuit synthesis using genetic algorithms,

Proceedings of the IEE Circuits, Devices and Systems, December 2000, Vol. 147, Issue: 6.
pp: 319-323

Kennedy, J & Eberhart, R. C. (1995) Particle swarm optimization, Proceedings of the IEEE
International Conference On Neural Networks, pp 1942-1948, WA, Australia.

Kirkpatrick, S.; Gelatt, C. D. & Vecchi, M. P. (1983) Optimization by simulated annealing,
Journal of Science, 220:671-220-680.

Medeiro, F.; Rodríguez-Macías, R.; Fernández, F.V.; Domínguez-astro, R.; Huertas, J.L.&
Rodríguez-Vázquez, A. Global Design of Analog Cells Using Statistical
Optimization Techniques, Analog Integrated Circuits and Signal Processing, Vol. 6,
No. 3, November 1994. pp. 179-195, ISSN 0925-1030.

Nelder, J.A. & Mead, R. (1965) A simplex method for function optimization, Computer
journal, Vol. 7, pp. 308-313.

Rajput, S. S. & Jamuar, S. S. (2007) Advanced applications of current conveyors: a tutorial,
Journal of active and passive electronic devices, Vol 2, pp 143-164.

Schmid, H. (2000) Approximating the Universal Active Element, IEEE Transactions on
Circuits and Systems-II: Analog and Digital Signal Processing, vol. 47, N°. 11, Nov.
2000.

Scniederjans, M.J.(1995) Goal Programming methodology and applications, Kluwer
Publishers.

Particle Swarm Optimization

182

Sedra, A.& Smith, K. C. (1970) A second generation current conveyor and its applications,
IEEE Transactions on Circuit Theory, pp. 132-134, February 1970.

Siarry(a), P.; Berthiau, G.; Durdin, F. & Haussy, J. (1997) Enhanced simulated annealing for
globally minimizing functions of many-continuous Variables, ACM Transactions on
Mathematical Software, Vol. 23, N°. June 1997. pp 209-228.

Siarry(b), P.; Michalewicz, Z. (2007) Advances in Metaheuristics for Hard Optimization,
Springer; December 2007. ISBN 3540729593.

Smith, K. C. & Sedra, A. (1968) The current conveyor-a new circuit building block,
Proceedings of the. IEEE (Letters), vol 56, pp. 1368-1369, August 1968.

E. G. Talbi, E. G. (2002) A Taxonomy of Hybrid Metaheuristics, Journal of Heuristics, N°8 pp
541-564.

Tlelo-Cuautle, E.; Duarte-Villaseñor, M.A.(2008), Evolutionary electronics: automatic
synthesis of analog circuits by GAs, In Success in Evolutionary Computation, Series:
Studies in Computational Intelligence, Yang, A.; Shan, Y.& Bui, L. T. (Eds.), pp. 165-
187, Vol. 92, ISBN: 978-3-540-76285-0, Springer-Verlag, Berlin.

Toumazou, C.& Lidgey, F. J. (1993), In Analog IC Design: The current mode approach,
Haigh, D. G. (Ed.), IEEE circuit and systems series 2.

Tulunay, G.& Balkir, S. (2004) A Compact Optimization Methodology for Single Ended
LNA, Proceedings of the IEEE International Symposium on Circuits and Systems, ISCAS
2004.

11

Particle Swarm Optimization Applied for
Locating an Intruder by an Ultra-Wideband

Radar Network
Rodrigo M. S. de Oliveira, Carlos L. S. S. Sobrinho, Josivaldo S. Araújo and

Rubem G. Farias
Federal University of Pará (UFPA)

Brazil

1. Introduction
As it was shown by the authors in a previous work, the Finite-Difference Time-Domain
(FDTD) method is adequate to solve numerically Maxwell's Equations for simulating the
propagation of Ultra-Wideband (UWB) pulses in complex environments. These pulses are
important in practice in high-resolution radar and GPS systems and in high performance
(wideband) wireless communication links, because they are immune to selective frequency
fading related to complex environments, such as residences, offices, laboratories among
others. In this case, it is necessary to use spread spectrum techniques for transmission, in
order to avoid interferences to other wireless systems, such as cell phone networks, GPS,
Bluetooth and IEEE802.11. It is worth to mention that by combining these techniques to
UWB pulses; it is possible to obtain a signal with power spectrum density under noise
threshold, what is a very interesting characteristic for this application.
The proposed simulated environment is a building consisting of several rooms (laboratories)
separated by masonry. Internal and external walls are characterized by specific widths and
electrical parameters. Wood doors were included in the analysis domain. The analysis
region is then limited by U-PML (Uniaxial Perfectly Matched Layers) technique and the
system is excited by omni-directional antennas. In order to make the simulations more real,
Additive White Gaussian Noise was considered. Aiming at verifying the robustness of the
radar network, objects are included in the domain in a semi-random spatial distribution,
increasing the contribution of the wave scattering phenomena. Omni-directional antennas
were used to register transient electric field in specific points of the scenery, which are
adequate for the propose of this work. From those transient responses, it is possible to
determine the time intervals the electromagnetic signal requires to travel through the paths
transceiver-intruder-transceiver and transceiver-intruder-receivers, forming, this way, a
non-linear system of equations (involving circle and ellipses equations, respectively).
In order to estimate the intruder position, the PSO method is used and a new methodology
was conceived. The main idea is to apply PSO to determine the equidistant point to the
circle and to the two ellipses generated by using the data extracted from received transient
signals (those three curves usually does not have a single interception point for highly

Particle Swarm Optimization

184

scattering environments). The equidistant point, determined via PSO, is the position
estimative for single radar.
For a radar network, which is necessary for a large area under monitoring, the transmitters
should operate in TDM (Time-Division Multiplexing) mode in order to avoid interference
among them. For each possible transceiver-receivers combination, an estimate is obtained
and, from the set of estimations, statistical parameters are calculated and used in order to
produce a unique prediction of the intruder's position.

2. The FDTD Method and its Applications
The FDTD Method (Finite-Difference Time-Domain) had its first application in the solution
of Maxwell’s equations, in 1966, when Kane Yee used it in the analysis of spread of
electromagnetic waves through bidimensional structures (Yee, 1966). This technique defines
the spacial positioning of the components of the electric and magnetic fields in such a way
that Ampère and Faraday laws are satisfied, and it approaches the derivates, constituents of
those equations, by centered finite differences, in which the updating of the components of
the electric fields is alternately verified in relation to those of the magnetic fields, by forming
this way what is known as the algorithm of Yee. The method constitutes a solution of
complete wave, in which the reflection, refraction, and diffraction phenomena are implicitly
included.
Years passed by and, along with them, several scientific advances contributed to the
establishment of this method as an important tool in the analysis and synthesis of problems
in electromagnetism, among them it is noted: new high speed computers and auto-
performance computer networks; the expansion of the method for the solution of problems
in the 3D space, with the inclusion of complex materials, and the condition of stability
(Taflove & Brodwin, 1975); development of truncation techniques of the region of analysis,
known as ABC´s (Absorbing Boundary Conditions), such as the operators of Bayliss-Turkel
Bayliss, & Turkel, (1980), Mur of first and second orders (Mur, 1981), Higdon technique
(Ridon, 1987), Liao (Liao, 1987), PML of Berenger (Berenger, 1994), and the UPML of Sacks
(Sacks et al., 1995).
The FDTD method, for its simplicity of application, strength and application in all spectrum
of frequencies, has been used in the solution of antenna problems (Zhang et al., 1988), circuit
analysis in high frequencies (Fornberg et al., 2000), radars (Muller et al., 2005), photonic
(Goorjian & Taflove, 1992), communication systems (Kondylis et al., 1999), periodic
structures (Maloney & Kesler, 1998), medicine (Manteuffell & Simon, 2005) , electric
grounding system (Tanabe, 2001) , etc.

2.1 The Yee’s Algorithm
Equations (1) and (2) represent the equations of Maxwell in its differential form, where E
and H are the vectors intensity of electric and magnetic fields, respectively, μ is the magnetic
permeability, ε is the electric permittivity of the medium and J is the current density vector.
For the solution of these equations by the FDTD method, Kane Yee (Yee, 1966) proposed
that the components of E (Ex, Ey, Ez) and H (Hx, Hy, Hz) were positioned in the space as it
shown in Fig. 1. x۳ ൌ െµ ∂۶∂t (1)

Particle Swarm Optimization Applied for Locating an Intruder
by an Ultra-Wideband Radar Network

185

x۶ ൌ ε ∂۳∂t ۸. (2)

Such procedure is justified by the necessity of agreement with the mathematical operators
indicated in the equations above.

Figure 1. The Yee’s Cell

This way, by expanding the curl operators in (1) and (2), it results in the following scalar
equations ߲ܪ௫߲ݐ ൌ ߤ1 ൬߲ܧ߲ݖ െ ݕ௭߲ܧ߲ ൰, (3.a)

ݐ௬߲ܪ߲ ൌ ߤ1 ൬߲ܧ௭߲ݔ െ ݖ௫߲ܧ߲ ൰, (3.b)

ݐ௭߲ܪ߲ ൌ ߤ1 ቆ߲ܧ௫߲ݕ െ ݔ௬߲ܧ߲ ቇ, (3.c)

and

1 yx z
x

HE H E
t z y

σ
ε

∂⎛ ⎞∂ ∂= − −⎜ ⎟∂ ∂ ∂⎝ ⎠
 (4.a)

ݐ௬߲ܧ߲ ൌ ߝ1 ൬߲ܪ௫߲ݖ െ ݔ௭߲ܪ߲ െ ௬൰, (4.b)ܧߪ

ݐ௭߲ܧ߲ ൌ ߝ1 ቆ߲ܪ௬߲ݔ െ ݕ௫߲ܪ߲ െ ௭ቇ, (4.c)ܧߪ

respectively.

Particle Swarm Optimization

186

The derivates in (3) and (4) are then approximated by central finite differences, in the
following way

1 1
2 2() ()F l l F l lF

l l
+ Δ − − Δ∂

∂ Δ

(5)

where F represents any component of either electric or magnetic field and ݈ can be x, y, z or t.
By applying (5) in (3) and (4), it results in the updating equations of the components of fields
given by (6)-(7), as follows. ܪ௫ାଵଶሺ݅, ݆, ݇ሻ ൌ ,௫ିଵଶሺ݅ܪ ݆, ݇ሻ ∆௧ߤ ቈܧ௬ሺ݅, ݆, ݇ 1ሻ െ ,௬ሺ݅ܧ ݆, ݇ሻ∆௭ െ ,௭ሺ݅ܧ ݆ 1, ݇ሻ െ ,௭ሺ݅ܧ ݆, ݇ሻ∆௬ , (6.a)

,௬ାଵଶሺ݅ܪ ݆, ݇ሻ ൌ ,௬ିଵଶሺ݅ܪ ݆, ݇ሻ ∆௧ߤ ቈܧ௭ሺ݅ 1, ݆, ݇ሻ െ ,௭ሺ݅ܧ ݆, ݇ሻ∆௫ െ ,௫ሺ݅ܧ ݆, ݇ 1ሻ െ ,௫ሺ݅ܧ ݆, ݇ሻ∆௭ , (6.b)

,௭ାଵଶሺ݅ܪ ݆, ݇ሻ ൌ ,௭ିଵଶሺ݅ܪ ݆, ݇ሻ ∆௧ߤ ቈܧ௫ሺ݅, ݆ 1, ݇ሻ െ ,௫ሺ݅ܧ ݆, ݇ሻ∆௬ െ ௬ሺ݅ܧ 1, ݆, ݇ሻ െ ,௬ሺ݅ܧ ݆, ݇ሻ∆௫ , (6.c)

and

,௫ାଵሺ݅ܧ ݆, ݇ሻ ൌ ,௫ሺ݅ܧ ݆, ݇ሻ ቌ1 െ ߪ ∆௧21ߝ ߪ ∆௧2ߝቍ

 ∆௧ߝ ቀ1 ߪ ∆௧2ߝቁ ܪ௭ାଵ/ଶሺ݅, ݆, ݇ሻ െ ,௭ାଵ/ଶሺ݅ܪ ݆ െ 1, ݇ሻ∆௬
െ ,௬ାଵ/ଶሺ݅ܪ ݆, ݇ሻ െ ,௬ାଵ/ଶሺ݅ܪ ݆, ݇ െ 1ሻ∆௭ ,

(7.a)

,௬ାଵሺ݅ܧ ݆, ݇ሻ ൌ ,௬ሺ݅ܧ ݆, ݇ሻ ቌ1 െ ߪ ∆௧21ߝ ߪ ∆௧2ߝቍ

 ∆௧ߝ ቀ1 ߪ ∆௧2ߝቁ ܪ௫ାଵ/ଶሺ݅, ݆, ݇ሻ െ ,௫ାଵ/ଶሺ݅ܪ ݆, ݇ െ 1ሻ∆௭
െ ,௬ାଵ/ଶሺ݅ܪ ݆, ݇ሻ െ ௬ାଵ/ଶሺ݅ܪ െ 1, ݆, ݇ሻ∆௫ ,

(7.b)

Particle Swarm Optimization Applied for Locating an Intruder
by an Ultra-Wideband Radar Network

187

,௭ାଵሺ݅ܧ ݆, ݇ሻ ൌ ,௭ሺ݅ܧ ݆, ݇ሻ ቌ1 െ ߪ ∆௧21ߝ ߪ ∆௧2ߝቍ

 ∆௧ߝ ቀ1 ߪ ∆௧2ߝቁ ܪ௬ାଵ/ଶሺ݅, ݆, ݇ሻ െ ௬ାଵ/ଶሺ݅ܪ െ 1, ݆, ݇ሻ∆௫െ ,௫ାଵ/ଶሺ݅ܪ ݆, ݇ሻ െ ,௫ାଵ/ଶሺ݅ܪ ݆ െ 1, ݇ሻ∆௬ ,
(7.c)

where i,j,k and n are integers; i,j,k are indexes for the spatial coordinates x, y and z and n is
the temporal index for the time t, in such way that x = i∆x, y = j∆y, z = k∆z and t = n∆t (∆x, ∆y

and ∆z are the spatial increments and ∆t is the time step).

2.2 Precision and Stability
The precision represents how close the obtained result is to the exact result, and the stability
is the guarantee that the solution of the problem will not diverge. In order to precision and
stability to be guaranteed, the following criteria are adopted in this work (Taflove &
Hagness 2005): ∆୶,୷, λ୫୧୬10

and ∆௧ ௫ඨݒ1 1ሺ∆௫ሻଶ 1ሺ∆௬ሻଶ 1ሺ∆௭ሻଶ
 .

which means that the minimum wave length existing in the work environment has to be
characterized by, at least, 10 cells (Taflove & Hagness 2005). Depending on the application,
this number can be superior to 100, and the time increment will be limited by the maximum
distance to be travelled, by the respective wave, in the cell of Yee (Taflove & Hagness 2005).

2.3 The Sacks’ Uniaxial Perfecttly Matched Layers
One of the problems of the numeric methods is the fact that they do not offer resources that
permits the interruption of the spacial iterative process. This causes the method to be
limited, mainly when the solution of open problems is taken into account. In order to solve
this problem, several techniques have been developed, among them there is the UPML
(Uniaxial perfecttly matched layers) (Sacks et al., 1995), which was used in this work. This
method takes into account, around the region of analysis (Fig.2), layers perfectly matched,
constituted by anisotropic media and with loss, which are characterized by the following
equations of Maxwell, in the frequency domain. x۳ ൌ െjωµሾsሿ۶ (8) x۶ ൌ jωεሾsሿ۳, (9)

188

wh

att
the
do

Fig

In
the

wh
an
of
do
thr
& H

3.
3.1
Th
pe

8

here the tensor

tenuation electric
e medium. E and

omain, respectivel

gure 2. The analy

order to avoid t
e time domain, on

here Dx, Dy, Dz an
d magnetic (B), r
the electric field,

one by the substit
rough eq. (10). Th
Hagness, 2005).

Particle Swarm
1 Basic Radar Th
he main reason fo
rformed by trans

 []

0

0

0 0

y z

x

x

s s
s

ss
s

⎡
⎢
⎢
⎢= ⎢
⎢
⎢
⎢⎣

c conductivity in
H are the vector

ly.

sis region limited

he use of convol
ne defines the fol

 ,y
x x

x

s
D E

s
ε ⎛ ⎞= ⎜ ⎟
⎝ ⎠

,y
x x

x

s
B H B

s
μ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

nd Bx, By, Bz are
respectively. In o
the updating equ

tution of [s] in (9)
he same procedur

m Optimization
heory Overview
or using radars i
smitting electrom

0 0

0

0

x z

y

x y

z

s
s

s s
s

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

 , wit

the directions α
s intensity of elec

d by UPML

lution in the tran
lowing constituti

,z
y y z

y

sD E D
s

ε
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

,z
y y z

y

sB H B
s

μ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

the components
order to find the u
uations for Dx, Dy

), considering (10
re is done in orde

n and Radar Ap

is to determine t
magnetic pulses th

Pa

th
0

1 σs
j

α
α ωε

= + ,

= x, y, z, introdu
ctric and magneti

nsformation of th
ive relations:

;x
z z

z

s E
s

ε ⎛ ⎞= ⎜ ⎟
⎝ ⎠

,x
z z

z

s H
s

μ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

of the vectors e
updating equatio
y and Dz, have to
0). Next, the com
er to find the com

pplications

he spatial positio
hrough space, wh

article Swarm Optim

in which σα

ucing the anisotr
ic field in the freq

he equations abov

lectric flux densi
ons for the compo
be found first, w
ponents of E are

mponents of H (T

on of an object. T
hich will be scatte

mization

is the

opy in
quency

ve into

(10)

(11)

ity (D)
onents

which is
found

Taflove

This is
ered by

Particle Swarm Optimization Applied for Locating an Intruder
by an Ultra-Wideband Radar Network

189

the target and by other objects. Transient responses obtained at certain points in space are
used to determine the target’s position.
In particular, multistatic radars can be composed by a transceiver (transmitter and receiver
at the same point – Tx/Rx1) and, at least, two remote receivers (Rx2 and Rx3), such as
illustrated by Fig. 4. The signal leaves the transceiver and reaches the target, which reflects it
toward the receivers and the transceiver as well.
From the transceiver perspective, the signal takes a certain amount of time for returning.
This only means that the target could be at any point of a circle centered at the transceiver’s
coordinates (Fig. 4). Longer the time, larger is the circumference. From the receiver
perspective, the signal travels from the transmitter, it reaches the target and then it arrives at
the receiver coordinates. This only means that the target is at the locus defined by an ellipse
with foci at the transceiver’s and at the receiver’s coordinates (Fig. 3). Of course, longer the
propagation time, greater is the total path (calculated by using time and the propagating
speed) and larger is the ellipse’s semiminor axis. The solution of the system of equations this
way composed provides the target’s position.

Figure 3. Ideal multistatic radar

Figure 4. The ellipse’s parameters

Fig. 4 shows the ellipse’s basic parameters (T indicates the transceiver position, R indicates
the receiver’s, position and P defines the intruder’s location).

Target

Tx/Rx1

Rx2

Rx3

Particle Swarm Optimization

190

The ellipse equation is given by ࡲሺ࢞, ሻ࢟ ൌ ,࢞ሺ ሻ࢟ ,࢞ሺ ሻ࢟ െ ൌ , (12)

where ሺ࢞, ሻ࢟ ൌ ࢟ሺൣࢇ െ ሻࢉ࢟ ࢙ࢉ ࢻ െ ሺ࢞ െ ሻࢉ࢞ ࢙ ൧, (13)ࢻ

 ሺ࢞, ሻ࢟ ൌ ࢞ሺൣ࢈ െ ሻࢉ࢞ ࢙ࢉ ࢻ െ ሺ࢟ െ ሻࢉ࢟ ࢙ ൧ࢻ
and

(14)

 ൌ (15) ,࢈ࢇ

in which a is the semimajor axis, b is the semiminor axis, xc and yc are the coordinates of the
center C of the ellipse, and α is the angle from the x-axis to the ellipse’s semimajor axis.
Here, n is the receiver identifier (index). The parameters nCx , nCy , na , nb and nα are
calculated by

ࢉ࢞ ൌ ൫ࢀ࢞ ൯, (16)ࡾ࢞

ࢉ࢟ ൌ ൫ࢀ࢟ ൯, (17)ࡾ࢟

ࢇ ൌ ൫ࡾࡼࢀࢊ൯, (18)

࢈ ൌ ൬ටࡾࡼࢀࢊ െ ࡾࢀࢊ ൰, (19)

ࡾࢀࢊ ൌ ටሺࢀ࢞ െ ሻࡾ࢞ ሺࢀ࢟ െ ሻ, (20)ࡾ࢟

ࢻ ൌ ିࢇ࢚ ൬ࢀ࢟ ି .൰ࡾ࢞ ି ࢀ࢞ࡾ࢟

(21)

were xT and yT are the coordinates of the transmitter, xR and yR are the coordinates of the
receiver R and dTR is the distance from the receiver to the transmitter. Finally, dTPR is given

Particle Swarm Optimization Applied for Locating an Intruder
by an Ultra-Wideband Radar Network

191

by the sum of the lengths of the segments ܶܲ and ܴܶ (the total path length), estimated from
the propagation time.
The calculation of the propagation time is performed by two steps: 1) by sending a pulse
and registering the transient response at the transceiver and at the receivers and 2) by
sending a second pulse and subtracting the new obtained registers from the previously
recorded set. Of course, it is assumed that the target is in movement; otherwise the data
obtained from steps 1) and 2) would be identical. If the pulse is UWB, it is possible to detect
the movement of the heart of a human intruder, meaning he would be a detectable target
even if he kept perfectly static.

3.2 Particle Swarm Optimization
The particle swarm optimization (PSO) method is a modern heuristic optimization
algorithm, based on group movement of animals, such as fishes, birds and insects. The
movement of each animal (individual or particle) can be seen as a resultant vector of
personal and collective characteristics (vector components).
Proposed in (Kennedy & Eberhart, 1995), this method consists on the optimization of an
objective function trough the exchange of information among the particles (individuals),
resulting in a non-deterministic, but robust and efficient algorithm, which can be easily
implemented computationally.
In an initial moment, all the particles are positioned randomly in the searching space, in
which the solution must be. The movement of each particle is the result of a vector sum of
three distinct terms: the first contribution is related to the inertia of the particle (a particle’s
personal component), the second is related to the best position occupied by the particle (a
personal component - memory) and the third is relative to the best position found by the
group (group contribution – cooperation). Each particle position (a multidimensional vector)
corresponds to an alternative solution for the problem (combination of the multidimensional
vector). Each alternative solution must be evaluated.

Thus, at a given time step, a particle i changes its position from Xi to
newXi according to

,
newX Xi i x i= + Δ

,
(22)

in which ix,Δ is the updated position increment for particle i, that is, it is the vector

representing the position change for particle i and it is given by

. () . (), , ,,
old U W b X U W b Xgx i m i i i c i ix i

Δ = Δ + − + −

(23)

The heights imW , (memory) and icW , (cooperation) are previously defined, U represents

independent samples of a random variable uniformly distributed between zero and one, bi

is the best solution found by the particle i and bg is the best solution found by the swarm,

up to the current interaction.

Particle Swarm Optimization

192

The initial values for the displacements, i.e.
,

old
x i

Δ , are randomly chosen among the real

values limited by
max
x−Δ and

max
xΔ , in order to avoid large values and the consequent

divergence from the solution. It is worth to mention that it is necessary to avoid such large
values during the interactions. It was observed that usually the method results in
divergence or in low precision due to this tendency. There are, however, some methods for
minimize these problems, such as:

1. The employment of a descending function, affecting the inertial term, such as an
evanescent exponential function of time;

2. The use of terms for reduction of the velocity at each interaction, known as
constriction terms.

3. Simply to limit each velocity component to the interval [
max
x−Δ ,

max
xΔ].

All the methods have been tested, and, although all of them were efficient, the last one was
applied here.

3.3 Estimation of the Intruder's Position with PSO
After obtaining the time responses with the FDTD method, the radar theory can be
employed. The parameters of the three curves (a circle and two ellipses) are calculated from
the differences of the time responses (with and without the intruder), and the obtained
system, when solved, deliveries the intruder's position estimation. However, the case where
the three curves have a common point (Fig. 5a) does not always happen and the more
frequent case is illustrated by Fig. 5b. This way, the objective of the PSO algorithm is to
locate the point with the minimal distance from the three curves simultaneously. This
defines the objective function, which is mathematically given by

Fi = diCmin + diE1min + diE2min ,
(24)

in which diCmin is the minimal distance from particle i to the circle and diEκ
min is the minimal

distance from particle i to the ellipse κ.
This way, the PSO algorithm acts towards the minimization of the objective function Fi.

(a) (b)

Figure 5. Ideal radar configuration and (b) real radar configuration and the position estimate
(objective of the PSO Locator)

Target

Tx/Rx1

Rx2

Rx3

Estimate

Tx/Rx1

Rx2

Rx3

Particle Swarm Optimization Applied for Locating an Intruder
by an Ultra-Wideband Radar Network

193

In order to create a more realistic situation, additive Gaussian white noise (AWGN) has
been added to the FDTD time responses. A sample of noise ()ξR is generated by

() 2 ln 1/(1 ()) cos 2 ()a j kξ σ ξ π ξ= −⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦R U U
,

(25)

in which σa = 0.02 for the present work, and U(ξ) has the same meaning of U in (23).

3.4 Estimation of the numerical velocity for distance calculations.
FDTD Method introduces numerical dispersion and numerical anisotropy for the
propagating waves. This means that velocity of propagation is a function of frequency and
of the propagation direction (Taflove & Brodwin, 1975.a). Due to this numerical
characteristic of the FDTD methodology, it is not appropriate to use the light free space
velocity. Besides that, the dielectric walls promote delays on the signals, affecting the
average velocity. This way, as detailed in (Muller et al., 2005), and effective velocity was
determined experimentally for calculating the ellipses parameters (distances). The idea is to
measure the propagating time in multiple points around the source, with and without walls,
and take an average of the obtained velocities (Muller et al., 2005).
It is worth to mention that the procedure presented in (Muller et al., 2005) takes
automatically into account numerical dispersion and anisotropy and the delays caused by
walls. In real applications, obviously only walls’ delays must be considered for the correct
operation of the radar system.

4. Environment and Parameters of Simulation
In this work, the indoor environment considered for the simulations is shown in Fig. 6. In
that building, there are two distinct kinds of walls, characterized by different electrical
parameters, which are: the relative electric permittivity of the exterior walls is εr= 5.0 and
those of the interior walls have εr= 4.2. In both of them, the chosen conductivity is σ= 0.02
S/m. Everywhere else, the relative permittivity is equal to unity, except in the UPML. The
thickness of walls are 27 (external) and 12 (internal) centimeters.

Figure 6. Layout of the building (floor plan)

194

Th
(an
po
un
(Δ

wa
wa
the

wh
Bro
Th
Th
op
pe
use
con
Th
Ga

Fig

Th
200

wh
ma
the

4

he simulations are
nalysis region), ba
olarization relativ
niform mesh wit

)x y sΔ = Δ = Δ of w
avelength of the e
as obtained from
e method. The va

here c is the speed
odwin, 1975.a).

he absorbing bou
heir purpose is to
pen environment

rfectly matched
ed. The paramet
nductivity σmax =

he waveform use
aussian monocycl

gure 7. Gaussian

his is the type of
01). It is obtained

here 0A is the m
aximum amplitud
e first derivative o

e performed usin
ased on Yee’s for

ve to the plan in F
th 1000×1000 ce

width, which is e
excitation pulse in
the spacial cell d

alue used in this p

d of light in vacu

undaries are very
limit the comput

t, with minimum
layer-absorbing
ters of the UPM
 15 S/m, and ord
ed as an excitat
le, shown in Fig.

monocycle pulse

f pulse is used, f
d from the followi

 ()tg

maximum amplitu
de occurs, and τ
of this function, t

() pp t A= −

ng a 2D-FDTD me
rmulation. It is w
Fig. 6 is consider
ells was used. T
equivalent to app
n the reference fr

dimension , in o
paper is given by

 0.7
2
st

c
ΔΔ =

uum. Equation (2

y important elem
tational domain a

m reflection. In
medium (UPML

ML are: Thicknes
der of polynomial
tion source, in o
7.

for example, in P
ing Gaussian fun

2

2

()0
0

t tA Exp
τ

− −⎡= ⎢⎣

ude of the excit
is the time-deca

that is:

2

2 (()0
e tt t exp ⎡− −⎢τ ⎣

Pa

ethod for nondisp
orse to mention t
red in the transm
The square-shap
proximately one-
equency fo = 2 GH

order to assure th

6) is the Courant

ents in the FDTD
and, thus, to simu
order to achiev

L) based on a los
ss d = 10 cells,
l variation m=4.
order to scan th

PulsON system
ction:

2 ⎤
⎥⎦

tation source, 0t
ay constant. The G

2

2

) ,0t t− ⎤
⎥τ ⎦

article Swarm Optim

persive isotropic
that only perpend

mitter antenna. He
ped cells have 1
-tenth of the free
Hz. The time incr

he numerical stab

t’s condition (Tafl

D mesh (see sect
ulate propagation

ve this, an aniso
ssy uniaxial med

maximum atten

he environment,

(Petroff & Withi

 is the time whe
Gaussian monoc

mization

media
dicular
ere, an
1.5 cm
e-space
rement
ility of

(26)

love &

tion 2).
n in an
otropic
ium is

nuation

is the

ington,

(27)

en the
cycle is

(28)

Pa
by

Wh
by

Th
fre
spe

an

Th
the
.

Fig

To
to
the
pe

5.
Fo
inv
com
spe

ma

em

rticle Swarm Optim
an Ultra-Wideband

here 2.71828e ≈

y

he Gaussian mon
equency depende
ectrum obtained

d the central freq

he monocycle spec
e frequency 2 GH

gure 8. The Gauss

o complete the en
be a cylinder wit

e mesh has two
rmittivity consid

Results
r our numerical
vestigate some c
mputer impleme
ecified yet. For P

aximum value f

mpirically. The tot

mization Applied for
d Radar Network

and pA is the pe

nocycle is an ul
ent on the dura
from its Fourier t

2()
2pp f A π= τ

quency of the mon

ctrum is shown by
Hz, which is the fre

sian monocycle sp

nvironment descr
th a 0.25 m radiu
dimensions), wit
ered is 50rε = an

l simulations, w
critical situations
entation, we need
PSO, we define th

or the paramete

tal number of par

Locating an Intrude

eak amplitude of

20 p
eA A= τ

tra-wideband sig
ation of the mon
transform is given

21 ()
2
e exp f exπ − πτ⎡ ⎤⎣ ⎦

nocycle can be ca

2

1
2

0f =
τ π

 .

y Fig. 8. Observe
equency used for

pectrum

iption, the only m
s (in fact, only its
th the aim of rep

nd the conductivi

we chose differen
in the sense of

d to choose also s
he following weig

er ,x iΔ is 10−2.

rticles is 100 and

er

f the monocycle.

gnal, with the b
nocycle. In the f
n by

(2)0xp j t f− π

alculated using th

the significant po
determining Yee’

missing item is th
s transversal secti
presenting a hum
ty 1.43σ S/m= (

nt positions of t
errors of the po

some parameters
ghts for particles:

These paramete

the maximum nu

pA and 0A are r

bandwidth and c
frequency domai

he following equa

ower is distributed
’s spatial increme

he target. It was c
ion is considered

man body. The r
(Gandhi & Lazzi,

the target in or
osition estimatio
s, which have no
 210m cW W −= = a

ers have been d

umber of PSO iter

195

related

(29)

central
in, the

(30)

ation:

(31)

d up to
ent sΔ

chosen
d, since
elative
1996).

der to
on. For
ot been
and the

defined

rations

Particle Swarm Optimization

196

is 2000. An unfavorable situation of the target position is shown in Fig. 9. The transceivers
are denoted by TRX1 and TRX2. The remote receivers are denoted by RX2,..., RX9. When a
transceiver is transmitting, its receiver is denoted by RX1. The transceivers are activated in
different time windows in accordance with TDM (time division multiplexing) scheme. The
target, in this case, is on the line connecting the two transceivers, and it is situated outside
the rooms where the transceivers are mounted.

Figure 9. An unfavorable position for the target and the radar elements’ positions

The transmitting antennas are initially positioned in small windows in the walls (Fig. 9).
Because of the diffraction in these windows, we can expect a larger estimation error as
compared to the more favorable configurations. Fig. 10 shows the set ellipses for this case.
There is a considerable dispersion of the ellipses. The estimated error for this situation is about
17 cm, but even in this case one can still consider the precision of the target position estimation
as rather good. Of course, more favorable conditions generate results with better precision.
In this work, the final estimation of the position is obtained from statistically treating the
responses obtained from all the possible combinations of multistatic radars (one transceiver
and two receivers). The mean and standard deviation of the estimates are calculated. All the
estimative outside the standard deviation, around the mean value, are not considered in the
calculation of the final mean, which is the final output of the estimator.

Figure 10. The set of ellipses obtained for locating the target

Target

Particle Swarm Optimization Applied for Locating an Intruder
by an Ultra-Wideband Radar Network

197

Fig. 11 shows the convergence of the PSO method for a single multistatic radar (the
transceiver and two receivers). It is evident that the algorithm can be employed for solving
this kind of problem, as far as the particles clearly move to the correct target’s position.
Similar behavior was observed in many other experiments.
Fig. 12 shows the transient electric field obtained by receiver 4 (see Fig. 9), in the presence of
the target and in its absence. It is clear the perturbation caused in the reference signal by the
dielectric cylinder. The perturbation (difference between the signals) is plotted in Fig. 13,
from which the temporal information necessary for defining the ellipse with focus in that
receiver and in the transceiver (when disturbance’s amplitude is different from zero).

 (a) (b)

 (c) (d)
Figure 11. PSO’s particles convergence for the location of the target (a) randomly
distributed particles; (b) particles’ positions after 100 interactions; (c) particles’ positions
after 500 interactions and (d) particles’ positions after 700 interactions

Particle Swarm Optimization

198

Figure 12. Electric field data obtained by the receiver 4 (with and with no target)

Figure 13. Difference between the signals depicted in Fig. 12 (disturbance caused by the
target)

Fig. 14(a) shows the configuration used for executing a second numerical experiment. In this
case, the transceivers TRX1 and TRX2, represented by rhombuses, are positioned away from
the walls. The receivers (represented by triangles) and the target (square) were positioned
exactly as in the previous case (Fig. 9). For the case illustrated by Fig. 15(a), in which it is
used only the transceiver TRX1, the PSO estimation is represented by the star (the estimated
position was (432.98,410.92)) . The central cell of the target is (460,450) and, this way, the
surface of the target was pointed out, as it is clearly shown by Fig. 15(a). Similar behavior
was observed for the case illustrated by Fig. 15(b), in which only the transceiver TRX2 is
used. It is worth to mention that the identified points of the target’s surface is, for each

Particle Swarm Optimization Applied for Locating an Intruder
by an Ultra-Wideband Radar Network

199

simulation, closer to the correspondent used transceiver. This behavior is expected, as long
as reflection is used for determining the propagation time used for calculating the circle’s
and the ellipses’ parameters.

Figure 14. Configuration used for the second experiment (axis represent the Yee’s cells
indexes)

(a) (b)

Figure 15. The PSO estimation for the second experiment (a) result obtained by using TRX1
and (b) result obtained by using TRX2

In order to increase the complexity of the environment, and for testing a more general
situation, scatters were introduced in the environment and the situation previously
analyzed was used as base for the configuration shown by Fig. 16, which defines the third
experiment. Each scatter consists of a dielectric material with electrical conductivity of 0.02
S/m and permittivity of 5.ε0. The diameters of the dielectric scatters are around 18
centimeters. Such scatters create a chaotic electromagnetic environment, generating multiple
reflections, refractions and delays on the propagation of the wave. As far as difference of
electromagnetic transients are considered for calculating the propagation periods, such
effects are suppressed and the obtained results are very similar to the previous experiment
responses, as shown by Figs. 16(a) and 16(b).

Particle Swarm Optimization

200

(a) (b)

Figure 16. The PSO estimation for the third experiment (with dielectric scatters) (a) result
obtained by using TRX1 and (b) result obtained by using TRX2

6. Final Remarks
We have presented in this work some results of numerical simulations of a radar array
based on UWB pulses. The registers of the electric field have been obtained numerically
using the FDTD method. In order to define the localization curves we have used the concept
of optic rays. The solutions of the system of the nonlinear equations (which usually does not
exist) defined for every combination of a transceiver and 2 remote receivers give an
estimation of the target position. The solution, in those cases, are defined by determining the
closest point in the space to the circle and for the two ellipses, for a single multistatic radar.
The final estimation for the array of two transceivers and eight receivers is fulfilled by PSO
method. We have shown that PSO is a useful tool for this type of problem. The proposed
methodology seems to be robust, as long as the presence of dielectric scatters, which
promotes a complex (chaotic) electromagnetic environment, does not substantially affects
the performance of the position estimator.

7. Acknowledgements
Authors would like to acknowledge the support provided by Federal University of Pará
(UFPA), for all infrastructure provided.

8. References
Bayliss, A. & Turkel, E. (1980). Radiation Boundary Conditions for wave-like equation,

Comm. Pure Appl. Math., vol. 23, pp. 707-725
Berenger, J. (1994). A perfectly matched layer for the absorption of electromagnetic waves, J.

Computational Physics, vol. 114, pp. 185-200
Fornberg, P.E.; Byers, A.; Piket-May, M. & Holloway, C.L.(2000). FDTD modeling of printed

circuit board signal integrity and radiation, IEEE International Symposium on
Electromagnetic Compatibility

Particle Swarm Optimization Applied for Locating an Intruder
by an Ultra-Wideband Radar Network

201

Gandhi, O. P.; Lazzi G. & Furse, C. M (1996). Electromagnetic absorption in the human head and
neck for mobile telephones at 835 and 1900 MHz, IEEE Trans. Microwave Theory and
Tech., vol. MTT-44, No. 10.

Goorjian, P.M. & Taflove, A. (1992). Direct time integration of Maxwell’s equation in
nonlinear dispersive media for propagation and scattering of femtosecond
electromagnetic solitons, Optics Lett., vol. 17, pp. 180-182.

Liao , Z.; Wong, H.; Yang, B.P. & Yuan, Y.F. (1984). A Transmitting boundary for transient
wave analysis, Scientia Sinica, vol. XXVII (series A), pp. 1063-1076

Maloney, J.G. & Kesler, M.P. (1998). Analysis of periodic structures. Advances in
Computational Electrodynamics, A. Taflove, Artech House, 1998.

Manteuffell, D. & Simon W., FDTD calculation of the SAR induced in the human head by
mobile phones: new standards and procedures for the numerical assessment, IWAT
2005 (IEEE International Workshop on Antenna Technology), pp. 137-140.

Muller, F.C.B.F.; Farias, R.G.; Sobrinho, C.L.S.S. & Dmitriev, V. (2005). Multistatic radar with
ultra wideband pulses: FDTD simulation, International Microwave and Optoelectronic
Conference, Brasilia (Brazil)

Mur, G. (1981). Absorbing boundary conditions for the finite-difference approximation of
the time-domain electromagnetic field equation, IEEE Trans. Electromagnetic
Compatibility, vol. 23, pp. 377-382

Petroff,A. & Withington, P. (2001). PulsOn technology overview, 2001,
http://w.w.w.timedomain.com/ files/downloads/techpapers/PulsONOverview7_01.pdf.

Ridon, R. (1987). Numerical absorbing boundary conditions for the wave equations,
Mathematics of computation, vol. 49, pp. 65-90

Sacks, Z.; Kingsland, D.; Lee R. & Lee, J. (1995). A perfectly matched anisotropic absorber for
use as an absorbing boundary condition, IEEE Trans. Antennas and Propagation, vol.
43, pp. 1460-1463

Taflove A. & Brodwin, M.E. (1975.a). Computation of the electromagnetic fields and induced
temperatures within a model of the microwave-irradiated human eye, IEEE
Transaction on Microwave Theory Tech., vol. 23, pp. 888-896

Taflove, A & Hagness, S.C. (2005). Computational Electromagnetics, The Finite-Difference Time-
Domain Method, 3rd ed., Artech House Inc..

Taflove A. & Brodwin, M.E. (1975.b). Numerical solution of steady-state electromagnetic
scattering problems using the time-dependent Maxwell’s equations, IEEE
Transaction on Microwave Theory Tech., vol. 23, pp. 623-630

Tanabe, K.(2001). Novel method for analyzing the transient behavior of grounding systems
based on the finite-difference time-domain method, Power Engineering Review, vol.
21, no. 9, pp. 1128-1132

Kennedy, J. & Eberhart, R. C., Particle swarm optimization, IEEE International Conference on
Neural Networks (ICNN), Vol. IV, pp.1942-1948, Perth, Australia.

Kondylis, G.; DeFlaviis F. & Pottie, G. (1999). Indoor channel characterization for wireless
communications using reduced finite difference time domain (R-FDTD), IEEE VTC
Fall 99, Amsterdam.

Yee, k. (1996). Numerical solution of initial boundary value problems involving Maxwell’s
equations in isotropic media, IEEE Trans. Antennas and Propagation, vol. 14, pp. 302-
307

Particle Swarm Optimization

202

Zhang X.; Fang, J.; Mei, K.K. & Liu, Y. (1988). Calculation of dispersive characteristics of
microstrips by the Time-Domain Finite-Difference method, IEEE Transaction on
Microwave Theory Tech., vol. 36, pp. 263-267

Federal University of Pará
Electrical Engineering, CEP: 68455-700, Tucuruí, Pará, Brazil
Computer Engineering, CEP: 66075-900, Belém, Pará, Brazil

rmso@ufpa.br, leonidas@ufpa.br, josivaldo@lane.ufpa.br, rgfarias@ufpa.br

12

Application of Particle Swarm Optimization in
Accurate Segmentation of Brain MR Images

Nosratallah Forghani1, Mohamad Forouzanfar1,2, Armin Eftekhari1,
Shahab Mohammad-Moradi1 and Mohammad Teshnehlab1

1K.N. Toosi University of Technology, 2University of Tehran
1,2Iran

1. Introduction
Medical imaging refers to the techniques and processes used to obtain images of the human
body for clinical purposes or medical science. Common medical imaging modalities include
ultrasound (US), computerized tomography (CT), and magnetic resonance imaging (MRI).
Medical imaging analysis is usually applied in one of two capacities: i) to gain scientific
knowledge of diseases and their effect on anatomical structure in vivo, and ii) as a
component for diagnostics and treatment planning (Kannan, 2008).
Medical US uses high frequency broadband sound waves that are reflected by tissue to
varying degrees to produce 2D or 3D images. This is often used to visualize the fetus in
pregnant women. Other important uses include imaging the abdominal organs, heart, male
genitalia, and the veins of the leg. US has several advantages which make it ideal in
numerous situations. It studies the function of moving structures in real-time, emits no
ionizing radiation, and contains speckle that can be used in elastography. It is very safe to
use and does not appear to cause any adverse effects. It is also relatively cheap and quick to
perform. US scanners can be taken to critically ill patients in intensive care units, avoiding
the danger caused while moving the patient to the radiology department. The real time
moving image obtained can be used to guide drainage and biopsy procedures. Doppler
capabilities on modern scanners allow the blood flow in arteries and veins to be assessed.
However, US images provides less anatomical detail than CT and MRI (Macovski, 1983).
CT is a medical imaging method employing tomography (Slone et al., 1999). Digital
geometry processing is used to generate a three-dimensional image of the inside of an object
from a large series of two-dimensional X-ray images taken around a single axis of rotation.
CT produces a volume of data which can be manipulated, through a process known as
windowing, in order to demonstrate various structures based on their ability to block the X-
ray beam. Although historically the images generated were in the axial or transverse plane
(orthogonal to the long axis of the body), modern scanners allow this volume of data to be
reformatted in various planes or even as volumetric (3D) representations of structures. CT
was the first imaging modality to provide in vivo evidence of gross brain morphological
abnormalities in schizophrenia, with many CT reports of increase in cerebrospinal fluid
(CSF)-filled spaces, both centrally (ventricles), and peripherally (sulci) in a variety of
psychiatric patients.

Particle Swarm Optimization

204

MRI is a technique that uses a magnetic field and radio waves to create cross-sectional
images of organs, soft tissues, bone and virtually all other internal body structures. MRI is
based on the phenomenon of nuclear magnetic resonance (NMR). Nuclei with an odd
number of nucleons, exposed to a uniform static magnetic field, can be excited with a radio
frequency (RF) pulse with the proper frequency and energy. After the excitation pulse, NMR
signal can be recorded. The return to equilibrium is characterized by relaxation times T1 and
T2, which depend on the nuclei imaged and on the molecular environment. Mainly
hydrogen nuclei (proton) are imaged in clinical applications of MRI, because they are most
NMR-sensitive nuclei (Haacke et al., 1999). MRI possesses good contrast resolution for
different tissues and has advantages over computerized tomography (CT) for brain studies
due to its superior contrast properties. In this context, brain MRI segmentation is becoming
an increasingly important image processing step in many applications including: i)
automatic or semiautomatic delineation of areas to be treated prior to radiosurgery, ii)
delineation of tumours before and after surgical or radiosurgical intervention for response
assessment, and iii) tissue classification (Bondareff et al., 1990).
Several techniques have been developed for brain MR image segmentation, most notably
thresholding (Suzuki & Toriwaki, 1991), edge detection (Canny, 1986), region growing
(Pohle & Toennies, 2001), and clustering (Dubes & Jain, 1988). Thresholding is the simplest
segmentation method, where the classification of each pixel depends on its own information
such as intensity and colour. Thresholding methods are efficient when the histograms of
objects and background are clearly separated. Since the distribution of tissue intensities in
brain MR images is often very complex, these methods fail to achieve acceptable
segmentation results. Edge-based segmentation methods are based on detection of
boundaries in the image. These techniques suffer from incorrect detection of boundaries due
to noise, over- and under-segmentation, and variability in threshold selection in the edge
image. These drawbacks of early image segmentation methods, has led to region growing
algorithms. Region growing extends thresholding by combining it with connectivity
conditions or region homogeneity criteria. However, only well defined regions can be
robustly identified by region growing algorithms (Clarke et al., 1995).
Since the above mentioned methods are generally limited to relatively simple structures,
clustering methods are utilized for complex pathology. Clustering is a method of grouping
data with similar characteristics into larger units of analysis. Expectation–maximization
(EM) (Wells et al., 1996), hard c-means (HCM) and its fuzzy equivalent, fuzzy c-means
(FCM) algorithms (Li et al., 1993) are the typical methods of clustering. A common
disadvantage of EM algorithms is that the intensity distribution of brain images is modeled
as a normal distribution, which is untrue, especially for noisy images. Since Zadeh (1965)
first introduced fuzzy set theory which gave rise to the concept of partial membership,
fuzziness has received increasing attention. Fuzzy clustering algorithms have been widely
studied and applied in various areas. Among fuzzy clustering techniques, FCM is the best
known and most powerful method used in image segmentation. Unfortunately, the greatest
shortcoming of FCM is its over-sensitivity to noise, which is also a drawback of many other
intensity-based segmentation methods. Since medical images contain significant amount of
noise caused by operator, equipment, and the environment, there is an essential need for
development of less noise-sensitive algorithms.
Many extensions of the FCM algorithm have been reported in the literature to overcome the
effects of noise, such as noisy clustering (NC) (Dave, 1991), possibilistic c-means (PCM)

Application of Particle Swarm Optimization in Accurate Segmentation of Brain MR Images

205

(Krishnapuram & Keller, 1993), robust fuzzy c-means algorithm (RFCM) (Pham, 2001), bias-
corrected FCM (BCFCM) (Ahmed et al., 2002), spatially constrained kernelized FCM
(SKFCM) (Zhang & Chen, 2004), and so on. These methods generally modify most equations
along with modification of the objective function. Therefore, they lose the continuity from
FCM, which inevitably introduce computation issues.
Recently, Shen et al. (2005) introduced a new extension of FCM algorithm, called improved
FCM (IFCM). They introduced two influential factors in segmentation that address the
neighbourhood attraction. The first parameter is the feature difference between
neighbouring pixels in the image and the second one is the relative location of the
neighbouring pixels. Therefore, segmentation is decided not only by the pixel’s intensity but
also by neighbouring pixel’s intensities and their locations. However, the problem of
determining optimum parameters constitutes an important part of implementing the IFCM
algorithm for real applications. The implementation performance of IFCM may be
significantly degraded if the attraction parameters are not properly selected. It is therefore
important to select suitable parameters such that the IFCM algorithm achieves superior
partition performance compared to the FCM. In (Shen et al., 2005), an artificial neural
network (ANN) was employed for computation of these two parameters. However,
designing the neural network architecture and setting its parameters are always complicated
which slow down the algorithm and may also lead to inappropriate attraction parameters
and consequently degrade the partitioning performance (Haykin, 1998).
In this paper we investigate the potential of genetic algorithms (GAs) and particle swarm
optimization (PSO) to determine the optimum values of the neighborhood attraction
parameters. We will show both GAs and PSO are superior to ANN in segmentation of noisy
MR images; however, PSO obtains the best results. The achieved improvements are
validated both quantitatively and qualitatively on simulated and real brain MR images at
different noise levels.
This paper is organized as follows. In Section 2, common clustering algorithms, including
EM, FCM, and different extensions of FCM, are introduced. Section 3 presents new
parameter optimization methods based on GAs and PSO for determination of optimum
degree of attraction in IFCM algorithm. Section 4 is dedicated to a comprehensive
comparison of the proposed segmentation algorithms based on GAs and PSO with related
recent techniques. The paper in concluded in Section 5 with some remarks.

2. Clustering Algorithms
According to the limitation of conventional segmentation methods such as thresholding,
edge detection, and region growing, clustering methods are utilized for complex pathology.
Clustering is an unsupervised classification of data samples with similar characteristics into
larger units of analysis (clusters). While classifiers are trained on pre-labeled data and tested
on unlabeled data, clustering algorithms take as input a set of unlabeled samples and
organize them into clusters based on similarity criteria. The algorithm alternates between
dividing the data into clusters and learning the characteristics of each cluster using the
current division. In image segmentation, a clustering algorithm iteratively computes the
characteristics of each cluster (e.g. mean, standard deviation) and segments the image by
classifying each pixel in the closest cluster according to a distance metric. The algorithm
alternates between the two steps until convergence is achieved or a maximum number of

Particle Swarm Optimization

206

iterations is reached (Lauric & Frisken, 2007). In this Section, typical methods of clustering
including EM algorithm, FCM algorithm, and extensions of FCM are described.

2.1 EM Algorithm
The EM algorithm is an estimation method used in statistics for finding maximum
likelihood estimates of parameters in probabilistic models, where the model depends on
unobserved latent variables (Wells et al., 1994). In image segmentation, the observed data
are the feature vectors ݔ associated with pixels ݆ , while the hidden variables are the
expectations ܧ for each pixel ݆ that it belongs to each of the given clusters ݅.
The algorithm starts with an initial guess at the model parameters of the clusters and then
re-estimates the expectations for each pixel in an iterative manner. Each iteration consists of
two steps: the expectation (E) step and the maximization (M) step. In the E-step, the
probability distribution of each hidden variable is computed from the observed values and
the current estimate of the model parameters (e.g. mean, covariance). In the M-step, the
model parameters are re-estimated assuming the probability distributions computed in the
E-step are correct. The parameters found in the M step are then used to begin another E step,
and the process is repeated.
Assuming Gaussian distributions for all clusters, the hidden variables are the expectations ܧ that pixel ݆ belongs to cluster ݅. The model parameters to estimate are the mean, the
covariance and the mixing weight corresponding to each cluster. The mixing weight is a
measure of a cluster’s strength, representing how prevalent the cluster is in the data. The E
and M step of the EM algorithm are as follows.
E-step: ܧ௧ ൌ ܲ൫݅หݔ, ௧൯ߠ ൌ ܲ൫ݔห݅, ௧൯ߠ ∑௧ߨ ܲୀଵ ൫ݔห݇, ௧ߠ ൯ ௧ߨ (1)

M-step:

௧ାଵߨ ൌ 1݊ ௧ܧ
ୀଵ (2)

௧ାଵݒ ൌ ௧ାଵߨ1݊ ௧ܧ ݔ
ୀଵ (3)

௧ାଵߑ ൌ ௧ାଵߨ1݊ ௧ܧ ൫ݔ െ ݔ௧ାଵ൯൫ݒ െ ௧ାଵ൯்ݒ
ୀଵ (4)

where ߠ௧ are the model parameters of class ݅ at time ݐ and ߨ௧ is the mixing weight of class ݅
at time ݐ. Note that ∑ ௧ߨ ൌ 1ୀଵ , ൯ is the a posteriori conditional probability thatݔ൫݅หܲ .ݐ
pixel ݆ is a member of class ݅, given its feature vector ݔ. ܲ൫݅หݔ൯ gives the membership value
of pixel ݆ to class ݅, where ݅ takes values between 1 and ܿ (the number of classes), while ݆
takes values between 1 and ݊ (the number of pixels in the image). Note that ∑ ܲ൫݇หݔ൯ ൌୀଵ1. ܲ൫ݔห݅൯ is the conditional density distribution, i.e., the probability that pixel ݆ has feature

Application of Particle Swarm Optimization in Accurate Segmentation of Brain MR Images

207

vector ݔ given that it belongs to class ݅. If the feature vectors of class ݅ have a Gaussian
distribution, the conditional density function has the form: ܲ൫ݔห݅൯ ൌ 1ሺ2ߨሻଶ ሻߑଵଶሺݐ݁݀ ݁ିଵଶ൫௫ೕି௩൯ఀ൫௫ೕି௩൯ (5)

where ݒ and ߑ are the mean feature vector and the covariance matrix of class ݅. The mean
and the covariance of each class are estimated from training data. ܦ is the dimension of the
feature vector. The prior probability of class ݅ is: ܲሺ݅ሻ ൌ ∑|ݓ| |ୀଵݓ| (6)

where |ݓ| is a measure of the frequency of occurrence of class ݅ and ∑ |ୀଵݓ| is a measure
of the total occurrence of all classes. In image segmentation, |ݓ| is usually set to the number
of pixels which belong to class ݅ in the training data, and ∑ |ୀଵݓ| to the total number of
pixels in the training data.
The algorithm iterates between the two steps until the log likelihood increases by less than
some threshold or a maximum number of iterations is reached. EM algorithm can be
summarized as follows (Lauric & Frisken, 2007):
1. Initialize the means ݒ , the covariance matrices ߑ and the mixing weights ߨ .

Typically, the means are initialized to random values, the covariance matrices to the
identity matrix and the mixing weights to 1 ܿ⁄ .

2. E-step: Estimate ܧ for each pixel ݆ and class ݅, using (1).
3. M-step: Estimate the model parameters for class ݅, using (2)-(4).
4. Stop if convergence condition ൫log ∏ ௧ାଵୀଵܧ െ log ∏ ௧ୀଵܧ ൯ ߳ is achieved. Otherwise,

repeat steps 2 to 4.
A common disadvantage of EM algorithms is that the intensity distribution of brain images
is modeled as a normal distribution, which is untrue, especially for noisy images.

2.2 FCM Algorithm
Let ܺ ൌ ሼݔଵ, … , ሽ be a data set and let ܿ be a positive integer greater than one. A partitionݔ
of ܺ into ܿ clusters is represented by mutually disjoint sets ଵܺ, … , ܺ such that ଵܺ ڮ ܺ ൌܺ or equivalently by indicator function ߤଵ, … , ሻݔሺߤ such thatߤ ൌ 1 if ݔ is in ܺ and ߤሺݔሻ ൌ0 if ݔ is not in ܺ, for all ݅ ൌ 1, … , ܿ. This is known as clustering ܺ into ܿ clusters ଵܺ, … , ܺ by
hard ܿ-partition ሼߤଵ, … , ,ሻ taking values in the interval ሾ0ݔሺߤ ሽ. A fuzzy extension allowsߤ 1ሿ
such that ∑ ሻୀଵݔሺߤ ൌ 1 for all ݔ in ܺ. In this case, ሼߤଵ, … , :ிெ is defined as (Bezdek, 1981)ܬ ሽ is called a fuzzy ܿ-partition of ܺ. Thus, the FCM objective functionߤ

,ߤிெሺܬ ሻݒ ൌ ,ݔ݀ଶ൫ߤ ൯ݒ
ୀଵ

ୀଵ (7)

where ߤ ൌ ሼߤଵ, … , ߤ ሽ is a fuzzy ܿ-partition withߤ ൌ ൯, the weighted exponent ݉ is aݔ൫ߤ
fixed number greater than one establishing the degree of fuzziness, ݒ ൌ ሼݒଵ, … , ܿ ሽ is theݒ
cluster centers, and ݀ଶ൫ݔ, ൯ݒ ൌ ฮݔ െ ฮଶݒ represents the Euclidean distance or its
generalization such as the Mahalanobis distance. The FCM algorithm is an iteration through
the necessary conditions for minimizing ܬிெ with the following update equations:

Particle Swarm Optimization

208

ݒ ൌ ∑ ∑ୀଵݔߤ ୀଵߤ ሺ݅ ൌ 1, … , ܿሻ (8)

and

ߤ ൌ 1∑ ቆ݀൫ݔ, ,ݔ൯݀൫ݒ ൯ቇଶݒ ሺିଵሻ⁄ୀଵ

(9)

The FCM algorithm iteratively optimizes ܬிெሺߤ, ,ݒ and ߤ ሻ with the continuous update ofݒ
until หߤሺାଵሻ െ หߤ .where ݈ is the number of iterations ,ߝ
From (7), it is clear that the objective function of FCM does not take into consideration any
spatial dependence among ܺ and deals with each image pixel as a separate point. Also, the
membership function in (9) is mostly decided by ݀ଶ൫ݔ, ൯, which measures the similarityݒ
between the pixel intensity and the cluster center. Higher membership depends on closer
intensity values to the cluster center. It therefore increases the sensitivity of the membership
function to noise. If an MR image contains noise or is affected by artifacts, their presence can
change the pixel intensities, which will result in an incorrect membership and improper
segmentation.
There are several approaches to reduce sensitivity of FCM algorithm to noise. The most
direct way is the use of low pass filters in order to smooth the image and then applying the
FCM algorithm. However low pass filtering, may lead to lose some important details.
Different extensions of FCM algorithm were proposed by researchers in order to solve
sensitivity to noise. In the following Subsections we will introduce some of these
extensions.

2.2.1 NC algorithm
The most popular approach for increasing the robustness of FCM to noise is to modify the
objective function directly. Dáve (1991) proposed the idea of a noise cluster to deal with
noisy clustering data in the approach known as NC. Noise is effectively clustered into a
separate cluster which is unique from signal clusters. However, it is not suitable for image
segmentation, since noisy pixels should not be separated from other pixels, but assigned to
the most appropriate clusters in order to reduce the effect of noise.

2.2.2 PCM algorithm
Another similar method, developed by Krishnapuram and Keller (1993), is called PCM,
which interprets clustering as a possibilistic partition. Instead of having one term in the
objective function, a second term is included, forcing the membership to be as high as
possible without a maximum limit constraint of one. However, it caused clustering being
stuck in one or two clusters. The objective function of PCM is defined as follows:

,ߤெሺܬ ሻݒ ൌ ,ݔ݀ଶ൫ߤ ൯ݒ
ୀଵ

ୀଵ ߟ ൫1 െ ൯ߤ

ୀଵ

ୀଵ (10)

Application of Particle Swarm Optimization in Accurate Segmentation of Brain MR Images

209

where ߟ are suitable positive numbers. The first term demands that the distances from the
feature vectors to the prototypes be as low as possible, whereas the second term forces the ߤ to be as large as possible, thus avoiding the trivial solution.

2.2.3 RFCM algorithm
Pham presented a new approach of FCM, named the robust RFCM (Pham, 2001). A
modified objective function was proposed for incorporating spatial context into FCM. A
parameter controls the tradeoff between the conventional FCM objective function and the
smooth membership functions. However, the modification of the objective function results
in the complex variation of the membership function. The objective function of RFCM is
defined as follows:

,ߤோிெሺܬ ሻݒ ൌ ,ݔ݀ଶ൫ߤ ൯ݒ
ୀଵאΩ 2ߚ ߤ

ୀଵאΩ ேೕאெא௦௦ߤ (11)

where ܰ is the set of neighbors of pixel ݆ in Ω, and ܯ ൌ ሼ1, … , ܿሽ\ሼ݅ሽ. The parameter ߚ
controls the trade-off between minimizing the standard FCM objective function and
obtaining smooth membership functions.

2.2.4 BCFCM algorithm
Another improved version of FCM by the modification of the objective function was
introduced by Ahmed et al. (2002). They proposed a modification of the objective function
by introducing a term that allows the labeling of a pixel to be influenced by the labels in its
immediate neighborhood. The neighborhood effect acts as a regularizer and biases the
solution toward piecewise-homogeneous labeling. Such regularization is useful in
segmenting scans corrupted by salt and pepper noise. The modified objective function is
given by:

,ߤெሺܬ ሻݒ ൌ ,ݔ݀ଶ൫ߤ ൯ݒ
ୀଵ

ୀଵ ܰߙோ ߤ ቌ ݀ଶሺݔ, ேೕאሻ௫ೝݒ ቍ

ୀଵ

ୀଵ (12)

where ܰ stands for the set of neighbors that exist in a window around ݔ and ோܰ is the
cardinality of ܰ. The effect of the neighbors term is controlled by the parameter ߙ. The
relative importance of the regularizing term is inversely proportional to the signal-to-noise
ratio (SNR) of the MRI signal. Lower SNR would require a higher value of the parameter ߙ.

2.2.5 SKFCM algorithm
The SKFCM uses a different penalty term containing spatial neighborhood information in
the objective function, and simultaneously the similarity measurement in the FCM, is
replaced by a kernel-induced distance (Zhang & Chen, 2004). We know every algorithm that
only uses inner products can implicitly be executed in the feature space F. This trick can also
be used in clustering, as shown in support vector clustering (Hur et al., 2001) and kernel
FCM (KFCM) algorithms (Girolami, 2002; Zhang & Chen, 2002). A common ground of these
algorithms is to represent the clustering center as a linearly-combined sum of all ൫ݔ൯, i.e.
the clustering centers lie in feature space. The KFCM objective function is as follows:

Particle Swarm Optimization

210

,ߤிெሺܬ ሻݒ ൌ ݀ଶߤ ቀ൫ݔ൯, ሻቁݒሺ
ୀଵ

ୀଵ (13)

where is an implicit nonlinear map. Same as BCFCM, the KFCM-based methods inevitably
introduce computation issues, by modifying most equations along with the modification of
the objective function, and have to lose the continuity from FCM, which is well-realized
with many types of software, such as MATLAB.

2.2.6 IFCM algorithm
To overcome these drawbacks, Shen et al. (2005) presented an improved algorithm. They
found that the similarity function ݀ଶ൫ݔ, ൯ is the key to segmentation success. In theirݒ
approach, an attraction entitled neighborhood attraction is considered to exist between
neighboring pixels. During clustering, each pixel attempts to attract its neighboring pixels
toward its own cluster. This neighborhood attraction depends on two factors; the pixel
intensities or feature attraction ߣ , and the spatial position of the neighbors or distance
attraction ߦ , which also depends on the neighborhood structure. Considering this
neighborhood attraction, they defined the similarity function as below: ݀ଶ൫ݔ, ൯ݒ ൌ ฮݔ െ ฮଶ൫1ݒ െ ܪߣ െ ൯ (14)ܨߦ

where ܪ represents the feature attraction and ܨ represents the distance attraction.
Magnitudes of two parameters λ and ζ are between 0 and 1; adjust the degree of the two
neighborhood attractions. ܪ and ܨ are computed in a neighborhood containing ܵ pixels
as follow: ܪ ൌ ∑ ∑݃ௌୀଵߤ ௌୀଵߤ (15)

ܨ ൌ ∑ ଶߤ ∑ଶௌୀଵݍ ଶௌୀଵߤ (16)

with ݃ ൌ หݔ െ ,หݔ ݍ ൌ ൫ ܽ െ ܽ൯ଶ ൫ ܾ െ ܾ൯ଶ (17)

where ሺ ܽ, ܾሻ and ሺܽ, ܾሻ denote the coordinate of pixel ݆ and ݇, respectively. It should be
noted that a higher value of ߣ leads to stronger feature attraction and a higher value of ߦ
leads to stronger distance attraction. Optimized values of these parameters enable the best
segmentation results to be achieved. However, inappropriate values can be detrimental.
Therefore, parameter optimization is an important issue in IFCM algorithm that can
significantly affect the segmentation results.

3. Parameter Optimization of IFCM Algorithm
Optimization algorithms are search methods, where the goal is to find a solution to an
optimization problem, such that a given quantity is optimized, possibly subject to a set of
constrains. Although this definition is simple, it hides a number of complex issues. For

Application of Particle Swarm Optimization in Accurate Segmentation of Brain MR Images

211

example, the solution may consist of a combination of different data types, nonlinear
constrains may restrict the search area, the search space can be convoluted with many
candidate solutions, the characteristics of the problem may change over time, or the quantity
being optimized may have conflicting objectives (Engelbrecht, 2006).
As mentioned earlier, the problem of determining optimum attraction parameters
constitutes an important part of implementing the IFCM algorithm. Shen et al. (2005)
computed these two parameters using an ANN through an optimization problem. However,
designing the neural network architecture and setting its parameters are always complicated
tasks which slow down the algorithm and may lead to inappropriate attraction parameters
and consequently degrade the partitioning performance. In this Section we introduce two
new algorithms, namely GAs and PSO, for optimum determination of the attraction
parameters. The performance evaluation of the proposed algorithms is carried out in the
next Section.

3.1. Structure of GAs
Like neural networks, GAs are based on a biological metaphor, however, instead of the
biological brain, GAs view learning in terms of competition among a population of evolving
candidate problem solutions. GAs were first introduced by Holland (1992) and have been
widely successful in optimization problems. Algorithm is started with a set of solutions
(represented by chromosomes) called population. Solutions from one population are taken
and used to form a new population. This is motivated by a hope, that the new population
will be better than the old one. Solutions which are selected to form new solutions
(offspring) are selected according to their fitness; the more suitable they are the more
chances they have to reproduce. This is repeated until some condition is satisfied. The GAs
can be outlined as follows.
1. [Start] Generate random population of ܲ chromosomes (suitable solutions for the

problem).
2. [Fitness] Evaluate the fitness of each chromosome in the population with respect to the

cost function J.
3. [New population] Create a new population by repeating following steps until the new

population is complete:
a. [Selection] Select two parent chromosomes from a population according to their

fitness (the better fitness, the bigger chance to be selected).
b. [Crossover] With a crossover probability, cross over the parents to form a new

offspring (children). If no crossover was performed, offspring is an exact copy of
parents.

c. [Mutation] With a mutation probability, mutate new offspring at each locus
(position in chromosome).

d. [Accepting] Place new offspring in a new population.
4. [Loop] Go to step 2 until convergence.
For selection stage a roulette wheel approach is adopted. Construction of roulette wheel is
as follows (Mitchel, 1999):
1. Arrange the chromosomes according to their fitness.
2. Compute summations of all fitness values and calculate the total fitness.
3. Divide each fitness value to total fitness and compute the selection probability ሺሻ for

each chromosome.

Particle Swarm Optimization

212

4. Calculate cumulative probability ሺ ܲሻ for each chromosome.
In selection process, roulette wheel spins equal to the number population size. Each time a
single chromosome is selected for a new population in the following manner (Gen & Cheng,
1997):
1. Generate a random number ݎ from the rang ሾ0, 1ሿ.
2. If ݎ ଵܲ, then select the first chromosome, otherwise select the ݇-th chromosome such

that ݍିଵ ൏ ݎ ൏ .ݍ
The mentioned algorithm is iterated until a certain criterion is met. At this point, the most
fitted chromosome represents the corresponding optimum values. The specific parameters
of the introduced structure are described in Section 4.

3.2. Structure of PSO
Team formation has been observed in many animal species. For some animal species, teams
or groups are controlled by a leader, for example a pride of lions, a troop of baboon, and a
troop of wild buck. In these societies the behavior of individuals is strongly dictated by
social hierarchy. More interesting is the self-organizing behavior of species living in groups
where no leader can be identified, for example, a flock of birds, a school of fish, or a herd of
sheep. Within these social groups, individuals have no knowledge of the global behavior of
the entire group, nor they have any global information about the environment. Despite this,
they have the ability to gather and move together, based on local interactions between
individuals. From the simple, local interaction between individuals, more complex collective
behavior emerges, such as flocking behavior, homing behavior, exploration and herding.
Studies of the collective behavior of social animals include (Engelbrecht, 2006):
1. Bird flocking behavior;
2. Fish schooling behavior;
3. The hunting behavior of humpback whales;
4. The foraging behavior of wild monkeys; and
5. The courtship-like and foraging behavior of the basking shark.
PSO, introduced by Kennedy and Eberhart (1995), is a member of wide category of swarm
intelligence methods (Kennedy & Eberhart, 2001). Kennedy originally proposed PSO as a
simulation of social behavior and it was initially introduced as an optimization method. The
PSO algorithm is conceptually simple and can be implemented in a few lines of code. A PSO
individual also retains the knowledge of where in search space it performed the best, while
in GAs if an individual is not selected for crossover or mutation, the information contained
by that individual is lost. Comparisons between PSO and GAs are done analytically in
(Eberhart & Shi, 1998) and also with regards to performance in (Angeline, 1998). In PSO, a
swarm consists of individuals, called particles, which change their position ݔҧሺݐሻ with time ݐ.
Each particle represents a potential solution to the problem and flies around in a
multidimensional search space. During flight each particle adjusts its position according to
its own experience, and according to the experience of neighboring particles, making use of
the best position encountered by itself and its neighbors. The effect is that particles move
towards the best solution. The performance of each particle is measured according to a pre-
defined fitness function, which is related to the problem being solved.
To implement the PSO algorithm, we have to define a neighborhood in the corresponding
population and then describe the relations between particles that fall in that neighborhood.
In this context, we have many topologies such as: star, ring, and wheel. Here we use the ring

Application of Particle Swarm Optimization in Accurate Segmentation of Brain MR Images

213

topology. In ring topology, each particle is related with two neighbors and attempts to
imitate its best neighbor by moving closer to the best solution found within the
neighborhood. The local best algorithm is associated with this topology (Eberhart et al.,
1996; Corne et al., 1999):
1. [Start] Generate a random swarm of ܲ particles in ܦ -dimensional space, where ܦ

represents the number of variables (here ܦ ൌ 2).
2. [Fitness] Evaluate the fitness ݂൫ݔҧሺݐሻ൯ of each particle with respect to the cost function ܬ.
3. [Update] Particles are moved toward the best solution by repeating the following steps:

a. If ݂൫ݔҧሺݐሻ൯ ൏ ݐݏܾ݁ then ݐݏܾ݁ ൌ ݂൫ݔҧሺݐሻ൯ and ݔҧ௦௧ ൌ ݐݏܾ݁ ሻ, whereݐҧሺݔ is the
current best fitness achieved by the ݅-th particle and ݔҧ௦௧ is the corresponding
coordinate.

b. If ݂൫ݔҧሺݐሻ൯ < ݈ܾ݁ݐݏ then ݈ܾ݁ݐݏ ൌ ݂൫ݔҧሺݐሻ൯, where ݈ܾ݁ݐݏ is the best fitness over the
topological neighbors.

c. Change the velocity ݒ of each particle: ݒҧሺݐሻ ൌ ݐҧሺݒ െ 1ሻ ଵߩ ቀݔҧ௦௧ െ ሻቁݐҧሺݔ ଶߩ ቀݔҧ௦௧ െ ሻቁ (18)ݐҧሺݔ

where ߩଵ and ߩଶ are random accelerate constants between 0 and 1.
d. Fly each particle to its new position ݔҧሺݐሻ .ሻݐҧሺݒ

4. [Loop] Go to step 2 until convergence.
The above procedures are iterated until a certain criterion is met. At this point, the most
fitted particle represents the corresponding optimum values. The specific parameters of the
introduced structure are described in Section 4.

4. Experimental Results
This Section is dedicated to a comprehensive investigation on the proposed methods
performance. To this end, we will compare the proposed algorithms with FCM, PCM
(Krishnapuram & Keller, 1993), RFCM (Pham, 2001), and an implementation of IFCM
algorithm based on ANN (ANN-IFCM) (Shen et al., 2005).
Our experiments were performed on three types of images: 1) a synthetic square image; 2)
simulated brain images obtained from Brainweb1; and 3) real MR images acquired from
IBSR2. In all experiment the size of the population (ܲ) is set to 20 and the cost function ܬிெ
with the similarity index defined in (14) is employed as a measure of fitness. Also, a single
point crossover with probability of 0.2 and an order changing mutation with probability of
0.01 are applied. The weighting exponent ݉ in all fuzzy clustering methods was set to 2. It
has been observed that this value of weighting exponent yields the best results in most brain
MR images (Shen et al., 2005).

4.1 Square Image
A synthetic square image consisting of 16 squares of size 64 × 64 is generated. This square
image consists of 4 classes with intensity values of 0, 100, 200, and 300, respectively. In order
to investigate the sensitivity of the algorithms to noise, a uniformly distributed noise in the

1 http://www.bic.mni.mcgill.ca/brainweb/
2 http://www.cma.mgh.harvard.edu/ibsr/

Particle Swarm Optimization

214

interval (0, 120) is added to the image. The reference noise-free image and the noisy one are
illustrated in Figures 1 (a) and (b), respectively.
In order to evaluate the segmentation performance quantitatively, some metrics are defined
as follows:
1. Under segmentation (ܷ݊ܵ), representing the percentage of negative false segmentation: ܷ݊ܵ ൌ ܰܰ ൈ 100 (19)

2. Over segmentation (ܱܵݒ), representing the percentage of positive false segmentation: ܱܵݒ ൌ ܰܰ ൈ 100 (20)

3. Incorrect segmentation (ܥ݊ܫ), representing the total percentage of false segmentation: ܥ݊ܫ ൌ ܰ ܰܰ ൈ 100 (21)

where ܰ is the number of pixels that do not belong to a cluster and are segmented into the
cluster. ܰ is the number of pixels that belong to a cluster and are not segmented into the
cluster. ܰ is the number of all pixels that belong to a cluster, and ܰ is the total number of
pixels that do not belong to a cluster.
Table 1 lists the above metrics calculated for the seven tested methods. It is clear that FCM,
PCM, and RFCM cannot overcome the degradation caused by noise and their segmentation
performance is very poor compared to IFCM-based algorithms. Among IFCM-based
algorithms, the PSO-based is superior to the others. For better comparison, the segmentation
results of IFCM-based methods are illustrated in Figures 1(c)-(e); where the segmented
classes are demonstrated in red, green, blue and black colors.

Evaluation
parameters FCM PCM RFCM ANN-

IFCM
GAs-
IFCM

PSO-
IFCM

UnS(%) 9.560 25.20 6.420 0.0230 0.0210 0.0110
OvS(%) 23.79 75.00 16.22 0.0530 0.0468 0.0358
InC(%) 14.24 43.75 9.88 0.0260 0.0220 0.0143

Table 1. Segmentation evaluation of synthetic square image

Since the segmentation results of IFCM-based algorithms are too closed to each other, we
define another metric for better comparison of these methods. The new metric is the
similarity index (SI) used for comparing the similarity of two samples defined as follows: ܵܫ ൌ 2 ൈ ܣ ת ܣܤ ܤ ൈ 100 (22)

where ܣ and ܤ are the reference and the segmented images, respectively. We compute this
metric on the squared segmented image at different noise levels. The results are averaged
over 10 runs of the algorithms. Figure 2 illustrates the performance comparison of different
IFCM-based methods. The comparison clearly indicates that both GAs and PSO are superior
to ANN in optimized estimation of ߣ and ߦ. However, best results are obtained using the
PSO algorithm.

Application of Particle Swarm Optimization in Accurate Segmentation of Brain MR Images

215

 (a) (b)

 (c) (d) (e)
Figure 1. Segmentation results on a synthetic square image with a uniformly distributed
noise in the interval (0, 120). (a) Noise-free reference image, (b) Noisy image, (c) ANN-
IFCM, (d) GAs-IFCM, (e) PSO-IFCM

Figure 2. Performance comparison of IFCM-based methods using the SI metric at different
noise levels

Particle Swarm Optimization

216

4.2 Simulated MR images
Generally, it is impossible to quantitatively evaluate the segmentation performance of an
algorithm on real MR images, since the ground truth of segmentation for real images is not
available. Therefore, only visual comparison is possible. However, Brainweb provides a
simulated brain database including a set of realistic MRI data volumes produced by an MRI
simulator. These data enable us to evaluate the performance of various image analysis
methods in a setting where the truth is known.
In this experiment, a simulated T1-weighted MR image (181 × 217 × 181) was downloaded
from Brainweb. 7% noise was applied to each slice of the simulated image. The 100th brain
region slice of the simulated image is shown in Figure 3(a) and its discrete anatomical
structure consisting of cerebral spinal fluid (CSF), white matter, and gray matter is shown in
Figure 3(b). The noisy slice was segmented into four clusters: background, CSF, white
matter, and gray matter (the background was neglected from the viewing results) using
FCM, PCM, RFCM, and the IFCM-based methods. The segmentation results after applying
IFCM-based methods are shown in Figures 3(c)-(e). Also, the performance evaluation
parameters of FCM, PCM, RFCM, and IFCMs are compared in Table 2. Again, it is obvious
that the PSO-IFCM has achieved the best segmentation results. These observations are
consistent with the simulation results obtained in the previous Section.

4.3 Real MR images
Finally, an evaluation was performed on real MR images. A real MR image (coronal T1-
weighted image with a matrix of 256 × 256) was obtained from IBSR the Center of
Morphometric Analysis at Massachusetts General Hospital. IBSR provides manually guided
expert segmentation results along with brain MRI data to support the evaluation and
development of segmentation methods.
Figure 4(a) shows a slice of the image with 5% Gaussian noise and Figure 4(b) shows the
manual segmentation result provided by the IBSR. For comparison with the manual
segmentation result, which included four classes, CSF, gray matter, white matter, and
others, the cluster number was set to 4. The segmentation results of FCM algorithm is shown
in Figure 4(c), while segmentation of IFCM-based methods are shown in Figures 4(d)-(f).
Table 3 lists the evaluation parameters for all methods. PSO-IFCM showed a significant
improvement over other IFCMs both visually and parametrically, and eliminated the effect
of noise, considerably. These results nominate the PSO-IFCM algorithm as a good technique
for segmentation of noisy brain MR images in real application.

Application of Particle Swarm Optimization in Accurate Segmentation of Brain MR Images

217

 (a)

 (b)

 (c)

 (d)

 (e)

Figure 3. Simulated T1-weighted MR image. (a) The original image with 7% noise, (b)
Discrete anatomical model (from left to right) white matter, gray matter, CSF, and the total
segmentation, (c) Segmentation result of ANN-IFCM, (d) Segmentation result of GAs-IFCM,
(e) Segmentation result of PSO-IFCM

Particle Swarm Optimization

218

PSO-
IFCM

GAs-
IFCM

ANN-
IFCM RFCM PCM FCM Evaluation

parameters class

0.11 0.16 0.20 0.47 0 0.50 UnS(%)

CSF 4.36 5.91 6.82 7.98 100 7.98 OvS(%)
0.31 0.45 0.57 0.73 34.0 0.76 InC(%)

0.78 0.91 0.95 1.11 0 1.35 UnS(%)

White
matter 5.56 7.02 7.31 10.92 100 11.08 OvS(%)

1.06 1.39 1.59 2.11 10.16 2.33 InC(%)

0.29 0.48 0.54 0.76 15.86 0.75 UnS(%)

Gray matter 2.13 2.61 2.65 5.72 0 7.23 OvS(%)
0.71 0.87 0.93 1.47 13.57 1.68 InC(%)

0.39 0.52 0.56 0.78 5.29 0.87 UnS(%)

Average 4.02 5.18 5.59 8.21 66.67 8.76 OvS(%)
0.69 0.90 1.03 1.44 19.24 1.59 InC(%)

Table 2. Segmentation evaluation on simulated T1-weighted MR

class Evaluation
parameters FCM ANN-

IFCM
GAs-
IFCM

PSO-
IFCM

CFS

UnS(%) 11.1732 11.1142 10.6406 10.1619
OvS(%) 44.4444 45.1356 41.4939 40.9091
InC(%) 12.4009 12.7177 11.7791 11.2965
SI(%) 87.5991 87.6305 88.2209 88.7035

White
matter

UnS(%) 3.3556 2.7622 0.9783 1.5532
OvS(%) 14.8345 9.6177 3.1523 9.0279
InC(%) 6.2951 4.5178 1.5350 3.4673
SI(%) 93.7049 95.4822 98.4650 96.5327

Gray
matter

UnS(%) 5.9200 3.8073 3.8469 3.5824
OvS(%) 36.9655 35.9035 31.4066 30.5603
InC(%) 16.9305 15.1905 13.6211 13.1503
SI(%) 83.0695 87.6305 86.3789 86.8497

Average

UnS(%) 5.7635 5.1014 4.5606 4.4094
OvS(%) 24.2163 22.7491 20.7562 20.2043
InC(%) 9.3831 8.4900 7.6465 7.3856
SI(%) 90.6169 91.5100 92.3535 92.6144

Table 3. Segmentation evaluation on Real T1-weighted MR image

Application of Particle Swarm Optimization in Accurate Segmentation of Brain MR Images

219

 (a)

 (b)

 (c)

 (d)

 (e)

 (f)

Figure 4. Real T1-weighted MR image. (a) The original image with 5% noise, (b) Discrete
anatomical model (from left to right) white matter, gray matter, CSF, others, and the total
segmentation, (c) Segmentation results of FCM, (d) Segmentation result of ANN-IFCM, (e)
Segmentation result of GAs-IFCM, (f) Segmentation result of PSO-IFCM

5. Conclusion and Future Work
Brain MRI segmentation is becoming an increasingly important image processing step in
many applications including automatic or semiautomatic delineation of areas to be treated
prior to radiosurgery, delineation of tumors before and after surgical or radiosurgical
intervention for response assessment, and tissue classification. A traditional approach to
segmentation of MR images is the FCM clustering algorithm. The efficacy of FCM algorithm
considerably reduces in the case of noisy data. In order to improve the performance of FCM
algorithm, researchers have introduced a neighborhood attraction, which is dependent on

Particle Swarm Optimization

220

the relative location and features of neighboring pixels. However, determination of the
degree of attraction is a challenging task which can considerably affect the segmentation
results.
In this context, we introduced new optimized IFCM-based algorithms for segmentation of
noisy brain MR images. We utilized GAs and PSO, to estimate the optimized values of
neighborhood attraction parameters in IFCM clustering algorithm. GAs are best at reaching
a near optimal solution but have trouble finding an exact solution, while PSO’s group
interactions enhances the search for an optimal local solution. We tested the proposed
methods on three kinds of images; a square image, simulated brain MR images, and real
brain MR images. Both quantitative and quantitative comparisons at different noise levels
demonstrated that both GAs and PSO are superior to the previously proposed ANN method
in optimizing the attraction parameters. However, best segmentation results were achieved
using the PSO algorithm. These results nominate the PSO-IFCM algorithm as a good
technique for segmentation of noisy brain MR images. It is expected that a hybrid method
combining the strengths of PSO with GAs, simultaneously, would result to significant
improvements that will be addressed in a future work.

6. Acknowledgement
The authors would like to thank Youness Aliyari Ghassabeh for the constructive discussions
and useful suggestions.

7. References
Ahmed, M.N.; Yamany, S.M.; Mohamed, N.; Farag, A.A. & Moriarty, T. (2002). A modified

fuzzy c-means algorithm for bias field estimation and segmentation of MRI data,
IEEE Trans. Med. Imag., vol. 21, pp. 193–199, Mar. 2002

Angeline, P.J. (1998). Evolutionary Optimization Versus Particle Swarm Optimization:
Philosophy and Performance Differences, Evolutionary Programming VII, Lecture
Notes in Computer Science 1447, pp. 601-610, Springer, 1998

Bezdek, J.C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum
Press, New York, 1981

Bondareff, W.; Raval, J.; Woo, B.; Hauser, D.L. & Colletti, P.M. (1990). Magnetic resonance
and severity of dementia in older adults, Arch. Gen. Psychiatry, vol. 47, pp. 47-51,
Jan. 1990

Canny, J.A. (1986). Computational approach to edge detection, IEEE Trans. Patt. Anal.
Machine Intell., vol. 8, pp. 679-698, 1986

Clarke, L.P. et al. (1995). MRI segmentation: Methods and applications, Magn. Reson. Imag.,
vol. 13, pp. 343-368, 1995

Corne, D.; Dorigo, M. & Glover, F. (1999). New Ideas in Optimization, McGraw Hill, 1999
Dave, R.N. (1991). Characterization and detection of noise in clustering, Pattern Recogn.

Lett., vol. 12, pp. 657–664, 1991
Dubes, R. & Jain, A. (1988). Algorithms That Cluster Data, Prentice Hall, Englewood Cliffs,

1988
Eberhart, R.C.; Dobbins R.W. & Simpson, P. (1996). Computation Intelligence PC Tools,

Academic Press, 1996

Application of Particle Swarm Optimization in Accurate Segmentation of Brain MR Images

221

Eberhart R.C. & Shi, Y. (1998). Comparison between Genetic Algorithms and Particle Swarm
Optimization, Evolutionary Programming VII, Lecture Notes in Computer Science 1447,
pp. 611-616, Springer, 1998

Engelbrecht, A.P. (2006). Fundamentals of Computational Swarm Intelligence, John Wiley, 2006.
Gen, M. & Cheng, R. (1997). Genetic Algorithms and Engineer Design, John Wiley, 1997
Girolami, M. (2002). Mercer kernel-based clustering in feature space. IEEE Trans. Neural

Networks, vol. 13, pp. 780-784, 2002
Haacke, E. M.; Brown, R.W.; Thompson, M.L. & Venkatesan, R. (1999). Magnetic Resonance

Imaging: Physical Principles and Sequence Design, John Wiley, 1999
Haykin, S. (1998). Neural Networks: A Comprehensive Foundation, Prentice Hall, 1998
Holland, J.H. (1992). Adaptation in Natural and Artificial Systems, MIT Press Cambridge, MA,

USA, 1992
Hur, A.B.; Horn, D.; Siegelmann, H.T. & Vapnik, V. (2001). Support vector clustering. J.

Mach. Learn. Res., vol. 2, pp. 125—37, 2001
Kannan, S.R. (2008). A new segmentation system for brain MR images based on fuzzy

techniques, Applied Soft Computing, in press
Kennedy, J. & Eberhart, R.C. (1995). Particle Swarm Optimisation, Proceedings of IEEE

International Conference on Neural Networks, IV, pp. 1942-1948, 1995
Kennedy, J. & Eberhart, R.C. (2001). Swarm Intelligence, Morgan Kaufman Publishers ,2001
Krishnapuram R.R. & Keller, J.M. (1993). A possibilistic approach to clustering, IEEE Trans.

Fuzzy Syst., vol. 1, pp. 98–110, May 1993
Lauric, A. & Frisken, S. (2007). Soft Segmentation of CT Brain Data, Tufts University,

Medford, MA, USA, Tech. Rep. 2007
Li, C.L.; Goldgof, D.B. & Hall, L.O. (1993). Knowledge-based classification and tissue

labeling of MR images of human brain, IEEE Trans. Med. Imag., vol. 12, pp. 740–750,
Apr. 1993

Macovski, A. (1983). Medical Imaging Systems, Prentice-Hall, New Jersey, 1983
Mitchel, M. (1999). An Introduction to Genetic Algorithms, MIT Press, 1999
Pham, D.L. (2001). Spatial models for fuzzy clustering, Comput. Vis. Imag. Understand., vol.

84, pp. 285–297, 2001
Pohle, R. & Toennies, K.D. (2001). Segmentation of medical images using adaptive region

growing, Proc. SPIE Med. Imag., vol. 4322, pp. 1337–1346, 2001
Shen, S.; Sandham, W.; Granat, M. & Sterr, A. (2005). MRI fuzzuy segmentation of brain

tissue using neighborhood attraction with neural-network optimization, IEEE
Trans. Information Technology in Biomedicine, vol. 9; pp 459-467, Sep. 2005

Slone, R.M.; Fisher, A.J.; Pickhardt, P.J.; Guitierrez, F. & Balfe D.M. (1999). Body CT : a
practical approach, McGraw-Hill, Health Professions Division, New York, 1983

Suzuki, H. & Toriwaki, J. (1992). Automatic segmentation of head MRI images by
knowledge guided thresholding, Comput. Med. Imag. Graph., vol. 15, pp. 233–240,
1991

Wells, W.; Kikinis, R.; Grimson, F. & Jolesz, EA. (1994). Statistical intensity correction and
segmentation of magnetic resonance image data, Proc. SPIE Vis. Biomed. Comput.,
1994

Wells, W.M., III; Grimson, W.E.L.; Kikinis, R. & Jolesz, F.A. (1996). Adaptive segmentation
of MRI data, IEEE Trans. Med. Imag., vol. 15, pp. 429–442, Aug. 1996

Zadeh, L.A. (1965). Fuzzy sets, Inform. Control, vol. 8, pp. 338–353, Jun. 1965

Particle Swarm Optimization

222

Zhang, D.Q. & Chen, S.C. (2002). Fuzzy clustering using kernel methods. Proceedings of the
International Conference on Control and Automation, Xiamen, China, June, 2002

Zhang, D.Q. & Chen, S.C. (2004). A novel kernelized fuzzy c-means algorithm with
application in medical image segmentation, Artif. Intell. Med., vol. 32, pp. 37–52,
2004

13

Swarm Intelligence in Portfolio Selection
Shahab Mohammad-Moradi1, Hamid Khaloozadeh1, Mohamad

Forouzanfar1,2, Ramezan Paravi Torghabeh1 and Nosratallah Forghani1
1K.N. Toosi University of Technology, 2University of Tehran

1,2Iran

1. Introduction
Portfolio selection problems in investments are among the most studied in modern finance,
because of their computational intractability. The basic perception in modern portfolio
theory is the way that upon it investors construct diversified portfolio of financial securities
so as to achieve improved tradeoffs between risk and return.
Portfolio optimization is a procedure for generating the composition that best achieves the
portfolio manager's objectives. One of the first to apply mathematical programming models
to portfolio management was the quadratic programming model of Markowitz (1952), who
proposed that risk be represented as the variance of the return (a quadratic function), which
is to be minimized subject to achieving a minimum expected return on investment (a linear
constraint). This single-period model is explained in detail by Luenberger (1998). The inputs
of this analysis are security expected returns, variances, and covariance for each pair of
securities, and these are all estimated from past performances of the securities. However, it
is not realistic for real ever-changing asset markets. In addition, it would be so difficult to
find the efficient portfolio when short sales are not allowed.
Mathematical programming (e.g., linear programming, integer linear programming,
nonlinear programming, and dynamic programming) models have been applied to portfolio
management for at least half a century. For a review on the application of mathematical
programming models to financial markets refer to Board and Sutcliffe (1999).
Several portfolio optimization strategies have been proposed to respond to the investment
objectives of individuals, corporations and financial firms, where the optimization strategy
is selected according to one's investment objective. Jones (2000) gives a framework for
classifying these alternative investment objectives.
Although the most obvious applications of portfolio optimization models are to equity
portfolios, several mathematical programming methods (including linear, mixed integer,
quadratic, dynamic, and goal programming) have also been applied to the solution of fixed
income portfolio management problems since the early 1970s.
Recently, many Evolutionary Computation (EC) techniques (Beyer, 1996) such as Genetic
Algorithm (GA), Particle Swarm Optimization (PSO) (Xu et al., 2006), (Delvalle et al., 2007)
have been applied to solve combinatorial optimization problems (Angeline, 1995). These
techniques use a set of potential solutions as a population, and find the optimal solution
through cooperation and contest among the particles of the population. In comparison, in

Particle Swarm Optimization

224

optimization problems with computation complexity, EC techniques find often optimal
solution faster than traditional algorithms (Pursehouse and Fleming, 2007).
In this study, the portfolio selection problem is concerned, in case that expected return rates
are stochastic variables and the breeding swarm algorithm is applied to solve this problem.
The First, the stochastic portfolio model and reliable decision are presented. The Second, the
global evolutionary computation algorithm–breeding swarm is proposed in order to
overcome the computational complexity and local and global searching limitation of
traditional optimization methods. Finally, a numerical example of portfolio selection
problem is given. Findings endorse the effectiveness of the newly proposed algorithm in
comparison to particle swarm optimization method. The results show that the breeding
swarm approach to portfolio selection has high potential to achieve better solution and
higher convergence.

2. Stochastic Portfolio Model
The mean-variance model of Markowitz, to find an efficient portfolio is led to solve the
following optimization problem (Markowitz, 1952):

⎩
⎨
⎧

=′
=

′

1)(
)(

)(2

Xe
X

tosubject

XRminimize
ρρ

σ
 (1)

where)(Xρ is the reward on the portfolio ρ,X is a constant target reward for a specific

investor, and e′ is the transpose of the vector ne ℜ∈ of all 1s. The risk,)(2 XR′σ , of portfolio
nX ℜ∈ is defined as the variance of its return XR′ . R is the random vector of return rates.

The expectation of R will be denoted by R , that is, RRE =)(. Conveniently, we set:
.)1,...,1,1(,),...,,(,),...,,(2121 ′=′=′= errrRxxxX nn

This model can be rewritten by the following quadratic programming:

1)(

..
=′

=′
Σ′

Xe
XRts

XXmin
ρ (2)

where Σ is the covariance matrix of the random variables R .
In real ever-changing asset markets, returns of risky assets are not constant over the time. So
we need to estimate)(RE and nnij ×=Σ)(σ in practical. The notion of efficient portfolio is a
relative concept. The dominance between two portfolios can be defined in many different
ways, and each one is expected to produce a different set of efficient portfolios. Only
efficient portfolios are presented to the investor to make his/her final choice according to
his/her taste toward risk. All investors in the same class, say risk averters, when the return
of portfolio satisfy the expected value select the security with the lowest risk. According to
above perceptions, the stochastic portfolio model can be described as:
A: Stochastic portfolio model without risk-free asset

Swarm Intelligence in Portfolio Selection

225

0
1

.. 0

≥
=′
≥′

Σ′

X
Xe

RRXts
XXmin

 (3)

On condition that short sales are allowed, the stochastic portfolio model without risk-free
asset can be described by eliminating the constraint .0≥X
B: Stochastic portfolio model with risk-free asset

0
1

)1(.. 0

≥
=′

≥′−+′
Σ′

X
Xe

RReXRXts

XXmin

f (4)

where fR is the return rate of risk-free asset.

3. Reliable Decision of Portfolio Selection

Because of randomness of the condition 0RRX ≥′ , the feasible solution to the model (3) and
(4) maybe achievable or not. Due to the degree of probability available in model (3) and (4),
we define reliability and construct a model with limited probability. The new model can be
described as follows:

0
1

)(.. 0

≥
=′

≥≥′
Σ′

X
Xe

RRXPts

XXmin

α
 (5)

in the case that a risk-free asset exists:

0
1

))1((.. 0

≥
=′

≥≥′−+′
Σ′

X
Xe

RRXeRXPts

XXmin

f α
 (6)

The model (5) and (6) is defined as the reliable model (3) and (4), and the possible solution
of (5) and (6) is named α feasible solution of model (3) and (4) and is defined as α reliable
decision for the portfolio. Since α reliable decision demonstrates that the portfolio decision
is stochastic decision, is more important and practical and reflect the inconsistence of asset
markets.
The model (5) and (6) can be converted into the determinate decision model. Defining
constant M by the following formula:

α=≥
Σ′

′−′
)(M

XX
RXRXP

Particle Swarm Optimization

226

The condition α≥≥′)(0RRXP would be equivalent to the determinate condition

.0RMXXMRX ≥′+′ The proof can be so followed:

.1)()(00 αα −≤≤′≥≥′ RRXPthenRRXPif Since α−=Σ′+′≤′ 1)(XXMRXRXP , then
according to unchanging nondecreasing manner of the distribution function of random
variable, we obtain 0RXXMRX ≥Σ′+′ . Contradictorily, if 0RXXMRX ≥Σ′+′

then α=Σ′+′≥′≥≥′)()(0 XXMRXRXPRRXP
Hence, the model (5) and (6) can be described with determinate constraint model (7) and (8):

0
1

.. 0

≥
=′

≥Σ′+′

Σ′=

X
Xe

RXXMRXts

XXJmin

 (7)

in the case that we have a risk-free asset:

0
1

.. 0

≥
=′

−≥′−Σ′+′

Σ′=

X
Xe

RReRXXXMRXts

XXJmin

ff (8)

If risky assets follow normal distribution),(2
iiRN σ , constant M can be obtained by

following formula:

.1
2
1 2

2

α
π

−=∫ ∞−

−

dxe
M x

where α is reliable decision for the portfolio. Since α reliable decision demonstrates that
the portfolio decision is stochastic decision, is more important and practical and reflect the
inconsistence of asset markets (Xu et al., 2006).

4. Breeding Swarm Optimization Method for Stochastic Portfolio Selection
4.1 structure of Breeding Swarm Model
Angeline (1998) and Eberhart and Shi (1998) proposed that a hybrid model of GA and PSO
can produce a very effective search strategy. In this context, our goal is to introduce a hybrid
GA/PSO model. It has been shown that the performance of the PSO is not sensitive to the
population size (Shi and Eberhart, 1999). Therefore, the PSO will work well (with a low
number of particles) compared to the number of individuals needed for the GA. Since, each
particle has one fitness function to be evaluated per iteration, the number of fitness function
evaluations can be reduced or more iteration can be performed. The hybrid PSOs combine
the traditional velocity and position update rules with the idea of breeding and
subpopulations.

Swarm Intelligence in Portfolio Selection

227

In this study, the hybrid model is tested and compared with the standard PSO model. This
is done to illustrate that PSO with breeding strategies has the potential to achieve faster
convergence and better solution. Our results show that with the correct combination of GA
and PSO, the hybrid can outperform, or perform as well as, both the standard PSO and GA
models. The hybrid algorithm combines the standard velocity and position update rules of
PSOs (Xiao et al., 2004) with the ideas of selection, crossover and mutation from GAs. An
additional parameter, the breeding ratio (Ψ), determines the proportion of the population
which undergoes breeding (selection, crossover and mutation) in the current generation.
Values for the breeding ratio parameter range from 0.0 to 1.0. In each generation, after the
fitness values of all the individuals in the same population are calculated, the bottom
(N ⋅Ψ), where N is the population size, is discarded and removed from the population. The
remaining individual’s velocity vectors are updated, acquiring new information from the
population. The next generation is then created by updating the position vectors of these
individuals to fill N (1)⋅ − Ψ individuals in the next generation. The N ⋅Ψ individuals
needed to fill the population are selected from the individuals whose velocities are updated
to undergo crossover and mutation and the process is repeated.

4.2 The Breeding Swarm Optimization Approach for Portfolio Selection
As mentioned in the previous section, domain of variables ix is [0, 1] and the number of
particles required for simultaneous computation is 7. These particles represent the
investment rate to asset i. We considered the population size equal to 20 and then generated
a random initial population. Cost function J in (7) is defined as fitness function and used for
evaluation of initial chromosomes. In this stage some particles are strong and others are
weak (some of them produce lower value for fitness function and vice versa). These particles
are floated in a 7-dimensional (7-D) space. After ranking the particles based on their fitness
functions the best particles are selected. First each particle changes its position according to
its own experience and its neighbors. So, first we have to define a neighborhood in the
corresponding population and then describe the relations between particles that fall in that
neighborhood. In this context, we have many topologies such as: Star, Ring, and Wheel. In
this study we use the ring topology. In ring topology, each particle is related with two
neighbors and intends to move toward the best neighbor. Each particle attempts to imitate
its best neighbor by moving closer to the best solution found within the neighborhoods. It is
important to note that neighborhoods overlap, which facilitates the exchange of information
between neighborhoods and convergence to a single solution. In addition, we are using
mutation and crossover operators for offspring from the selected particles to generate new
populations. Therefore new populations are generated using two approaches: PSO and GA.
The local best of BS algorithm is associated with the following topology (Settles et al., 2005):

1. Initialize a swarm of P particles in D-dimensional space, where D is the number of
weights and biases.

2. Evaluate the fitness fp of each particle p as the J.
3. If fp < pbest then pbest = fp and xpbest = xp, where pbest is the current best fitness achieved

by particle p, xp is the current coordinates of particle p in D-dimensional weights
space, and xpbest is the coordinate corresponding to particle p’s best fitness so far.

4. If fp < lbest then lbest = p, where lbest is the particle having the overall best fitness over
all particles in the swarm.

Particle Swarm Optimization

228

5. Select the first K best of P particles
6. Generate new population

A: Change K particles velocity with equation:

1 2(1) (()) (())i ii i pbest i lbest iv v t x x t x x tρ ρ= − + − + −

where 21 , ρρ are accelerate constants and rand return uniform random number
between 0 and 1. Then fly each particle K to xK + VK.
B: Then each K particles are used to offspring with mutation and crossover
operators.

7. Loop to step 2 until convergence.
After completion of above processes, a new population is produced and the current iteration
is completed. We iterate the above procedures until a certain criterion is met. At this point,
the best fitted particle represents the optimum values of ix .

5. Experimental Results
In this part we present experimental results to illustrate the effectiveness of breeding swarm
optimization method for the stochastic portfolio selection. The problem of portfolio selection
is considered here with seven risky assets. In addition, we only examine model (7) by the
breeding swarm optimization, but the optimal solution can be obtained for model (8) by the
same algorithm. The return rate and covariance chart of returns are shown in Table 1 (Xu et
al., 2006). Denote •F as the obtained result of the risk of portfolio, •R as the obtained result
of the return of the portfolio.

5.1 Simulation Results
We used the following values for parameters in our experiments: the size of the population
is 20, and for each experimental setting, 20 trials were performed. For the stochastic model,
the expected portfolio return rate is 175.00 =R , 42.0=M . Finally, the optimal portfolio of
assets is obtained as follows. By 2000 iterations we found:

{ }0245.0,2985.0,0066.0,0213.0,0019.0,3918.0,8076.0=•X , the risk of portfolio is:

 0018.0)(2 =•Xσ , the return of the portfolio is: 1716.0)(=•XR .
By 5000 iteration we obtained the following result for the optimal portfolio:

{ }0089.0,2997.0,0018.0,0115.0,385.0,9137.0=•X , the risk of portfolio is: 0011.0)(2 =•Xσ ,

the return of the portfolio is: 1812.0)(=•XR .

5.2 Illustration and Analysis
The efficiency of the breeding swarm algorithm for portfolio selection, can be appraised
from •F (the risk of portfolio), •R (the return of portfolio), number of iterations and the
convergence rate. The results of simulation for two different iteration numbers are listed in
Table 2., Fig. 1., Fig. 2., and Fig. 3.. In Table 2. the precision of the solutions for different
iteration numbers is showed. From Fig. 1., Fig. 2., and Fig. 3. it can be found that the
breeding swarm algorithm has so fast convergence rate for different iteration numbers.

Swarm Intelligence in Portfolio Selection

229

These figures show the average fitness function of risk in 20 trials in three different
iterations.

Covariance
Return

1 2 3 4 5 6 7

0.120 0.141 -0.189 0.167 0.188 -0.186 -0.194 0.161

0.090 -0.189 0.260 -0.220 -0.248 0.253 0.255 -0.216

0.100 0.167 -0.220 0.224 0.238 -0.217 -0.238 0.209

0.100 0.188 -0.248 0.238 0.270 -0.247 -0.260 0.220

0.009 -0.186 0.253 -0.238 -0.260 0.256 0.279 -0.230

0.115 -0.194 0.255 -0.238 -0.260 0.256 0.279 -0.230

0.110 0.161 -0.216 0.209 0.220 -0.217 -0.230 0.209

Table 1. Return rate and covariance chart (Xu et al., 2006)

Iterations Best •F Best •R Average •F Average •R

2000 0.0018 0.1716 0.0038 0.1588

5000 0.0011 0.1812 0.0026 0.1638

Table 2. BS Algorithm Evaluation Results

0 200 400 600 800 1000
2

4

6

8

10

12

14

16
x 10

-3

Iterations

A
ve

ra
ge

 F
itn

es
s

Fu
nc

tio
n

Figure 1. The performance and convergence rate with 1000 iterations

Particle Swarm Optimization

230

0 500 1000 1500 2000
2

4

6

8

10

12

14

16
x 10

-3

Iterations

A
ve

ra
ge

 fi
tn

es
s

fu
nc

tio
n

Figure 2. The performance and convergence rate with 2000 iterations

0 1000 2000 3000 4000 5000
0

0.005

0.01

0.015

0.02

0.025

Iterations

A
ve

ra
ge

 fi
tn

es
s

fu
nc

tio
n

Figure 3. The performance and convergence rate with 5000 iterations

It is obvious from the figures that the BS algorithm has achieved to its efficient solution by
nearly 1000 iterations. These results approve that the BS algorithm can find the solution of
portfolio selection problem with high accuracy and convergence rate. The best results of
Limited Velocity Particle Swarm Optimization (LVPSO) approach (Xu et al., 2006) are
summarized in Table 3 to compare with our results.

Swarm Intelligence in Portfolio Selection

231

Method Iterations Average
Iterations Best F* Best R* Average

F*
Average

R*
7544 5006 0.009311 0.112622 0.009926 0.111531 LVPSO (Xu

et al., 2006) 5415 3444 0.010612 0.110619 0.011098 0.107835
5000 4850 0.001100 0.181200 0.002600 0.163800 BS
2000 1920 0.001800 0.171600 0.003800 0.158800

Table 3. Compare best results of two approaches LVPSO and BS

6. Conclusion

In this study, a new optimization method is used for portfolio selection problem which is
powerful to select the best portfolio proportion with minimum risk and high return. One of
the advantages of this hybrid approach is the high speed of convergence to the best solution,
because it uses both advantages of GA and PSO approaches. Simulation results demonstrate
that the BS approach can achieve better solutions to stochastic portfolio selection compared
to PSO method.

7. References
Angeline P. (1995), Evolution Revolution:An Introduction to the Special Track on Genetic

and Evolutionary Programming, IEEE Expert: Intelligent Systems and Their
Applications, 10. 3., 6-10

Angeline P. (1998), Evolutionary Optimization Versus Particle Swarm Optimization:
Philosophy and Performance Differences, In e. a. V. William Porto, editor, Lecture
Notes in Computer Science, In Proceedings of the 7th International Conference on
Evolutionary Programming VII, 1447, pp. 601–610, 1998, Springer-Verlag, London, UK

Beyer H-G (1996), Toward a theory of evolution strategies: Self-adaptation, Evolutionary
Computation, 3.,3., 311-347

Board, J. & C. Sutcliffe (1999), The Application of Operations Research Techniques to Financial
Markets, Stochastic Programming e-print series, http://www.speps.info

DelValle Y., G. K. Venayagamoorthy, S. Mohagheghi, J.-C. Hernandez & R.G. Harley (2007),
Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power
Systems, Evolutionary Computation, IEEE Transactions, PP.,99., 1-1

Eberhart R. & Y. Shi (1998), Comparison Between Genetic Algorithms and Particle Swarm
Optimization, In e. a. V. William Porto, editor, Springer, Lecture Notes in
Computer Science, In Proceedings of the 7th International Conference on Evolutionary
Programming VII, 1447, pp. 611–616, Springer-Verlag, London, UK

Jones Frank J. (2000), An Overview of Institutional Fixed Income Strategies, in Professional
Perspectives on Fixed Income Portfolio Management, Fabozzi Frank J. Associates,
Pennsylvania, pp. 1-13

Luenberger David G. (1998), Investment science, Oxford University Press, New York, pp. 137-
162 and pp. 481-483

Markowitz, H. (1952), Portfolio selection, Journal of Finance, 7., 1., pp. 77-91, March 1952
Purshouse R.C. & P.J. Fleming (2007), Evolutionary Computation, IEEE Transactions ,11., 6.,

pp. 770 - 784

Particle Swarm Optimization

232

Settles M. , P. Nathan & T. Soule (2005), Breeding Swarms: A New Approach to Recurrent Neural
Network Training, GECCO’05, 25–29 June 2005, Washington DC, USA

Shi Y. & R. C. Eberhart (1999), Empirical Study of Particle Swarm Optimization, In
Proceedings of the 1999 Congress of Evolutionary Computation, 3: 1945-1950, IEEE Press

Xiao X., E. R. Dow, R. Eberhart, Z. Ben Miled & R. J. Oppelt (2004), Concurrency and
Computation: Practice & Experience, 16., 9., pp. 895 – 915

Xu F. & W. Chen (2006), Stochastic Portfolio Selection Based on Velocity Limited Particle
Swarm Optimization, In Proceedings of the 6th World Congress on Intelligent Control
and Automation, 21-23 June 2006, Dalian, China

14

Enhanced Particle Swarm Optimization for
Design and Optimization of Frequency Selective

Surfaces and Artificial Magnetic Conductors

Simone Genovesi1, Agostino Monorchio1 and Raj Mittra2
1Microwave and Radiation Laboratory, Dept. of Information Engineering, University of Pisa,

2Electromagnetic Communication Lab, PennState University
1Italy, 2USA

1. Introduction
Optimization methods are invaluable tools for the engineer who has to face the increasing
complexity in the design of electromagnetic devices, or has to deal with inverse problems.
Basically, an objective function f(x) is defined where x is the set of parameters that has to
be optimized in order to satisfy the imposed requirements. In design problems the
parameters defined in x completely describe the features of the device (a printed antenna
for example), and f(x) is a measure of the system performance (gain or return loss).
However, the objective function for a real-world problem may be nonlinear, may have
many local extrema and may even be nondifferentiable. Numerous optimization methods
that have been proposed in the literature can be divided into two groups − deterministic
and stochastic. The former performs a local search which yields results that are highly
influenced by the starting point, and sometimes requires the objective function to be
differentiable. They might lead to a rapid convergence to a local extremum, as opposed to
the global one and impose constraints on the solution domain that may be difficult to
handle. The latter are largely independent of the initial conditions and place few
constraints on the solution domain. They carry out a global search, and are able to deal
with solution spaces with discontinuities, as well as a large number of dimensions and
hence many potential local minima and maxima. Among the stochastic methods, for
instance Monte Carlo and Simulated Annealing techniques, a particular subset also
referred to as evolutionary algorithms have been recently growing in importance and
interest. This class comprises the Genetic Algorithms (GA) (Goldberg, 1989), the Ant
Colony Optimization (ACO) (Dorigo and Stutzle, 2004) and the Particle Swarm
Optimization (PSO).
The PSO algorithm has been originally proposed by Kennedy and his colleagues
(Kennedy and Eberhart, 1995) and it is inspired by a zoological metaphor of the social
behavior of animals (birds, insects, or fishes) that are organized in groups (flocks, swarms,
or schools). All of the basic units of the swarm, called particles (or agents) are trial
solutions for the problem to be optimized, and are free to fly through the
multidimensional search-space toward the optimal solution. The search-space represents
the global set of potential results, where each dimension of this space corresponds to a

Particle Swarm Optimization

234

parameter of the problem to be determined. The swarm is largely self-organized, and
coordination arises from the different interactions among agents. Each member of the
swarm exploits the solution space by taking into account the experience of the single
particle as well as that of the entire swarm. This combined and synergic use of
information yields a promising tool for solving design problems that require the
optimization of a relatively large number of parameters.
The organization of this chapter is as follows: Section 2 describes the implementation of a
PSO algorithm employed in the design of Frequency Selective Surfaces. A parallelization
of the PSO method is described in Section 3 that makes efficient use of all the available
hardware resources to overcome the computational burden incurred in the process. A
useful procedure for increasing the convergence rate is described in Section 4 and
numerical results are provided to illustrate the reliability and efficiency of the new
algorithm. Finally, concluding remarks are given in Section 5.

2. Optimization of Frequency Selective Surfaces
In this section the problem of synthesizing Frequency Selective Surfaces (FSSs) is
addressed by using a specifically derived particle swarm optimization procedure, which
is able to handle, simultaneously, both real and binary parameters. After a brief
introduction of the nature of the FSSs and the applications in which they are employed,
the PSO method developed for their optimization is described and a representative
numerical example is given to demonstrate the effectiveness of this tool.

2.1 Frequency Selective Surfaces
At the end of the 18th century the American physicist David Rittenhouse (Rittenhouse,
1786), found that the light spectrum is decomposed into lines of different brightness and
color, while observing a street lamp through his silk handkerchief. This was the first proof
of the fact that non-continuous and periodic surfaces show different transmission
properties for different frequencies of incident wave. The first device which takes
advantage of this phenomenon is the parabolic reflector of wire sections, built by Marconi
and Franklin in 1919 and, since then, FSSs have been further investigated and exploited
for use in many practical applications. For instance, FSSs find use as subreflectors in dual
frequency Cassegrainian systems and in radomes designed for antennas, where FSSs are
used as pass band or stop band filters. They are employed to reduce the Radar Cross
Section (RCS) of antennas outside their operating frequency band, and provide a reflective
surface for beam focusing in reflector antenna system, realize waveguide filters and
artificial magnetic conductors. At microwaves FSSs protect humans from harmful
electronic radiation, as for instance, in the case of a microwave oven , in which the FSS
printed on the screen doors totally reflects microwave energy at 2.45 GHz while allowing
light to pass through. Recently, the FSSs have been employed at infrared (IR) frequencies
for beam-splitters, filters and polarizers.
An FSS is either a periodic array of metallic patches printed on a substrate, or a
conducting sheet periodically perforated with apertures. Their shape, size, periodicity,
thickness of the metal screen and the dielectric substrate determine their frequency and
angular response (Mittra et al., 1988; Munk, 2000).

Enhanced Particle Swarm Optimization for Design and Optimization
of Frequency Selective Surfaces and Artificial Magnetic Conductors

235

2.2 Particle Swarm Optimization with mixed parameters
In the basic PSO algorithm, each agent in the swarm flies in an n-dimension space, and the
position at a certain instant i is identified by the vector of the coordinates X:

 X(i)=[x1(i),x2(i),...,xn(i)]. (1)

Each xn(i) component represents a parameter of the physical problem that has to be
optimized. At the beginning of the process, each particle is randomly located at a position,
and moves with a random velocity, both in direction and magnitude. The particle is free to
fly inside the n-dimensional space defined by the user, within the constraints of the n
boundary conditions, which limit the extent of the search space and, hence, the values of the
parameters during the optimization process. At the generic time step i+1, the velocity is
expressed by the following equation:

 vl(i+1)=w* vl(i)+c1*rand()*(pbest,l(i)-xl(i))+c2*rand()*(gbest,l(i)-xl(i)), (2)

where vl(i) is the velocity along the l direction at the time step i; w is the inertial weight; c1
and c2 are the cognitive and the social rate, respectively; pbest,l(i) is the best position along
the l direction found by the agent during its own wandering up to i-th; gbest,l(i) is the best
position along the l direction discovered by the entire swarm; and rand() is a generator of
random numbers uniformly distributed between 0 and 1. The position of each particle is
then simply updated according to the equation:

 xl(i+1)= xl(i)+ vl(i)*Δt (3)

where xl(i) is the current position of the agent along the direction l at the iteration i-th, and
Δt is the time step. An interesting insight into the basic PSO algorithm details may be found
in (Robinson and Rahmat-Samii, 2002). This basic procedure is suitable for solving
optimization problems involving real parameters. However, for the case of the FSS design,
we need to manage not only the real but also the binary parameters in order to describe the
shape of the unit cell (Manara et al., 1999). Therefore it is necessary to incorporate both of
these features into the algorithm (Fig. 1). A discrete binary version of the PSO was first
introduced by Kennedy and Eberhart (Kennedy and Eberhart, 1997), in which the concept of
velocity loses its physical meaning and assumes the value of a probability instead. More
specifically, the position along a direction can now be either 0 or 1, and the velocity
represents the probability of change for the value of that bit. In light of this, the expression
in (2) has to be modified by imposing the condition that the value of vl(i) must be in the
interval [0.0, 1.0], and enforcing the constraint that any value outside this interval be
unacceptable. As a consequence, a function T is defined to map the results of (2) within the
allowed range. If w=1 and c1= c2=2, vl(i) is within the interval [-4, 5]. The T function linearly
compresses this dynamic range into the desired set [0, 1] and then the position is updated by
using the following rule:

if (rand() < T(vl(i)) then
xl(i)= NOT(xl(i))

 else
 xl(i)= xl(i)

(4)

where rand() is the same random function adopted in (2) and the operator NOT indicates the
binary negation of xl.

Particle Swarm Optimization

236

Figure 1. Each agent represents number and type of the parameters involved in the
optimization process

This implies that if the random number is less than the probability expressed by the velocity,
then the bit is changed. Hence, the faster the particle moves in that direction, the larger is the
possibility of change.
The parameters that can be optimized by the algorithm for the design of an FSS structure are
the shape of the unit cell, its dimensions, the permittivities of dielectric layers and their
thicknesses. The size of the multi-dimensional space in which the particle moves is variable,
and it is related to the different options given to the user. In fact, the number and the kind of
the parameters depend on the choices offered at the beginning of the optimization process.
First of all, the two real-valued parameters that can be tuned according to the imposed
requirements are the dimensions of the unit cell along the main directions of periodicity (Tx,
Ty). For each dielectric substrate, it is possible to choose the value of the permittivity from a
predefined database, using integer parameters in this case. Consequently, the particle is only
allowed to assume integer values, and a finite number of these values in the search
direction. As for the thickness, it can be either chosen from a database (integer parameter)
or be a real value within the imposed boundary for that component. The shape of the unit
cell is completely defined as a binary parameter, where ‘1’ implies the presence of perfect
electric conductor and ‘0’ designates an absence of conductor. The discretization adopted for
the FSS binary mask can be 16×16 for a total of 256 binary parameters. This number reduces
to 64 and 36, for a four-fold or eight-fold symmetry imposed to the unit cell, respectively.
The analysis of the entire FSS structure is performed via an MoM code, employing roof top
basis functions (Manara et al., 1999). The objective function (also referred to as the fitness
function), which is employed to test the performance of the solution proposed by the PSO,
is based on the mean square error between the reflection coefficient (or the transmission
one) of the synthesized structure and the frequency mask which translates the requirements
imposed by the user in one (or more) frequency band and for a set of incidence angles. It is
apparent that in this case the aim is to minimize the fitness value and therefore we are in
search of a the global minimum.
In order to demonstrate the capabilities of the PSO algorithm, a frequency mask is imposed
to have a transmission coefficient less than -15 dB in the 0.1 GHz – 2.0 GHz band , less than
− 10 dB within the 10.0 GHz-12-0 GHz and to be transparent in the 5.0 GHz - 6.0 GHz band.

Enhanced Particle Swarm Optimization for Design and Optimization
of Frequency Selective Surfaces and Artificial Magnetic Conductors

237

The algorithm has to optimize the shape of the unit cell and the thickness and dielectric
constant values of two dielectric slabs which contains the FSS. The unit cell designed by the
PSO is a square and has a period of 1 cm. The two dielectric slab have permittivities of εr=3.3
and εr=7.68, and thicknesses of 0.2 cm and 0.1 cm, respectively. The result is shown in Fig.2
as well as the unit cell shape represented in the binary variables.

-40

-35

-30

-25

-20

-15

-10

-5

0

0 2 4 6 8 10 12 14
Freq (GHz)

Tr
an

sm
is

si
on

 c
oe

ffi
ci

en
t (

dB
)

Figure 2. Comparison between the mask expressing the requirements imposed by the user
(red line) and the transmission coefficient of the FSS optimized by the PSO algorithm (black
line). In the inset the unit cell is reported

3. Parallel Particle Swarm Optimization
There have been many attempts in the past toward increasing the convergence of the PSO
algorithm by modifying it (Clerc and Kennedy, 2002; Shi and Eberhart, 1999). This section
will focus on an alternative approach, that involves an enhancement in the performance via
the implementation of a parallel version of the PSO algorithm (PPSO) which is designed to
address the CPU time issue. The parallel version can be useful, for example, for designing
FSSs requiring a unit cell geometry with a fine discretization (e.g., 32×32), or for
synthesizing a dual-screen version, both of which demand a significant computational
effort, which is not easily handled by a single processor, at least within a reasonable time
frame. The basic structure the parallel PSO algorithm is reported in Fig. 3(a). Starting from
the observation that the updating of the velocity and the position of the agents, together
with the evaluation of the scores of the fitness values to determine pbest and gbest, requires a
relatively small fraction of the time needed to compute the fitness function; hence the
evaluation of the objective function is the only operation that is parallelized. The basic idea
is to make a partitioning of the swarm among all the CPUs. The global partitioning strategy
is clearly shown Fig. 3(b), where the case of four processors used in the optimization is
considered for a swarm comprising eight particles.
A partition (two agents) of the swarm is assigned to each processor, which evaluates the
fitness function of the given set of particles at each stage of iteration. Upon finishing these
tasks, the processors communicate with each other to broadcast the best location they have
found individually (red lines in Fig.4).

Particle Swarm Optimization

238

(a)

(b)

Figure 3. PPSO implementation: (a) Flow chart; (b) detail of work subdivision among all the
available processors. Each CPU considers only the agents assigned (red dots)

Figure 4. At iteration K, after the computation (blue), all the CPUs communicate to the
others their results (red lines) and each processor perform the ranking to find the gbest
(yellow)

Since the configuration analyzed by each processor is different, the time they require for
their computation (highlighted in blue in Fig. 4) may vary slightly between the processors,
even if the wait-time experienced by the faster processors is relatively small. All the
processors have their own information, at the end of each evaluation step, as well as the
latest information from the others about the best areas; hence, it is relatively easy to find the
gbest . There is no master processor to carry out the ranking task and, hence, only a single
transfer of information is needed at each iteration step. As is evident from Fig. 5, the general
trend is a decrease of the overall simulation time.

Enhanced Particle Swarm Optimization for Design and Optimization
of Frequency Selective Surfaces and Artificial Magnetic Conductors

239

0

20

40

60

80

100

2 4 6 8

Number of processors

Sa
ve

d
Ti

m
e

(%
)

Figure 5. General trend of the saved time achieved by employing the PPSO approach

4. Space partitioning for increasing convergence rate
The problems of control of parameters and their tuning has been widely investigated (Clerc
and Kennedy, 2002; Shi, and Eberhart, 2001) in the context of PSO, who have dealt with
open issues such as premature convergence and stagnation into local minima. Furthermore,
the effect of changing the neighborhood topology has been discussed extensively (Clerc,
1999; Kennedy, 1999; Lovbjerg et al., 2001; Abdelbar et al., 2005). However, to the best of our
knowledge, the initialization of the position of the particles within the search space has not
been subject of the same attention. The initialization of the position of the particles has a
deep impact on the rate of convergence a in PSO and, therefore, has to be carefully taken
into account. Since the agents are randomly located in most cases, it is possible that some
areas may have higher densities of particles than others, especially if the multidimensional
domain is large. Of course, this inhomogeneity in the distributions of the agents does not
prevent them from pursuing the goal but can affect the time required for approaching the
final solution. We propose to circumvent this difficulty by subdividing the solution space
into sub-domains within which groups of agents are initially located in order to guarantee
the homogeneous distribution of agents all over the computational domain. Each particle
cooperates only with those particles in its own group independently from the other groups.
After a fixed number of iterations, the sub-boundaries are removed, the best positions found
by each group are scored and the actual global best location is revealed to all. It is
demonstrated that the first part of the optimization process, managed by particles inside the
sub-boundaries, improves the speed with which we find the optimal solution and hence
increases the convergence rate of the process. The efficiency of the proposed
implementation, referred to enhanced PSO in this Section, has been verified through the
optimization of commonly employed test functions as well as of a complex electromagnetic
problem, viz., the design of Artificial Magnetic Conductors (AMCs).

Particle Swarm Optimization

240

4.1 Space partitioning
We now discuss the space partitioning scheme using a slightly modified notation than used
in Section 2. Let us denote to the position of the generic agent k at a certain instant i by using
the vector X given by:

 Xk(i)=[xk1(i),xk2(i),...,xkn(i)], (5)

and let pkbest,n be the best position along the direction n found by the agent k during its own
wandering up to the i-th time step, and let gbest,n be the best position along the direction n,
discovered by the entire swarm at time step i. The particle is free to fly inside the defined
n−dimensional space, within the constraints imposed by the n boundary conditions, which
delimit the extent of the search space between a minimum (xn,min) and maximum (xn,MAX)
and, hence, the values of the parameters during the optimization process. Accordinlgy, at
the generic time step i+1, the velocity of the simple particle k along each direction is updated
by following the rule:

 vkn(i+1)=w* vkn(i)+c1*rand()*(pkbest,n(i)-xkn(i))+c2*rand()*(gbest,n(i)-xkn(i)), (6)

Define the allowed range of each dimension (boundaries)
Set i=1
for k=1, number_of_agents
 for n=1, number_of_dimensions
 Random initialization of xkn(i) within the allowed range [xn,min ; xn,MAX]
 Random initialization of vkn(i) proportional to the dynamic of dim. n
 next n
next k
for j=1, number_of_iterations
 for k=1, number_of_agents
 Evaluate fitnessk(i), the fitness of agent k at instant i
 next k
 Rank the fitness values of all agents
 for k=1, number_of_agents
 if fitnessk(i) is the best value ever found by agent k then
 pkbest,n(i)= xkn(i)
 end if
 if fitnessk(i) is the best value ever found by all agents then
 gbest,n(i)= xkn(i)
 end if
 next k
Update agent velocity by using (6) and limit if required
Update agent position, check it with respect to the Boundaries
i=i+1
next j

Figure 6. PSO implementation with initialization by using boundary conditions

To refresh the memory of the standard particle swarm optimization algorithm, we present
its pseudocode in Fig. 6, since it is useful to understand the novelty introduced by the
initialization of the sub-boundaries. The solution we propose is based on the simple
observation that there exists a high probability that the initial step, which entails a random
position of all the agents, can determine a non-uniform coverage of the search domain. This
fact affects the convergence rate, especially if the domain is large compared to the number of
agents involved in the search process. Even if the algorithm is able to find the optimal
solution, the process could be speeded up by adopting an approach which will be detailed

Enhanced Particle Swarm Optimization for Design and Optimization
of Frequency Selective Surfaces and Artificial Magnetic Conductors

241

in this section. The underlying concept upon which the algorithm is based is to distribute
the agents uniformly at the start of the optimization process. The agents are organized into
equal groups and these groups are then forced to exploit a sector of the domain defined by
the sub-boundaries. This concept is described in Fig. 7 for a three-dimensional domain.

Figure 7. The domain defined by the boundaries is split into sectors defined by sub-
boundaries within groups of agents wandering in search of the best location

Figure 8. After the last iteration in sub-domain mode, and before starting the entire domain
discovery, each particle is attracted by its own sub-domain best (blue dots) and its local best
(red squares). The blue star in sector 2 is the best of all the sectors’ bests

Particle Swarm Optimization

242

The domain is subdivided into sectors (or sub-domains) by using sub-boundaries that split
one or more dimensions into equal intervals. The number of sub-boundaries cannot exceed
the number of agents but, as it will be evident later, they should not produce groups that
contain very few agents. During the initial stages, each group flies inside the assigned sub-
domain and, hence, each group g has its own “sub-domain best” (indicated by ggbest,n).
Furthermore, each agent k in the group g has its own position xk,g and the local best location
(pk,gbest). The sub-boundaries pose impassable limits and consequently, none of the agents of
one group can cross these boundaries to enter another sector. This guarantees that the
number of agents in each sector is constant and so that the homogeneity of their spread
within the multidimensional domain is preserved. Once the number of iterations dedicated
to this process is exceeded, the barriers imposed by the sub-boundaries are removed and the
particles are free to fly all over the entire domain. The “global best” is then chosen from
those found in the sectors by the groups while the “local best” position of each agent is
preserved. The operation executed at the exact instant of the passage from the sub-boundary
conditions to the global boundary conditions is described in Figs. 8 and 9 for a two-
dimensional case. To illustrate the differences introduced in this modified version of the
PSO, its pseudocode is presented in Fig. 10.

Figure 9. Opening the sub-boundaries: all the agents gain the information about the global
best as soon as the barriers imposed by the sub-boundaries are removed. They are attracted
both by that location as well as by the own local best previously found

Enhanced Particle Swarm Optimization for Design and Optimization
of Frequency Selective Surfaces and Artificial Magnetic Conductors

243

To point out the changes in the results obtained by using this new PSO implementation, we
have optimized several functions used as test beds for studying the performance of
optimizers (Clerc and Kennedy, 2002). In particular, the following functions have been
considered. The first type is the Rastrigin function defined as:

 ()()2
1

1
() 10cos 2 10

N

i i
i

f x x xπ
=

= − +∑ , (7)

with (-5.12 < xi < 5.12). The second type is the Griewank function (-600 < xi < 600):

 2
2

1 1

1() cos 1
4000

NN
i

i
i i

x
f x x

i= =

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑ ∏ . (8)

The last function considered is the Rosenbrock function:

 () ()
2 22

3 1
1

() 100 1
N

i i i
i

f x x x x+
=

⎛ ⎞= − + −⎜ ⎟
⎝ ⎠∑ . (9)

with (-50 < xi < 50).
All the introduced functions have a global minimum equal to zero. Several simulations have
been run for each of these functions, both with the standard PSO algorithm as well as with
the new proposed one.
Three different sizes of the swarm have been considered, comprising of 16, 20 and 32 agents,
respectively. Furthermore, to better understand the influence of the sub-boundary
initialization, we have addressed the problem with a variable number of sectors (2, 4, 8, and
16) and, hence, different number of groups. As mentioned previously each sector contains
only one group. The maximum allowed number of iterations to reach the minimum has
been set to 150. Except for the boundary case, we have run half of the total amount of
iterations with active sub-boundaries. This choice is to be regarded only as a suggestion ,
which is important for efficient cooperation of all the agents acting together − one of the
most important features of the PSO algorithm. The results for N=3 are shown in Table I.
The first value expresses the average number of iterations necessary to approach the
minimum with a tolerance of less than 0.01. The abbreviation N.R. (not reached) means that
this requirement has not been satisfied up to the 150-th iteration. The second value within
the brackets is the number of fitness evaluations which indicates the number of calls to the
solver. We have deliberately omitted to consider the case of 20 agents and 8 sectors because
it is not possible to have groups with the same number of agents. From the above results, it
is possible to state that the initialization with the sub-boundaries not only helps us to reach
the convergence more rapidly, but also that the more we increase the number of divisions
the less we improve the performance. Moreover, in the case of 16 groups the efficiency
drops dramatically and the results are even worse than without sub-boundaries. This fact
suggests a logical conclusion, viz., that there is a limit to the improvement that we can
achieve by increasing the number of subdomains beyond a certain point. Of course, the
number of sectors is also limited by the number of agents, since a group has to be composed
at least by two agents. The above results lead us to conclude that the initialization with the
sub-boundaries helps us to reach the convergence more rapidly, but we have to prevent the

Particle Swarm Optimization

244

use of very small groups. Therefore, even if a group has to be composed at least by two
agents, these results suggested us to use a minimum of 4 agents in each group.

Set i=1
for g=1, number_of_groups
 for k=1, number_of_agents_in_the_group
 for n=1, number_of_dimensions
 Random initialization of xk,gn(i) within the range of subdomain
#g
 Random initialization of vk,gn(i) prop. to the dynamic of subd. #g
 next n
 next k
next g
do while (Sub_boundary_case)
 Flag_set_global_best = FALSE
 for g=1, number_of_groups
 for k=1, number_of_agents_in_the_group
 Evaluate fitnessk,g(i), the fitness of agent k in group g at instant i
 next k
 next g
 for g=1, number_of_groups
 Rank the fitness values of all agents included only in group g
 next g
 for g=1, number_of_groups
 for k=1, number_of_agents_in_the_group
 if fitnessk,g(i) is the best value ever found by agent k in group g then
 pk,gbest,n(i)= xk,gn(i)
 end if
 if fitnessk,g(i) is the best value ever found by all agents then
 ggbest,n(i)= xk,gn(i)
 end if
 next k
 next g
 i=i+1
 if (i >= sub_boundaries_iterations) then Sub_boundary_case= FALSE
end do
if (Flag_set_global_best = FALSE) then
 Flag_set_global_best = TRUE
 Rank all the ggbest,n(i) and set the actual gbest,n(i)
else
 follow, with the actual value of i, the procedure showed in Fig.6
end if

Figure 10. Pseudocode of the modified PSO. During the preliminary iterations the agents
seek together, organized in groups, in an area defined by the sub-boundaries. After this
stage, they are set free and can move all over the solution space

Enhanced Particle Swarm Optimization for Design and Optimization
of Frequency Selective Surfaces and Artificial Magnetic Conductors

245

Rastrigin function

of
agent

s

No Sub-
Boundari

es

2
Groups

4
Groups

8
Groups

16
Groups

16

N.R.

142
(2272)

117
(1872)

98
(1568)

N.R.

20

N.R.

110
(2200)

70
(1400)

_ _

32

N.R.

60
(1920)

40
(1280)

34
(1088)

138
(4416)

Griewanck function

of
agent

s

No Sub-
Boundari

es

2
Groups

4
Groups

8
Groups

16
Groups

16

122
(1952)

110
(1760)

93
(1488)

80
(1280)

130
(4160)

20

96
(1920)

84
(1680)

74
(1480)

_ _

32

80
(2560)

52
(1664)

45
(1440)

38
(1216)

112
(3584)

Rosenbrock function

of
agent

s

No Sub-
Boundari

es

2
Groups

4
Groups

8
Groups

16
Groups

16

44
(704)

31
(496)

18
(288)

15
(240)

58
(1856)

20

30
(600)

23
(460)

12
(240)

_ _

32

19
(608)

14
(448)

7
(224)

7
(224)

55
(1760)

Table 1. Results obtained by using sub-boundaries initialization in solving benchmark
functions

4.2 Artificial Magnetic Conductor case study
In recent years, much attention has been devoted to the problem of designing Artificial
Magnetic Conductors (AMC) that find a variety of applications, especially in the field of
low-profile antennas (Sievenpiper et al., 1999; Kern et al. 2005). The zero-phase reflection
coefficient at the resonance frequency allows one to place the source close to the artificial
magnetic ground plane, and this offers the possibility of reducing the total dimension of the
device. In order to realize an AMC ground plane, one can exploit the use of planar
architectures which incorporate an FSS printed on a grounded dielectric slab (Kern et al.
2005). As shown in Fig. 6(a), once the number and the configuration of the dielectric layers
have been chosen, it is necessary to design the FSS unit cell, choose the values of dielectric

Particle Swarm Optimization

246

constants as well as the thickness of each dielectric slab so as to realize the AMC behavior at
the desired frequency.

Figure 11. Geometry of an AMC screen A FSS is printed on a dielectric substrate backed by a
perfect electric conductor (PEC)

A quantity proportional to the root mean square of the difference between the actual electric
field reflection coefficient (ΓE) and the desired one (Re{ΓAMC}=1, Im{ΓAMC}=0), for both TE
and TM modes, is used to evaluate the performance of the structure. In order to evaluate the
performance of the PSO enhanced with sub-boundaries we have run several simulations,
each one carrying out 300 iterations, with different number of sectors. Our aim is to design
an AMC screen acting as a PMC at 2.5 GHz, optimizing both the unit cell and the
characteristic of two dielectric slabs (a superstrate and a substrate). At each simulation
(except for the case with no sub-boundaries), one half of these iterations are carried out by
using sub-boundaries and the average value of the fitness considered is the one of the best
sector. The number of particles in the swarm is 32. The results are summarized in Fig. 12
where we show the convergence rate for each sub-domain configuration.

0 50 100 150 200 250 300

No Groups
2 Groups
4 Groups
8 Groups

100

101

102

103

A
ve

ra
ge

 fi
tn

es
s

va
lu

e

of iterations
Figure 12. Trend of the convergence rates for four different cases. The grey zone represents
the part of the iteration run by using sub-boundaries (except for the no-groups case)

We note that there is an improvement in the performance as we increase the number of
groups and that, as in the previous case, the advantages of this approach are not directly
proportional to the number of sub-boundaries utilized. In fact, we gain an advantage over

Enhanced Particle Swarm Optimization for Design and Optimization
of Frequency Selective Surfaces and Artificial Magnetic Conductors

247

the conventional PSO when we use two groups and the performance is better if we change
the number of groups to four. However, it is not worthwhile to go beyond this value and to
further subdivide the domain into eight groups. Moreover the sub-boundary approach is
not applied to the binary map in this case and, hence, it reduces the impact of further
subdivisions of the domain. As an example, in Fig. 13 we show an AMC screen, together
with its electromagnetic performance, obtained in the case of a swarm initialized by using 4
groups.

-150

-100

-50

0

50

100

150

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Ph
as

e
(d

eg
)

Frequency (GHz)
Figure 13. Phase of the reflection coefficient vs. frequency for the AMC screen shown in the
inset. The phase response is reported for normal incidence

5. Conclusion
In this chapter, we have address the problem of efficiently synthesizing Frequency Selective
Surfaces by using PSO. We have presented our specifically derived particle swarm
optimization procedure which is able to handle, simultaneously, both real and binary
parameters. We proposed a parallel version of the PSO algorithm to face challenging
problems, which may require hardware resources and computational time that cannot be
handled by a single CPU. Finally, we have introduced a novel strategy for the initialization
of the agents’ position within the multidimensional solution domain to further improve the
convergence rate. This new procedure has been shown to be reliable with benchmark
functions and has been successfully applied to the synthesis of Artificial Magnetic
Conductors.

6. References
Abdelbar, A. M., Abdelshahid, S. & Wunsch D. C. (2005). Fuzzy PSO: a generalization of

particle swarm optimization, Proc. IEEE Int. Joint Conf. Neural Networks (IJCNN ’05),
Vol. 2, pp. 1086-1091.

Clerc, M. (1999). The swarm and the queen: towards a deterministic and adaptive particle
swarm optimization, Proc. Evolutionary Computation (CEC 99), Vol. 3, pp. 1951-1957.

Clerc, M. & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a
multidimensional complex space, IEEE Trans. Evol. Comput., Vol. 6, No. 1, pp. 58-73.

Dorigo, M. & Stutzle, T. (2004). Ant Colony Optimization, MIT Press, ISBN 0262042193.
Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning,

Addison-Wesley, Reading, MA.

Particle Swarm Optimization

248

Kennedy, J. & Eberhart, R.C. (1995). Particle Swarm Optimization, Proceedings of IEEE
International Conference on Neural Networks, Vol. 4, pp. 1942-1948. Piscataway, NJ.

Kennedy, J. & Eberhart, R.C. (1997). A discrete binary version of the particle swarm
algorithm, IEEE Int. Conf. Systems, Man, and Cybernatics, Vol. 5, pp. 4104-4108.

Kennedy, J. (1999). Small worlds and mega-minds: effects of neighborhood topology on
particle swarm performance, Proc. Evolutionary Computation (CEC 99), Vol.3, pp.
1931-1938.

Kern, D. J., Werner, D., Monorchio, A., Lanuzza, L. & Wilhelm M. (2005). The Design
Synthesis of Multiband Artificial Magnetic Conductors Using High Impedance
Frequency Selective Surfaces, IEEE Trans. On Antennas Propag., Vol.53, No.1.

Lovbjerg, M., Rasmussen,T. K. & Krink T. (2001). Hybrid particle swarm optimizer with
breeding and subpopulations, Proc. 3rd Genetic and Evol. Comp. Conf. GECCO-2001.

Manara, G., Monorchio, A & Mittra, R. (1999). Frequency selective surface design based on
genetic algorithm, Electronic Letters, Vol. 35, pp.1400-1401.

Mittra, R.; Chan, C. & Cwik, T. (1988). Techniques for Analyzing Frequency Selective
Surfaces-A Review, IEEE Proceedings, Vol. 76, Issue 12, pp.1593-1615.

Munk, B. A. (2000). Frequency Selective Surfaces – Theory and Design, Wiley, New York.
Rittenhouse, D. (1786). An optical problem, proposed by Mr. Hopkins, and solved by Mr.

Rittenhouse, Transaction of the American Philosophical Society, Vol. 2, pp. 201-206.
Robinson, J. & Rahmat-Samii, Y. (2002). Particle Swarm Optimization in Electromagnetics,

IEEE Trans. Antennas Propag., Vol. 52, No. 2, pp. 397-407.
Shi, Y. & Eberhart, R. C. (1999). Empirical study of particle swarm optimization, Proc.

Evolutionary Computation (CEC 99), Vol. 3, pp. 1945–1950.
Shi, Y. & Eberhart, R. C. (2001). Fuzzy adaptive particle swarm optimization, Proc.

Evolutionary Computation (CEC 01), Vol. 1, pp. 101-106.
Sievenpiper, D., Zhang, L., Broas, R., Alexopolous, N. & Yablonovitch E. (1999). High

impedance frequency selective surfaces with a forbidden frequency band, IEEE
Trans. Microwave Theory Tech., Vol.47, No. 11, pp. 2059-2074.

15

Search Performance Improvement for PSO
in High Dimensional Space

Toshiharu Hatanaka1, Takeshi Korenaga1, Nobuhiko Kondo2
and Katsuji Uosaki3

1Department of Information and Physical Sciences, Osaka University
 2Institute of Intelligent Information and Communications Technology, Konan University

3Department of Management and Information Sciences, Fukui University of Technology
Japan

1. Introduction
Particle swarm optimisation (PSO) was developed by Kennedy and Eberhart in 1995
(Kennedy & Eberhart, 1995) inspired by the collective behaviour of natural birds or fish.
PSO is a stochastic optimisation technique that uses a behaviour of population composed by
many search points called particle. In spite of easy implementation in computer algorithms,
it is well known as a powerful numerical optimizer. In the typical PSO algorithms, a set of
particles searches the optimal solution in the problem space efficiently, by sharing the
common attractor called global best. There are many modified versions of PSO by
improving convergence property to a certain problem. While, a standard PSO is defined by
Bratton and Kennedy (Bratton & Kennedy, 2007) to give a real standard for PSO studies.
PSO seems as one of the evolutionary computations (ECs), and it has been shown that PSO
is comparable to a genetic algorithm (Angeline, 1998). Thus, a lot of studies have
demonstrated the effectiveness of PSO family in optimizing various continuous and discrete
optimization problems. And a plenty of applications of PSO, such as the neural network
training, PID controller tuning, electric system optimisation have been studied and achieved
well results (Kennedy, 1997).
However, PSO is often failed in searching the global optimal solution in the case of the
objective function has a large number of dimensions. The reason of this phenomenon is not
only existence of the local optimal solutions, the velocities of the particles sometimes lapsed
into the degeneracy, so that the successive range is restricted in the sub-plain of the whole
search hyper-plain. The sub-plane that is defined by finite number of particle velocities is a
partial space in the whole search space. The issue of local optima in PSO has been studied
and proposed several modifications on the basic particle driven equation (Parsopoulos et al.,
2001; Hendtlass, 2005; Liang et al., 2006). There used a kind of adaptation technique or
randomized method (e.g. mutation in evolutionary computations) to keep particles
velocities or to accelerate them. Although such improvements work well and have ability to
avoid fall in the local optima, the problem of early convergence by the degeneracy of some
dimensions is still remaining, even if there are no local optima. Hence the PSO algorithm
does not always work well for the high-dimensional function.

Particle Swarm Optimization

250

From this point of view, the purpose of this paper is to improve performance of the PSO
algorithm in case of high-dimensional optimization. To avoid such convergence with finite
number of particles, we propose a novel PSO model, called as the Rotated Particle Swarm
(RPS), where we introduce a coordinate conversion method. The numerical simulation
results show the RPS is efficient in optimizing high-dimensional functions.
The remaining parts of this chapter organized as the following. In Section 2, PSO is briefly
introduced, and then the early convergence phenomenon is illustrated. The proposed novel
PSO model is shown in Section 3. Some results of the numerical studies for the benchmark
problems are presented in Section 4, and we mention about some remarks in the last section.

2. Particle Swarm Optimization
Each particle, it is a member of the population, has its own position x and velocity v. A
velocity decides a movement direction of a particle. The particles fly around the problem
space, searching for the position of optima. Each particle memorizes two positions in order
to find a favourite position in the search space. One is its own best position called the
personal best and the other is the global best that is the best among all particles, denoted by
p and g, respectively. Then,)(ip indicates the best position found by i-th particle from the

first time step and)(ig indicates the best position among all pi in the neighbour particle of i-

th particle. Neighbour particle is defined by the topology of particles, which represents the
network structure of population. Memories are utilized in adjusting the velocity to find
better solutions.
In one of the standard versions of PSO algorithm, the velocity and position are updated at
each time step, according to the following two equations,

))()(()()(
,2,2

)()(
,1,1

)()(i
d

i
ddd

i
d

i
ddd

i
d

i
d xgrxprvv −+−+= φφχ (1)

)()()(i
d

i
d

i
d vxx += (2)

Here, χ is the constriction coefficient, which prevents explosion of the velocity and balances
between exploration and exploitation. The coefficients r1,d and r2,d are random values
uniformly distributed over the range [0, 1]. These parameters are often set as φ1,d = φ2d = 2.05
and χ = 0.7298 (Kenndy & Clerc, 2002).)(i

dv indicates d-th element of velocity vector of i-th

particle, and)(i
dx indicates d-th element of position.)(i

dp and)(i
dg represent d-th elements of

)(ip and)(ig respectively.

Some theoretical analyses of particle trajectories derived from Eq. (1) and (2) have been
performed, where PSO algorithm is simplified (e.g., only one particle, one dimension, no
stochastic elements) (Ozcan & Mohan, 1998; Ozcan & Mohan, 1999; Kenndy & Clerc, 2002).
In those studies, it is shown that each particle oscillates around the weighted average
position of its p and g, and settle down in an equilibrium state where velocities are
considerably small until new p or g is found by particle. Note that the particles converge are
not always local or global optima. We consider the effect of this kind of convergence
property on high-dimensional optimization. Now, we present the experimental results

Search Performance Improvement for PSO in High Dimensional Sapece

251

where a standard PSO algorithm is applied to high-dimension Sphere function. Sphere
function is one of the standard test functions without local optima. It is defined as follows,

 ∑
=

=
D

d
dxxf

1

2
1)((3)

where D represents the number of dimensions.
Population size is set to 20 particles. Star topology, where all particles are interconnected, is
used. The average fitness (function value) for 10 dimensions case at each time step over 10
trials is shown in Fig.1.

Figure 1. Function value of the global best particle, in case of dimension size D=10

Figure 2. Function value of the global best particle, in case of dimension size D=100

Figure 2 shows the average fitness in the same conditions except for the dimension. In this
case, a dimension is 100. The function value in 10 dimensions keeps decreasing as the search
proceeds, while the improvement of the fitness value in 100 dimensions gets slow. Note that
both vertical and horizontal axes are not same order. For higher dimension, the convergence
speed is very low, or it does not converge.
We examined the other topologies such as four clusters, pyramid or ring. They have low
connectivity to keep diversity in population. Though they yield better results than the Star
topology, performance gets worse as the dimension of dimensions increases. When PSO

Particle Swarm Optimization

252

does not work well in optimizing high-dimensional function like this result, it is frequently
observed that diversity of positions and memories of the whole population in some
dimensions gets lost without trapping local optima.
It is conjectured that such premature convergence occurs because the velocity updating by
Eq. (1) depends only on information of the same dimension. Once the diversity of positions
and memories of certain dimension gets low, particles have difficulty in searching in the
direction of the dimension. In the next section, we propose the novel velocity model that
utilizes information of other dimensions.

3. Rotated Particle Swarm
Now, to consider the conventional way to update the velocity, we rewrite Eq. (1) by vectors
and matrixes, such as,

))()((21 iiiiii xgxpvv −Φ+−Φ+= χ , (4)

where

),,,(,1,12,12,11,11,11 DDrrrdiag φφφ K=Φ (5)

),,,(,2,22,22,21,21,22 DDrrrdiag φφφ K=Φ . (6)

Fig.3 illustrates sample space by)()()(
1

ii xp −Φ , the second term of Eq. (1), in 2 dimensions.

Figure 3. Geometric illustration of sample space by)()()(

1
ii xp −Φ in 2 dimensions

In 21 xx − coordinate system where ix and ip are aligned parallel to the axis, the sample
space has only one degree of freedom. On the other hand, the sample space is two-

Search Performance Improvement for PSO in High Dimensional Sapece

253

dimensional in the 21 xx ′−′ coordinate system. The same can be said about)()()(
2

ii xg −Φ .
The original PSO algorithm was designed by emulating birds seeking food. Birds probably
never change the strategy to seek according to whether food exists in the true north or in the
northeast. Consequently, particles can search optima even if axes are rotated. We introduce
the coordinate conversion to the velocity update.
Before the values are sampled by)()()(

1
ii xp −Φ and)()()(

2
ii xg −Φ , the coordinate system is

rotated. Thus information of other dimensions is employed in calculating each component
of velocity. In the proposed method, the velocity update equation Eq. (5) is substituted into

))()((2
1

1
1

iiiiii xgAAxpAAvv −Φ+−Φ+= −−χ (7)

where A is DD × matrix to rotate the axes. For the remainder of this paper, we refer to the
PSO algorithm with this proposed velocity update method as the Rotated Particle Swarm
(RPS). The RPS is designed for high-dimensional optimization. Therefore matrix
computation is time-consuming if axes are arbitrarily rotated. To avoid it, in this study,
certain number of axes are randomly selected without duplication and paired respectively.
Only pairs of selected axes are rotated by θ. Most of the elements of A determined by this
means are zero. For example, if D = 5 and selected pairs of axes are 21 xx − and 53 xx − ,

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−

=

θθ

θθ
θθ
θθ

cos0sin00
01000

sin0cos00
000cossin
000sincos

A
 (8)

4. Numerical Simulation
The following well-known test functions, i.e. Sphere function, Quatric function (De Jong F4),
Rosenbrock function, Griewank Function, and Rastrigin function) are used to evaluate
convergence property of the proposed method.

Sphere function: ∑
=

=
D

d
dxxf

1

2
1)((9)

Quatric function: ∑
=

=
D

d
ddxxf

1

4
2)((10)

Rosenbrock function: 2
1

1

22
13)1()(100)(−+−=∑

−

=
+ d

D

d
dd xxxxf (11)

Griewank function: 1)cos(
4000

1)(
11

2
4 +−= ∏∑

==

D

d

d
D

d
d d

xxxf (12)

Rastrigin function:)2cos(1010)(
1

2
5 d

D

d
d xxxf π−+=∑

=

 (13)

Particle Swarm Optimization

254

Sphere function, Quatric function and Rosenbrock function are unimodal. The others are
multimodal functions. Rosenbrock function has dependence among variables.
For each function, search range and initialization rage were defined as listed in Table.1.
Rosenbrock function has its global optimum at [1, 1]D and the others have at the origin. We
use asymmetric initialization method, in which initial population is distributed only in a
portion of the search range (Angeline, 1998). Optimal population size is problem-
dependent. In this study, population size is set to 20 which is commonly used (Bergh &
Engelbrecht, 2001). The canonical PSO and the RPS are tested with Star and Von Neumann
topology. Von Neumann topology is grid-structured and has been shown to outperform
other topologies in various problems (Kennedy & Mendes, 2002). In the RPS algorithm, the
angle of rotation θ is set to π/5 and number of axes to be rotated is 40% of number of
dimensions. The number of dimension D is set to 30, 100, and 400. Each experiment is run
20 times in each condition and the fitness at each time step is averaged.
In the results of Sphere function shown in Fig.3 - 5, in these figures, the bold lines show the
convergence properties of the conventional PSO and the thin lines show the convergence
properties of the proposed PSO. The solid lines indicate using the star topology and the
dash lines indicate using Von-Neumann topology.
We can see a great difference in convergence ability between the RPS and the canonical PSO.
Especially in D=400 though it becomes difficult for the canonical PSO to keep converging to
the optimum, the fitness of RPS keeps decreasing. Similarly, in the case of Quatric,
Rosenbrock and Griewank shown in Fig.6-14, for every functions, a convergence speed and
final obtained fitness of the RPS get relatively good compared with the canonical PSO as the
number of dimension increases.

Function Search range Range of the initial population
Sphere [-50, 50]D [25, 40] D
Quatric [-20, 20]D [10, 16] D
Rosenbrock [-100, 100]D [50, 80] D
Griewank [-600, 600]D [300, 500] D
Rastrigin [-5.12, 5.12]D [1, 4.5]D

Table 1. Search range and initialization for each function

5. Conclusion
The purpose of this study is to improve the early convergence of the particle swarm
optimization in high-dimensional function optimization problems by the degeneracy. We
have proposed the novel particle driven model, called Rotated Particle Swarm (RPS). It
employs a coordinate conversion where information of other dimensions is utilized to keep
diversity of each dimension. It is very simple technique and it is able to apply to any
modified PSO model. The experimental results have shown that the proposed RPS is more
efficient in optimizing high-dimensional functions than a standard PSO. The proposed RPS
indicated remarkable improvement in convergence for high-dimensional space, especially in
unimodal functions. An appropriate selection of rotated angles and dimensions are the
future study, however it is envisioned that the performance of the proposed algorithm has
robustness for such parameter settings. To compare the proposed method to the other
modifications and to develop more powerful algorithm by combining with local optima
technique are now under investigation.

Search Performance Improvement for PSO in High Dimensional Sapece

255

Figure 4. Sphere function (D=30)

Figure 5. Sphere function (D=100)

Figure 6. Sphere function (D=400)

Particle Swarm Optimization

256

Figure 7. Quatric function (D=30)

Figure 8. Quatric function (D=100)

Figure 9. Quatric function (D=400)

Search Performance Improvement for PSO in High Dimensional Sapece

257

Figure 10. Rosenbrock function (D=30)

Figure 11. Rosenbrock function (D=100)

Figure 12. Rosenbrock function (D=400)

Particle Swarm Optimization

258

Figure 13. Griewank function (D=30)

Figure 14. Griewank function (D=30)

Figure 15. Griewank function (D=30)

Search Performance Improvement for PSO in High Dimensional Sapece

259

Figure 16. Rastrigin function (D=30)

Figure 17. Rastrigin function (D=100)

Figure 18. Rastrigin function (D=400)

Particle Swarm Optimization

260

6. References
Angeline, P.J. (1998). Evolutionary Optimization Versus Particle Swarm Optimization:

Philosophy and Performance Differences, Evolutionary Programming VII, in Lecture
Notes in Computer Science, Vol. 1447, pp. 601-610, 3-540-64891-7, Springer, London

Bratton, D. & Kennedy, J. (2007). Defining a Standard for Particle Swarm Optimization,
Proceedings of Swarm Intelligence Symposium 2007, pp. 120-127, 1-4244-0708-7,
Honolulu. April 2007

Hendtlass, T. (2005). A particle swarm algorithm for high dimensional, multi-optima
problem spaces, Proceedings of Swarm Intelligence Symposium 2005. pp. 149-154,
Pasadena, June 2005

Kennedy, J. (1997). The particle swarm: Social Adaptation of Knowledge, Proceedings of IEEE
International Conference on Evolutionary Computation, pp.303-308, 0-7803-3949-5,
Indianapolis, April 1997

Kenndy, J. & Clerc, M. (2002). The particle swarm: Explosion, stability, and convergence in a
multidimensional complex space, IEEE Transactions on Evolutionary Computation,
Vol. 6, No. 1, 58-73, 1089-778X

Kennedy, J. & Eberhart, R.C. (1995). Particle Swarm Optimization, Proceedings of IEEE
International Conference on Neural Networks, pp. 1942-1948, 0-7803-2768-3, Perth,
November 1995

Kennedy, J. & Mendes, R. (2002). Population structure and particle swarm performance,
Proceedings of 2002 IEEE Congress on Evolutionary Computation, Vol. 2, pp.1671-1676,
Honolulu, May 2002

Kennedy, J. & Spears, W.M. (1998). Matching algorithms to problems: An experimental test
of the particle swarm and some genetic algorithms on the multimodal problem
generator, Proceedings of IEEE International Conference on Evolutionary Computation,
pp. 78--83, 0-7803-4869-9, Anchorage, May 1998

Liang, J.J., Qin, A.K., Suganthan, P.N. & Baskar, S. (2006). Comprehensive learning particle
swarm optimizer for global optimization of multimodal functions, IEEE
Transactions on Evolutionary Computation, Vol.10, No.3, 281-295, 1089-778X

Ozcan, E. & Mohan, C.K. (1998). Analysis of a Simple Particle Swarm Optimization System,
Intelligent Engineering Systems Through Artificial Neural Networks, Vol. 8, pp. 253-258,
0-7918-0051-2

Ozcan, E. & Mohan, C.K. (1999). Particle swarm optimization: Surfing the waves, Proceedings
of 1999 IEEE Congress on Evolutionary Computation, Vol. 3, pp.1939-1944,
Washington, July 1999

Parsopoulos, K., Plagianakos, V. P. , Magoulas, G. D. & Vrahatis, M. N. (2001). Stretching
technique for obtaining global minimizers through particle swarm optimization,
Proceedings of the Particle Swarm Optimization Workshop, pp. 22-29,
Indianapolis, 2001

van den Bergh, F. & A.P. Engelbrecht, A.P. (2001). Effects of Swarm Size on Cooperative
Particle Swarm Optimizers, Proceedings of the Genetic and Evolutionary Computation
Conference, pp.892-899, San Francisco, July 2001

16

Finding Base-Station Locations in Two-Tiered
Wireless Sensor Networks by Particle Swarm

Optimization*
Tzung-Pei Hong1, 2, Guo-Neng Shiu3 and Yeong-Chyi Lee4

1Department of Computer Science and Information Engineering, National University of
Kaohsiung

2Department of Computer Science and Engineering, National Sun Yat-sen University
 3Department of Electrical Engineering, National University of Kaohsiung

4Department of Information Management, Cheng-Shiu University
 Taiwan

1. Abstract
In wireless sensor networks, minimizing power consumption to prolong network lifetime is
very crucial. In the past, Pan et al. proposed two algorithms to find the optimal locations of
base stations in two-tiered wireless sensor networks. Their approaches assumed the initial
energy and the energy-consumption parameters were the same for all application nodes. If
any of the above parameters were not the same, their approaches could not work. Recently,
the PSO technique has been widely used in finding nearly optimal solutions for
optimization problems. In this paper, an algorithm based on particle swarm optimization
(PSO) is thus proposed for general power-consumption constraints. The proposed approach
can search for nearly optimal BS locations in heterogeneous sensor networks, where
application nodes may own different data transmission rates, initial energies and parameter
values. Experimental results also show the good performance of the proposed PSO
approach and the effects of the parameters on the results. The proposed algorithm can thus
help find good BS locations to reduce power consumption and maximize network lifetime in
two-tiered wireless sensor networks.
Keywords: wireless sensor network, network lifetime, energy consumption, particle swarm
optimization, base station.

2. Introduction
Recently, a two-tiered architecture of wireless sensor networks has been proposed and
become popular [1]. It is motivated by the latest advances in distributed signal processing

* This is a modified and expanded version of the paper "A PSO heuristic algorithm for base-station
locations," presented at The Joint Conference of the Third International Conference on Soft Computing
and Intelligent Systems and the Seventh International Symposium on Advanced Intelligent Systems,
2006, Japan.

Particle Swarm Optimization

262

and source coding and can offer a more flexible balance among reliability, redundancy and
scalability of wireless sensor networks. A two-tiered wireless sensor network, as shown in
Figure 1, consists of sensor nodes (SNs), application nodes (ANs), and one or several base
stations (BSs).

SN

AN

BS

Figure 1. A two-tiered architecture of wireless sensor networks

Sensor nodes are usually small, low-cost and disposable, and do not communicate with
other sensor nodes. They are usually deployed in clusters around interesting areas. Each
cluster of sensor nodes is allocated with at least one application node. Application nodes
possess longer-range transmission, higher-speed computation, and more energy than sensor
nodes. The raw data obtained from sensor nodes are first transmitted to their corresponding
application nodes. After receiving the raw data from all its sensor nodes, an application
node conducts data fusion within each cluster. It then transmits the aggregated data directly
to the base station or via multi-hop communication. The base station is usually assumed to
have unlimited energy and powerful processing capability. It also serves as a gateway for
wireless sensor networks to exchange data and information to other networks. Wireless
sensor networks usually have some assumptions for SNs and ANs. For instance, each AN
may be aware of its own location through receiving GPS signals [11] and its own energy.
In the past, many approaches were proposed to efficiently utilize energy in wireless
networks. For example, appropriate transmission ways were designed to save energy for
multi-hop communication in ad-hoc networks [16][10][5][19][7][6][20]. Good algorithms for
allocation of base stations and sensors nodes were also proposed to reduce power
consumption [12][15][16][8][9]. Thus, a fundamental problem in wireless sensor networks is
to maximize the system lifetime under some given constraints. Pan et al. proposed two
algorithms to find the optimal locations of base stations in two-tiered wireless sensor
networks [13]. Their approaches assumed the initial energy and the energy-consumption
parameters were the same for all ANs. If any of the above parameters were not the same,
their approaches could not work.
In this paper, an algorithm based on particle swarm optimization (PSO) is proposed to find
the base-station locations for general power-consumption constraints. The PSO technique
was proposed by Eberhart and Kennedy in 1995 [2][3] and has been widely used in finding
solutions for optimization problems. Some related researches about its improvement and

Finding Base-Station Locations in Two-Tiered Wireless Sensor Networks
by Particle Swarm Optimization

263

applications has also been proposed [4][14][17][18]. It maintains several particles (each
represents a solution) and all the particles continuously move in the search space according
to their own local optima and the up-to-date global optimum. After a lot of generations, the
optimal solution or an approximate optimal solution is expected to be found. The proposed
approach here can search for nearly optimal BS locations in heterogeneous sensor networks.
Experimental results also show the performance of the proposed PSO approach on finding
the BS locations and the effects of the parameters on the results.
The remaining parts of this paper are organized as follows. Some related works about
finding the locations of base stations in a two-tiered wireless networks is reviewed in
Section 3. An algorithm based on PSO to discover base stations in a two-tiered wireless
networks is proposed in Section 4. An example to illustrate the proposed algorithm is given
in Section 5. Experimental results for demonstrating the performance of the algorithm and
the effects of the parameters are described in Section 6. Conclusions are stated in Section 7.

3. Review of Related Works
As mentioned above, a fundamental problem in wireless sensor networks is to maximize the
system lifetime under some given constraints. Pan et al. proposed two algorithms to find the
optimal locations of base stations in two-tiered wireless sensor networks [13]. The first
algorithm was used to find the optimal locations of base stations for homogenous ANs, and
the second one was used for heterogeneous ANs. Homogenous ANs had the same data
transmission rate and heterogeneous ANs might have different data transmission rates. In
their paper, only the energy in ANs was considered. If a single SN ran out of energy, its
corresponding AN might still have the capability to collect enough information. However, if
an AN ran out of energy, the information in its coverage range would be completely lost,
which was dangerous to the whole system.
Let d be the Euclidean distance from an AN to a BS, and r be the data transmission rate. Pan
et al. adopted the following formula to calculate the energy consumption per unit time:

)(),(21
bdrdrp αα += , (1)

where α1 is a distance-independent parameter, α2 is a distance-dependent parameter, and b is
the Euclidean dimension. The energy consumption thus relates to Euclidean distances and
data transmission rates.
Pan et al. assumed each AN had the same α1, α2 and initial energy. For homogenous ANs,
they showed that the center of the minimal circle covering all the ANs was the optimal BS
location (with the maximum lifetime).

4. A General Base-Station Allocation Algorithm Based on PSO
The ANs produced by different manufacturers may own different data transmission rates,
initial energies and parameter values. When different kinds of ANs exist in a wireless
network, it is hard to find the optimal BS location. In this section, a heuristic algorithm
based on PSO to search for optimal BS locations under general constraints is proposed. An
initial set of particles is first randomly generated, with each particle representing a possible
BS location. Each particle is also allocated an initial velocity for changing its state. Let ej(0) be
the initial energy, rj be the data transmission rate, αj1 be the distance-independent parameter,

Particle Swarm Optimization

264

and αj2 be the distance-dependent parameter of the j-th AN. The lifetime lij of an application
node ANj for the i-th particle is calculated by the following formula:

 ,)()0(21
b
ijjjjjij drel αα += (2)

where b
ijd is the b-order Euclidian distance from the j-th AN to the i-th particle. The fitness

function used for evaluating each particle is thus shown below:

 ,)(
1 ij

m

j
lMinifitness

=
= (3)

where m is number of ANs. That is, each particle takes the minimal lifetime of all ANs as its
fitness value. A larger fitness value denotes a longer lifetime of the whole system, meaning
the corresponding BS location is better. The fitness value of each particle is then compared
with that of its corresponding pBest. If the fitness value of the i-th particle is larger than that
of pBesti, pBesti is replaced with the i-th particle. The best pBesti among all the particles is
chosen as the gBest. Besides, each particle has a velocity, which is used to change the current
position. All particles thus continuously move in the search space. When the termination
conditions are achieved, the final gBest will be output as the location of the base station. The
proposed algorithm is stated below.

The proposed PSO algorithm for finding the best BS location:
• Input: A set of ANs, each ANj with its location (xj, yj), data transmission rate rj, initial

energy ej(0), parameters αj1 and αj2.
• Output: A BS location that will cause a nearly maximal lifetime in the whole system.
• Step 1: Initialize the fitness values of all pBests and the gBest to zero.
• Step 2: Randomly generate a group of n particles, each representing a possible BS

location. Locations may be two-dimensional or three-dimensional, depending on the
problems to be solved.

• Step 3: Randomly generate an initial velocity for each particle.
• Step 4: Calculate the lifetime lij of the j-th AN for the i-th particle by the following

formula:

),()0(2
b
ijjj1jjij drel αα +=

where ej(0) is the initial energy, rj is the data transmission rate, αj1 is a distance-
independent parameter, αj2 is a distance-dependent parameter of the j-th AN, and b

ijd
is the b-order Euclidean distance from the i-th particle (BS) to the j-th AN.

• Step 5: Calculate the lifetime of the whole sensor system for the i-th particle as its fitness
value (fitnessi) by the following formula:

ij
m

j
lMinifitness

1
)(

=
= ,

where m is number of ANs and i = 1 to n.
• Step 6: Set pBesti as the current i-th particle if the value of fitness(i) is larger than the

current fitness value of pBesti.
• Step 7: Set gBest as the best pBest among all the particles. That is, let:

Finding Base-Station Locations in Two-Tiered Wireless Sensor Networks
by Particle Swarm Optimization

265

fitness of pBestk =
n
imax 1= fitness of pBesti,

and set gBest=pBestk.
• Step 8: Update the velocity of the i-th particle as:

)(() idid11
old

id
new

id xpBestRandcVwV −××+×=)(() idd22 xgBestRandc −××+

where new
idx is the new velocity of the i-th particle at the d-th dimension, old

idx is the
current velocity of the i-th particle at the d-th dimension, w is the inertial weight, c1 is
the acceleration constant for particles moving to pBest, c2 is the acceleration constant for
particles moving to gBest, Rand1() and Rand2() are two random numbers among 0 to 1, xid

is the current position of the i-th particle at the d-th dimension, pBestid is the value of
pBesti at the d-th dimension, and gBestd is the value of gBest at the d-th dimension.

• Step 9: Update the position of the i-th particle as:

new
id

old
id

new
id Vxx += ,

where new
idx and old

idx are respectively the new position and the current position of the i-th
particle at the d-th dimension.

• Step 10: Repeat Steps 4 to 9 until the termination conditions are satisfied.
In Step 10, the termination conditions may be predefined execution time, a fixed number of
generation or when the particles have converged to a certain threshold.

5. An Example
In this section, a simple example in a two-dimensional space is given to explain how the
PSO approach can be used to find the best BS location that will generate the nearly maximal
lifetime in the whole system. Assume there are totally four ANs in this example and their
initial parameters are shown in Table 1, where “Location” represents the two-dimensional
coordinate position of an AN, “Rate” represents the data transmission rate, and “Power”
represents the initially allocated energy. All αj1’s are set at 0 and all αj2’s at 1 for simplicity.

AN Location Rate Power
1 (1, 10) 5 10000
2 (11, 0) 5 10000
3 (8, 7) 4 6400
4 (4, 3) 4 6400

Table 1. The initial parameters of ANs in the example

For the example, the proposed PSO algorithm proceeds as follows.
• Step 1: The initial fitness values of all pBests and the gBest are set to zero.
• Step 2: A group of n particles are generated at random. Assume n is set at 3 in this

example for simplicity. Also assume the three initial particles randomly generated are
located at (4, 7), (9, 5) and (6, 4). Figure 2 shows the positions of the given ANs and the
initial particles, where the triangles represent the particles and the circles represent the
ANs.

Particle Swarm Optimization

266

1

2

3

4

3

1

2

12

11

1

10

9

8

2

3

4

5

6

7

0 111 10982 3 4 5 6 7 12
Figure 2. The positions of the given ANs and the initial particles

• Step 3: An initial velocity is randomly generated for each particle. In this example
assume the initial velocity is set at zero for simplicity.

• Step 4: The lifetime of each AN for a particle is calculated. Take the first AN for the first
particle as an example. Its lifetime is calculated as follows:

11.111])107()14[(510000 22
11 =−+−=l .

The lifetimes of all ANs for all particles are shown in Table 2.

 1(1, 10) 2(11, 0) 3(8, 7) 4(4, 3)
1(4, 7) 111.11 20.41 100 100
2(9, 5) 22.47 68.97 320 55.17
3(6, 4) 32.79 48.78 123.08 320

Table 2. The lifetimes of all ANs for all particles

• Step 5: The lifetime of the whole sensor system for each particle is calculated as the
fitness value. Take the first particle as an example. Its fitness is calculated as follows:

Fitness(1) = Min{l11, l12, l13, l14} = Min{111.11, 20.41, 100, 100} = 20.41.
In the same way, the fitness values of all the particles are calculated and shown in Table
3.

Particle Location Fitness
1 (4, 7) 20.41
2 (9, 5) 22.47
3 (6, 4) 32.79

Table 3. The fitness values of all the particles

• Step 6: The fitness value of each particle is compared with that of its corresponding
pBest. If the fitness value of the i-th particle is larger than that of pBesti, pBesti is replaced
with the i-th particle. In the first generation, the fitness values of all the pBests are zero,
smaller than those of the particles. The particles are then stored as the new pBests. The

Particle AN

Finding Base-Station Locations in Two-Tiered Wireless Sensor Networks
by Particle Swarm Optimization

267

resulting pBests are shown in Table 4, where the field “appearance generation”
represents the generation number in which a particle is set as the current pBest.

Particle Location Fitness Appearing
Generation

1 (4, 7) 20.41 1
2 (9, 5) 22.47 1
3 (6, 4) 32.79 1

Table 4. The pBests after the first generation

• Step 7: The best pBesti among all the particles is chosen as the gBest. In this example,
pBest3 has the largest fitness value and is set as the gBest.

• Step 8: The new velocity of each particle is updated. Assume the inertial weight w is set
at 1, the acceleration constant c1 for particles moving to pBest is set at 2, and the
acceleration constant c2 for particles moving to gBest is set at 2. Take the first particle as
an example to illustrate the step. Its new velocity is calculated as follows:

)(() 1x1x11
old

1x
new

1x xpBestRandcVwV −××+×=
)(() 1xd22 xgBestRandc −××+

)46(25.02)44(5.0201 −×+−×+×=
= 1, and

)(() 1y1y31
old

1y
new

1y xpBestRandcVwV −××+×=
)(() 1yd42 xgBestRandc −××+

)74(125.02)77(1201 −×+−×+×=
= -0.75,

where the four random numbers generated are 0.5, 0.25, 1 and 0.125, respectively. In
the same way, the new velocities of the other two particles can be calculated. The
results are shown in Table 5.

Particle Old Location Velocity

1 (4, 7) (1, -0.75)
2 (9, 5) (-1.2, -0.2)
 3 (6, 4) (0, 0)

Table 5. The new velocities of all the three particles

• Step 9: The position of each particle is updated. Take the first particle as an example. Its
new position is calculated as follows:

1 1 1
new old new
x x xx x V= +

= 4 + 1
= 5, and

1 1 1
new old new
y y yx x V= +

= 7 + (-0.75)
= 6.25.

Particle Swarm Optimization

268

In the same way, the new positions of all the other two particles can be found. The
results are shown in Table 6.

Particle Old Location Velocity New Location
1 (4, 7) (1, -0.75) (5, 6.25)
2 (9, 5) (-1.2, -0.2) (7.8, 4.8)
3 (6, 4) (0, 0) (6, 4)

Table 6. The new positions of all the three particles

• Step 10: Steps 4 to 9 are then repeated until the termination conditions are satisfied. The
lifetime evolution along with different generations is shown in Figure 3.

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100

Generations

Li
fe

tim
e

Figure 3. The evolution of the maximal lifetime for the example

6. Experimental Results
Experiments were made to show the performance of the proposed PSO algorithm on finding
the optimal positions of base stations. They were performed in C language on an AMD PC
with a 2.0GHz processor and 1G main memory and running the Microsoft Window XP
operating system. The simulation was done in a two-dimensional real-number space of
1000*1000. That is, the ranges for both x and y axes were within 0 to 1000. The data
transmission rate was limited within 1 to 10 and the range of initial energy was limited
between 100000000 to 999999999. The data of all ANs, each with its own location, data
transmission rate and initial energy, were randomly generated. Note that the data
transmission rates and the initial energy amounts of real-life sensors may not fall in the
above range. But the proposed approach is still suitable since the lifetime is proportional to
the initial energy amount and inversely proportional to the transmission rate.
Experiments were first made to show the convergence of the proposed PSO algorithm when
the acceleration constant (c1) for a particle moving to its pBest was set at 2, the acceleration
constant (c2) for a particle moving to its gBest was set at 2, the inertial weight (w) was set at
0.6, the distance-independent parameter (αj1) was set at zero, and the distance-dependent
parameter (αj2) was set at one. The experimental results of the resulting lifetime along with
different generations for 50 ANs and 10 particles in each generation are shown in Figure 4.

Finding Base-Station Locations in Two-Tiered Wireless Sensor Networks
by Particle Swarm Optimization

269

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300

Generations

Li
fe

tim
e

Figure 4. The lifetime for 50 ANs and10 particles

It is easily seen from Figure 4 that the proposed PSO algorithm could converge very fast
(below 50 generations). Next, experiments were made to show the effects of different
parameters on the lifetime. The influence of the acceleration constant (c1) for a particle
moving to its pBest on the proposed algorithm was first considered. The process was
terminated at 300 generations. When w = 1 and c2 = 2, the nearly optimal lifetimes for 50ANs
and 10 particles along with different acceleration constants (c1) are shown in Figure 5.

67,5

68

68,5

69

69,5

70

0 0,5 1 1,5 2 2,5 3 3,5 4

c 1

Li
fe

tim
e

Figure 5. The lifetimes along with different acceleration constants (c1)

It can be observed from Figure 5 that the lifetime first increased and then decreased along
with the increase of the acceleration constant (c1). When the value of the acceleration
constant (c1) was small, the velocity update of each particle was also small, causing the
convergence speed slow. The proposed PSO algorithm might thus not get the optimal
solution after the predefined number of generations. On the contrary, when the value of the
acceleration constant (c1) was large, the velocity change would be large as well, causing the
particles to move fast. It was then hard to converge. In the experiments, the optimal c1 value
was about 2. Next, experiments were made to show the effects of the acceleration constant
(c2) for a particle moving to its gBest on the proposed algorithm. When w = 1 and c1 = 2, the
experimental results are shown in Figure 6.

Particle Swarm Optimization

270

68,4
68,6
68,8

69
69,2
69,4
69,6
69,8

70

0 1 2 3 4

c 2

Li
fe

tim
e

Figure 6. The lifetimes along with different acceleration constants (c2)

It can be observed from Figure 6 that the lifetime first increased and then decreased along
with the increase of the acceleration constant (c2). The reason was the same as above. In the
experiments, the optimal c2 value was about 2. Next, experiments were made to show the
effects of the inertial weight (w) on the proposed algorithm. When c1 = 2 and c2 = 2, the
experimental results are shown in Figure 7.

62

64

66

68

70

72

74

0 0,5 1 1,5 2 2,5 3

w

Li
fe

tim
e

Figure 7. The lifetimes along with different inertial weights (w)

It can be observed from Figure 7 that the proposed algorithm could get good lifetime when
the inertial weight (w) was smaller than 0.6. The lifetime decreased along with the increase
of the inertial weight (w) when w was bigger than 0.6. This was because when the value of
the inertial weight was large, the particles would move fast due to the multiple of the old
velocity. It was then hard to converge. Next, experiments were made to show the relation
between lifetimes and numbers of ANs. The experimental results are shown in Figure 8.

Finding Base-Station Locations in Two-Tiered Wireless Sensor Networks
by Particle Swarm Optimization

271

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100

ANs

Li
fe

tim
e

Figure 8. The lifetimes along with different numbers of ANs

It can be seen from Figure 8 that the lifetime decreased along with the increase of the
number of ANs. It was reasonable since the probability for at least an AN in the system to
fail would increase when the number of ANS grew up. The execution time along with
different numbers of ANs is shown in Figure 9.

0

0,02

0,04

0,06

0,08

0,1

0,12

0 20 40 60 80 100

ANs

Ti
m

e
(s

ec
.)

Figure 9. The execution time along with different numbers of ANs

It can be observed from Figure 9 that the execution time increased along with the increase of
numbers of ANs. The relation was nearly linear. Experiments were then made to show the
relation between lifetimes and numbers of particles for 50 ANs and 300 generations. The
internal weight was set at 1. The experimental results are shown in Figure 10.

Particle Swarm Optimization

272

70

70.5

71

71.5

72

0 20 40 60 80 100
Particles

Li
fe

tim
e

Figure 10. The lifetimes along with different numbers of particles

It can be seen from Figure 10 that the lifetime increased along with the increase of numbers
of particles for the same number of generations. The execution time along with different
numbers of particles for 300 generations is shown in Figure 11.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100
Particles

Ti
m

e
(s

ec
.)

Figure 11. The execution time along with different numbers of particles for 50 ANs

Method Lifetime
The proposed PSO algorithm 72.0763

The exhaustive grid search
(grid size = 1) 72.0048

The exhaustive grid search
 (grid size = 0.1) 72.0666

The exhaustive grid search
 (grid size = 0.01) 72.0752

Table 7. A lifetime comparison of the PSO approach and the exhaustive grid searc

Finding Base-Station Locations in Two-Tiered Wireless Sensor Networks
by Particle Swarm Optimization

273

It can be observed from Figure 11 that the execution time increased along with the increase
of numbers of particles. The relation was nearly linear. This was reasonable since the
execution time would be approximately proportional to the number of particles.
Note that no optimal solutions can be found in a finite amount of time since the problem is
NP-hard. For a comparison, an exhaustive search using grids was used to find nearly
optimal solutions. The approach found the lifetime of the system when a BS was allocated at
any cross-point of the grids. The cross-point with the maximum lifetime was then output as
the solution. A lifetime comparison of the PSO approach and the exhaustive search with
different grid sizes are shown in Table 7.
It can be observed from Table 7 that the lifetime obtained by our proposed PSO algorithm
was not worse than those by the exhaustive grid search within a certain precision. The
lifetime by the proposed PSO algorithm was 72.0763, and was 72.0048, 72.0666 and 72.0752
for the exhaustive search when the grid size was set at 1, 0.1 and 0.01, respectively. For the
exhaustive grid search, the smaller the grid size, the better the results.

7. Conclusion
In wireless sensor networks, minimizing power consumption to prolong network lifetime is
very crucial. In this paper, a two-tiered wireless sensor networks has been considered and
an algorithm based on particle swarm optimization (PSO) has been proposed for general
power-consumption constraints. The proposed approach can search for nearly optimal BS
locations in heterogeneous sensor networks, where ANs may own different data
transmission rates, initial energies and parameter values. Finding BS locations is by nature
very similar to finding the food locations originated from PSO. It is thus very easy to model
such a problem by the proposed algorithm based on PSO. Experiments have also been made
to show the performance of the proposed PSO approach and the effects of the parameters on
the results. From the experimental results, it can be easily concluded that the proposed PSO
algorithm converges very fast when compared to the exhaustive search. It can also be easily
extended to finding multiple base stations.

8. Acknowledgement
This research was supported by the National Science Council of the Republic of China under
contract NSC 97-2221-E-390-023. We also like to thank Mr. Cheng-Hsi Wu for his help in
making part of the experiments.

9. References
J. Chou, D. Petrovis and K. Ramchandran, A distributed and adaptive signal processing

approach to reducing energy consumption in sensor networks, The 22nd IEEE
Conference on Computer Communications (INFOCOM), pp. 1054-1062, San Francisco,
USA, March, 2003. [1]

R. C. Eberhart and J. Kennedy, A new optimizer using particles swarm theory, The Sixth
International Symposium on Micro Machine and Human Science, pp. 39-43, Nagoya,
Japan, October, 1995. [2]

R. C. Eberhart and J. Kennedy, Particle swarm optimization, The IEEE International Conference
on Neural Networks, Vol. 4, pp. 1942-1948, Perth, Australia, November, 1995. [3]

Particle Swarm Optimization

274

Z. L. Gaing, Discrete particle swarm optimization algorithm for unit commitment, The IEEE
Power Engineering Society General Meeting, Toronto, Canada, July, 2003. [4]

W. Heinzelman, J. Kulik, and H. Balakrishnan, Adaptive protocols for information
dissemination in wireless sensor networks, The Fifth ACM International Conference on
Mobile Computing and Networking, pp. 174-185, Seattle, USA, August, 1999. [5]

W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, Energy-efficient communication
protocols for wireless microsensor networks, The Hawaiian International Conference on
Systems Science, Hawaii, USA, January, 2000. [6]

C. Intanagonwiwat, R. Govindan and D. Estrin, Directed diffusion: a scalable and robust
communication paradigm for sensor networks, The ACM International Conference on
Mobile Computing and Networking, Boston, USA, August, 2000. [7]

Vikas Kawadia and P. R. Kumar, Power control and clustering in ad hoc networks, The 22nd IEEE
Conference on Computer Communications (INFOCOM), San Francisco, USA, March, 2003. [8]

N. Li, J. C. Hou and L. Sha, Design and analysis of an mst-based topology control algorithm,
The 22nd IEEE Conference on Computer Communications (INFOCOM), San Francisco,
USA, March, 2003. [9]

S. Lee, W. Su and M. Gerla, Wireless ad hoc multicast routing with mobility prediction, Mobile
Networks and Applications, Vol. 6, No. 4, pp. 351-360, 2001. [10]

D. Niculescu and B. Nath, Ad hoc positioning system (APS) using AoA, The 22nd IEEE
Conference on Computer Communications (INFOCOM), pp. 1734-1743, San Francisco,
USA, March, 2003. [11]

J. Pan, Y. Hou, L. Cai, Y. Shi and X. Shen, Topology control for wireless sensor networks, The
Ninth ACM International Conference on Mobile Computing and Networking, pp. 286-299,
San Diego, USA, September, 2003. [12]

J. Pan, L. Cai, Y. T. Hou, Y. Shi and S. X. Shen, Optimal base-station locations in two-tiered
wireless sensor networks, IEEE Transactions on Mobile Computing, Vol. 4, No. 5, pp.
458-473, 2005. [13]

Y. Q. Qin, D. B. Sun, N. Li and Y. G. Cen, Path planning for mobile robot using the particle
swarm optimization with mutation operator, The IEEE Third International Conference on
Machine Learning and Cybernetics, pp. 2473-2478, Shanghai, China, August, 2004. [14]

V. Rodoplu and T. H. Meng, Minimum energy mobile wireless networks, IEEE Journal on
Selected Areas in Communications, Vol. 17, No. 8, 1999. [15]

R. Ramanathan and R. Hain, Topology control of multihop wireless networks using transmit
power adjustment, The 19th IEEE Conference on Computer Communications
(INFOCOM), Tel Aviv, Israel, March, 2000. [16]

Y. Shi and R. C. Eberhart, A modified particle swarm optimizer, The IEEE International
Conference on Evolutionary Computation, pp. 69-73, Anchorage, USA, May, 1998, [17]

A. Stacey, M. Jancic and I. Grundy, Particle swarm optimization with mutation, The IEEE Congress
on Evolutionary Computation, pp. 1425-1430, Canberra, Australia, December, 2003. [18]

D. Tian and N. Georganas, Energy efficient routing with guaranteed delivery in wireless
sensor networks, The IEEE Wireless Communication and Networking Conference, Orleans,
USA, March, 2003. [19]

F. Ye, H. Luo, J. Cheng, S. Lu and L. Zhang, A two-tier data dissemination model for large
scale wireless sensor networks, The ACM International Conference on Mobile Computing
and Networking, Atlanta, USA, September, 2002. [20]

17

Particle Swarm Optimization Algorithm for
Transportation Problems

Han Huang1 and Zhifeng Hao2
1School of Software Engineering, South China University of Technology

 2College of Mathematical Science, South China University of Technology
P. R. China

1. Brief Introduction of PSO
Particle swarm optimization (PSO) is a newer evolutionary computational method than
genetic algorithm and evolutionary programming. PSO has some common properties of
evolutionary computation like randomly searching, iteration time and so on. However,
there are no crossover and mutation operators in the classical PSO. PSO simulates the social
behavior of birds: Individual birds exchange information about their position, velocity and
fitness, and the behavior of the flock is then influenced to increase the probability of
migration to regions of high fitness. The framework of PSO can be described as Figure 1.

Figure 1. The framework of classical PSO

In the optimal size and shape design problem, the position of each bird is designed as
variables x , while the velocity of each bird v influences the incremental change in the

position of each bird. For particle d Kennedy proposed that position dx be updated as:

 1 1
d d d

t t tx x v+ += + (1)

 1 1 1 2 2() ()d d d d g d
t t t t t tv v c r p x c r p x+ = + − + − (2)

Here, d
tp is the best previous position of particle d at time t , while g

tp is the global best

position in the swarm at time t . 1r and 2r are uniform random numbers between 0 and 1,

and 1 2 2c c= = .

1. Initialize K Particles 1 2, ,..., KX X X , calculating 1,..., Kpbest pbest and

gbest , 1t = ;

2. For 1,...,i K= and 1,...,j N= , update particles and use iX to refresh

ipbest and gbest ; (shown as equation 1 and 2)

3. 1t t= + ; If max_t gen> , output gbest and exit; else, return Step 2.

Particle Swarm Optimization

276

2. Particle Swarm Optimization for linear Transportation Problem
2.1 Linear and Balance Transportation Problem
The transportation problem (TP) is one of the fundamental problems of network flow
optimization. A surprisingly large number of real-life applications can be formulated as a
TP. It seeks determination of a minimum cost transportation plan for a single commodity
from a number of sources to a number of destinations. So the LTP can be described as:
Given there are n sources and m destinations. The amount of supply at source i is ia

and the demand at destination j is jb . The unit transportation cost between source i and

destination j is ijc . ijx is the transport amount from source i to destination j , and the

LTP model is:

1 1

min
n m

ij ij
i j

z c x
= =

=∑∑

 s.t.
1

1, 2,...,
m

ij i
j

x a i n
=

≤ =∑ (3)

1
1, 2, ...,

n

i
ij j j mx b

=
=≥∑ .

 0; 1,2,..., ; 1, 2,...,ijx i n j m≥ = =

TP has been paid much attention to and classified into several types of transmutation.
According to the nature of object function, there are four types: (1) linear TP and nonlinear
TP. (2) single objective TP and multi objective. Based on the type of constraints, there are
planar TP and solid TP. The single object LTP dealt with in this paper is the basic model for
other kinds of transportation problems.
A special LTP called balanced LTP is considered as follows:

1 1
min

n m

ij ij
i j

z c x
= =

=∑∑

 s.t.
1

1, 2,...,
m

ij i
j

x a i n
=

= =∑ (4)

1
1,2,...,

n

ij j
i

x b j m
=

= =∑ .

1 1

n m

i j
i j

a b
= =

=∑ ∑

0; 1,2,..., ; 1, 2,...,ijx i n j m≥ = =

Particle Swarm Optimization Algorithm for Transportation Problems

277

The fact that a n m× LTP can be changed into a (1)n m× + balanced LTP, can be found

in operational research because the demand at destination 1m + could be calculated by

1
1 1

n m

m i j
i j

b a b+
= =

= −∑ ∑ with the condition
1 1

n m

i j
i j

a b
= =

≥∑ ∑ .

2.2 Initialization of PSO for Linear and Balance Particle Swarm Optimization

A particle
11 1

1

...
...

...

m

n nm

x x
X

x x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 stands for a solution to LTP. There are nm particles

initialized to form nm initial solutions in the initialization. Every element of set N can be
chosen as the first assignment to generate the solutions dispersedly, which is good for
obtaining the optimal solution in the iteration.
If a LTP is balanced, the following procedure can be used to obtain an initial solution:

program GetOnePrimal (var X: Particle, first: int)
var i,j,k: integer;
 N: Set of Integer;
begin
 k :=0;

N := {1,2,…,nm};
repeat

if k=0 then
k:=first ;

else
k:= a random element in N;

i := (k -1)/m + 1⎢ ⎥⎣ ⎦ ;

j := ((k-1) mod m) +1;
xij := min {ai, bj};
ai := ai - xij;
bi := bi - xij;
N := N \ {k};

until N is empty
end.

Particle Swarm Optimization

278

And the initialization of PSO-TP can be designed as follows:

program Initialization
 var i : integer;
 begin
 Get a balanced LTP;

i := 1;
repeat

GetOnePrimal (Xi, i);
i := i+1;

until i > nm
end.

2.3 Updating Rule of PSO for Linear and Balance Particle Swarm Optimization
In PSO algorithm, a new solution can be obtained by using the position updating rule as
equations 2 and 3. However, the classical rule is unable to meet such constraints of TP as

1

m

ij i
j

x a
=

=∑ and
1

n

ij j
i

x b
=

=∑ . A new rule is designed to overcome this shortcoming. For

particle d , we propose that position dX (n m×) be updated as

 1 2

1 2 1 2
1

() () 0
[() ()] 0

t t t t

t t t t t

d d g d
d

t d d d g d
P X P X t

V
V P X P X t
ϕ ϕ

λ λ ϕ ϕ+
⎧ − + − =

= ⎨ + − + − >⎩
 (5)

 1 1
d d d

t t tX V X+ += + (6)

where t t
g dP X≠ and t t

d dP X≠ .

If t t
g dP X= and t t

d dP X≠ , 1 1ϕ = . If t t
g dP X≠ and t t

d dP X= , 2 1ϕ = . If

t t
g dP X= and t t

d dP X= , 1 1λ = .
d

tP (n m×) is the best previous position of particle d at time t , while g
tP (n m×) is the

global best position in the swarm at time t . 1ϕ and 2ϕ are uniform random numbers in (0,

1), meeting 1 2 1ϕ ϕ+ = , while 1λ is a uniform random number between [0.8, 1.0) and

2 11λ λ= − .

0,if t = 1 1
d d d

t t tX V X+ += +

1 2() ()d d g d d
t t t t tP X P X Xϕ ϕ= − + − + 1 2 1 2() ()d g d d d

t t t t tP P X X Xϕ ϕ ϕ ϕ+ − + +=

Particle Swarm Optimization Algorithm for Transportation Problems

279

1
(1)

m
d

ij
j

x t
=

+∑

1 2 1 2
1 1 1 1 1

() () (() ()) ()
m m m m m

d g d d d
ij ij ij ij ij

j j j j j

p t p t x t x t x tϕ ϕ ϕ ϕ
= = = = =

= + − + +∑ ∑ ∑ ∑ ∑
1 2 1 2()i i i i i ia a a a a aϕ ϕ ϕ ϕ= + − + + =

1

(1)
n

d
ij

i

x t
=

+∑

1 2 1 2
1 1 1 1 1

() () (() ()) ()
n n n n n

d g d d d
ij ij ij ij ij

i i i i i

p t p t x t x t x tϕ ϕ ϕ ϕ
= = = = =

= + − + +∑ ∑ ∑ ∑ ∑
1 2 1 2()j j j j j jb b b b b bϕ ϕ ϕ ϕ= + − + + =

,0if t >

1
d

tX + 1
d d

t tV X+= +

1 2 1 2[() ()]d d d g d d
t t t t t tV P X P X Xλ λ ϕ ϕ= + − + − +

1 2 1 2 1 2[() ()]d d g d d d
t t t t t tV P P X X Xλ λ ϕ ϕ ϕ ϕ+ + − + +=

1 1 2 1 2 1 2() [() ()]d d d g d d d
t t t t t t tX X P P X X Xλ λ ϕ ϕ ϕ ϕ−= − + + − + +

1
(1)

m
d

ij
j

x t
=

+∑ 1 2 1 2 1 2
1 1

(() (1)) (())
m m

d d
ij ij i i i i i

j j

x t x t a a a a aλ λ ϕ ϕ ϕ ϕ
= =

− − + + − + += ∑ ∑

1() 0i i i ia a a aλ= − + + =

1
(1)

n
d

ij
i

x t
=

+∑

1 2 1 2 1 2
1 1

(() (1)) (())
n n

d d
ij ij j j j j j

i i
x t x t b b b b bλ λ ϕ ϕ ϕ ϕ

= =

− − + + − + += ∑ ∑

1() 0j j j jb b b bλ − + + ==

Particle Swarm Optimization

280

Therefore, 1
d

tX + would meet the condition that
1

(1)
m

d
ij i

j

x t a
=

+ =∑ and

1
(1)

n
d

ij j
i

x t b
=

+ =∑ with the function of Formulae 5 and 6. However, the new rule cannot

ensure the last constraint that 0, 1,.., , 1,...,ijx i n j m≥ = = . In the following section, an

extra operator is given to improve the algorithm.

2.4 Negative Repair Operator
A particle of PSO-TP (Formula 7) will be influenced by the negative repair operator if

0, 1,..., , 1,...,kix k n i m< = = , which is indicated as follows:

11 1 1

1

1

1

... ...
...

... ...
...

... ...

...

... ...

i m

k ki km

l li lm

nmnin

x x x

x x x
X

x x x

x x x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

 （7）

program RepairOnePos (var X: Particle, k,i: int)
begin
 select the maximum element signed as lix in Col. i;

0 : kix x= , 0:li lix x x= − , : 0kix = ;

change elements in Row.k into
0

0
:

0

kj kj

kj
kj kj

x x
x x

x x
u

⎧
⎪
⎨
⎪
⎩

=
=

− >
;

(u is the number of times when the following condition 0, 1,...,kjx j m> = is met)

change elements in Row. l into
0

0
:

0

lj kj

lj
lj kj

x x
x x

x x
u

⎧
⎪
⎨
⎪
⎩

=
=

+ >
;

end.

Particle Swarm Optimization Algorithm for Transportation Problems

281

As a result, the procedure of negative repair operator can be described as:

program NegativeRepair (var X: Particle)
var i,j: integer;
begin
 if some element of X is negative then

repeat
 If xij<0 is found then

RepairOnePos (X, i, j);
until Every element of X is not negative

end.

2.5 PSO Mutation
Mutation is a popular operator in Genetic Algorithm, and a special PSO mutation is
designed to help PSO-TP change the partial structure of some particles in order to get new
types of solution. PSO-TP cannot fall into the local convergence easily because the mutation
operator can explore the new solution.

program PSOMutation (var X: Particle)
begin
 Obtain p and q randomly meeting 0<p<n and 0<q<m;

 Select p rows {i1,…ip} and q lines {j1,…jq} randomly from matrix X to form a small matrix
Y (yij,i=1,…,p,j=1,…,q);

1{ },...,

y
i ij

j qj j
a x

∈
= ∑ (1,..., pi i i=)

1{ },...,

y
j ij

i pi i
b x

∈
= ∑ (1,..., qj j j=)

Use a method like the one in initialization to form the initial assignment for Y;
 Update X with Y;

end.

2.6 The Structure of PSO-TP
According to the setting above, the structure of PSO-TP is shown as:

program PSO-TP (problem: balanced LTP of n×m size, pm: float)
var t:integer;
begin

t:=0;
Initialization;

Particle Swarm Optimization

282

Obtain 0
gP (n m×) and 0

dP (n m×)(d=1,…,n×m);

repeat
t:=t+1;

Calculate d
tX with Formula 5 and 6 (d=1,…,n×m);

NegativeRepair(d
tX)(d=1,…,n×m);

Carry out PSOMutation(d
tX) by the probability pm;

Update g
tP (n m×) and d

tP (n m×)(d=1,…,n×m);

until meeting the condition to stop
end.

3. Numerical Results
There are two experiments in this section: one is comparing PSO-TP with genetic algorithm
(GA) in some integer instances and the second is testing the performance of PSO-TP in the
open problems. Both of the experiments are done at a PC with 3.06G Hz, 512M DDR
memory and Windows XP operating system. GA and PSO-TP would stop when no better
solution could be found in 500 iterations, which is considered as a virtual convergence of the
algorithms. The probability of mutation in PSO-TP is set to be 0.05.

Problem\
five runs

PSO-TP
Min

PSO-TP
Ave

GA
Min

GA
Ave

PSO-TP
Time(s)

GA
Time(s)

P1 (3*4) 152 152 152 153 0.015 1.72

P2 (4*8) 287 288 290 301 0.368 5.831

P3 (3*4) 375 375 375 375 0.028 0.265

P4 (3*4) 119 119 119 119 0.018 1.273

P5 (3*4) 85 85 85 85 0.159 0.968

P6*(15*20) 596 598 - - 36.4 -

Table 1. Comparison Between PSO-TP and GA

As Table 1 shows, both the minimum cost and average cost obtained by PSO-TP are less
than those of GA. Furthermore, the time cost of PSO-TP is much less than that of GA. In
order to verify the effectiveness of PSO-TP, 9 real number instances are computed and the
results are shown in Table 2. Since GA is unable to deal with the real number LTP directly,
only PSO-T is tested.

Particle Swarm Optimization Algorithm for Transportation Problems

283

Problem\five runs Optimal Value PSO-TP Average PSO-TP Time(s)

No.1 67.98 67.98 0.02

No.2 1020 1020 0.184

No.4 13610 13610 0.168

No.5 1580 1580 0.015

No.6 98 98 0.023

No.7 2000 2000 0.015

No.8 250 250 <0.001

No.9 215 215 0.003

No.10 110 110 0.012

Table 2. Performance of PSO-TP in open problems

According to the results in Table 2, PSO-TP can solve the test problems very quickly. The
efficiency of PSO-TP may be due to the characteristic of PSO algorithm and the special
operators. Through the function of the new position updating rule and negative repair
operator, the idea of PSO is introduced to solve LTP successfully. The nature of PSO can
accelerate the searching of the novel algorithm, which would also enable PSO-TP to get the
local best solution. What’s more, the PSO mutation as an extra operator can help PSO-TP to
avoid finishing searching prematurely. Therefore, PSO-TP can be a novel effective algorithm
for solving TP.

4. Particle Swarm Optimization for Non-linear Transportation Problem
4.1 Non-linear and Balance Transportation Problem
The unit transportation cost between source i and destination j is ()ij ijf x where ijx is

the transportation amount from source i to destination j , and TP model is:

1 1
min ()

n m

ij ij
i j

z f x
= =

=∑∑

 s.t.
1

1, 2,...,
m

ij i
j

x a i n
=

≤ =∑ (8)

1

1, 2 , ...,
n

i
ij j j mx b

=
=≥∑ .

 0; 1,2,..., ; 1, 2,...,ijx i n j m≥ = =

Particle Swarm Optimization

284

According to the nature of object function, there are four types: linear TP in which the
function ()ij ijf x is linear and nonlinear TP in which ()ij ijf x is non-linear, as well as

single objective and multi-objective TP. Based on the types of constraints, there are planar
TP and solid TP. The single object NLTP is dealt with in this paper. In many fields like
railway transportation, the relation between transportation amount and price is often non-
linear, so NLTP is an important for application.

4.2 Framework of PSO for Non-linear TP

In the population of PSO-NLTP, an individual
11 1

1

...
...

...

m

i

n nm

x x
X

x x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 stands for a solution

to NLTP (Exp. 2), where n m× is the population size. There are n m× individuals
initialized to form n m× initial solutions in the initialization. The initialization and
mutation are the same as the ones in PSO-LTP (Section 2.2 and 2.5).
And the framework of PSO-NLTP is given:

Algorithm: PSO-NLTP
Input: NLTP problem (Exp. 8)
begin

Initialization;
Setting parameters;

repeat
Updating rule;
Mutation;
Updating the current optimal solution

until meeting the condition to stop
end.
Output: Optimal solution for NLTP

In the parameter setting, The parameters of PSO-NLTP are all set adaptively: as the
population size is n m× , the size of mutation matrix Y is set randomly meeting 0<p<n and

0<q<m and the mutation probability mP is calculated by 0.005m tP N= × , where 1tN =

when ()t
bestX is updated and 1t tN N= + when ()t

bestX remains the same as (1)t
bestX − .

4.3 Updating Rule of PSO-NLTP
As one of the important evolutionary operator, recombination is designed to optimize the

individuals and make them meet the constraints of supply and demand as
1

m

ij i
j

x a
=

=∑ and

Particle Swarm Optimization Algorithm for Transportation Problems

285

1

n

ij j
i

x b
=

=∑ (Exp. 4). At the beginning of an iteration, every individual is recombined by the

following expression.

 (1) () () ()
1 2 3

t t t t
i i best randomX X X Xϕ ϕ ϕ+ = + + (9)

()t
bestX is the best particle found by PSO-NLTP form iteration 0 to t . ()t

randomX is the
particle formed randomly (by sub-algorithm GetOnePrimal in section 2.2) for the updating

rule of ()t
iX . 1ϕ , 2ϕ and 3ϕ are the weight terms meeting 1 2 3 1ϕ ϕ ϕ+ + = , which are

calculated as Exp 4-6 show, where ())(t
if X is the cost of the solution for TP (Exp. 4).

 ()1 1 1 1() () () ()
1) /)))((((t t t t

i i best randomf X f X f X f Xϕ − − − −+ += (10)

 ()1 1 1 1() () () ()
2) /)))((((t t t t

ibest best randomf X f X f X f Xϕ − − − −+ += (11)

 ()1 1 1 1() () () ()
3) /)))((((t t t t

irandom best randomf X f X f X f Xϕ − − − −+ += (12)

(1)t
iX + can be considered as a combination of ()t

iX , ()t
bestX and ()t

randomX based on
the their quality, and proved to meet the constraints of supply and demand.

(1)

1

m
t

ij
j

x +

=

=∑
1

() () ()
1 2 3, , , ,)(

m

j

t t t
ij i j best i j randomx x xϕ ϕ ϕ

=

+ +∑

1 1 1

() () ()
1 2 3, , , ,

m m m

j j j

t t t
ij i j best i j randomx x xϕ ϕ ϕ

= = =

= + +∑ ∑ ∑

 1 2 3i i i ia a a aϕ ϕ ϕ= + + = (1,...,i n=)

(1)

1

n
t

ij
i

x +

=

=∑
1

() () ()
1 2 3, , , ,)(

n

i

t t t
ij i j best i j randomx x xϕ ϕ ϕ

=

+ +∑

1 1 1

() () ()
1 2 3, , , ,

n n n

i i i

t t t
ij i j best i j randomx x xϕ ϕ ϕ

= = =

= + +∑ ∑ ∑

 1 2 3j j j jb b b bϕ ϕ ϕ= + + = (1,...,j m=)

Particle Swarm Optimization

286

Furthermore, the recombination rule can also ensure the positive constraint that
(1) () () ()

1 2 3, , , , 0, 1,.., , 1,...,t
ij

t t t
ij i j best i j randomx i n j mx x xϕ ϕ ϕ+ = ≥ = =+ + .

4.4 Numerical Results
There are 56 NLTP instances computed in the experiment, of which the results are shown in
this section. The experiment is done at a PC with 3.06G Hz, 512M DDR memory and
Windows XP operating system. The NLTP instances are generated by replacing the linear
cost functions of the open problems with the non-linear functions. The methods which are
effective for linear TP cannot deal with NLTP for the complexity of non-linear object
function. The common NLTP cost functions are indicated in Table 1.

Problem Transportation Cost Functions

No.1 2()ij ij ij ijf x c x=

No.2 ()ij ij ij ijf x c x=

No.3
() , 0

() , 2

2
(1) , 2

ij
ij ij

ij ij ij ij

ij
ij ij

x
c if x S

S
f x c if S x S

x S
c if S x

S

⎧
≤ <⎪

⎪⎪= < ≤⎨
⎪ −⎪ + <
⎪⎩

No.4 5() [sin() 1]
4ij ij ij ij ijf x c x x

S
π= +

Table 3. NLTP cost functions [15]

The comparison between PSO-NLTP and EP with penalty strategy only indicates whether
the recombination of PSO-NLTP is better at dealing with the constraints of NLTP (Exp. 8)
than penalty strategy of EP. There cannot be any conclusion that PSO-NLTP or EP is better
than the other because they are the algorithms for different applications. The three
algorithms are computed in 50 runs independently, and the results are in Table 4 and Table
5. They would stop when no better solution could be found in 100 iterations, which is
considered as a virtual convergence of the algorithms.
NLTP instances in Table 4 are formed with the non-linear functions (shown in Table 3) and
the problems. And the instances in Table 5 are formed with the non-linear functions and the

problems. We set
1

/10
n

i
i

S a
=

=∑ in function No.3 and 1S = in function No.4 in the

experiment.

Particle Swarm Optimization Algorithm for Transportation Problems

287

Problem PSO-NLTP
Average

GA
Average

EP
Average

PSO-NLTP
Time(s)

GA
Time(s)

EP
Time(s)

No.1-1 8.03 8.10 8.36 0.093 0.89 0.109
No.1-2 112.29 114.25 120.61 0.11 0.312 0.125
No.1-4 1348.3 1350.8 1476.1 0.062 0.109 0.078
No.1-5 205.9 206.3 216.1 0.043 0.125 0.052
No.1-6 12.64 12.72 13.53 0.062 0.75 0.078
No.1-7 246.9 247.6 256.9 0.088 0.32 0.093
No.1-8 84.72 84.72 87.5 <0.001 0.015 <0.001
No.1-9 44.64 44.65 46.2 <0.001 0.046 <0.001
No.1-10 24.85 24.97 25.83 <0.001 0.032 <0.001
No.2-1 155.3 155.3 168.5 <0.001 0.016 <0.001
No.2-2 2281.5 2281.5 2696.2 <0.001 0.015 <0.001
No.2-4 28021 28021 30020.2 <0.001 0.015 <0.001
No.2-5 3519.3 3520.4 3583.1 <0.001 0.015 <0.001
No.2-6 264.9 266.5 314.4 <0.001 0.015 <0.001
No.2-7 4576.9 4584.5 5326.0 0.009 0.052 0.012
No.2-8 432.8 432.8 432.8 <0.001 0.015 <0.001
No.2-9 386.3 386.3 386.3 <0.001 0.031 <0.001
No.2-10 195.3 195.3 226.0 <0.001 0.006 <0.001
No.3-1 309.9 310.0 346.6 <0.001 0.093 0.001
No.3-2 4649.2 4650 5415.2 <0.001 0.921 0.012
No.3-4 65496.7 66123.3 68223.3 <0.001 0.105 <0.001
No.3-5 7038.1 7066.6 7220.9 <0.001 1.015 0.001
No.3-6 540 540 672.5 0.001 0.062 0.002
No.3-7 9171.0 9173.2 9833.3 <0.001 0.312 <0.001
No.3-8 1033.4 1033.4 1066.7 <0.001 0.012 <0.001
No.3-9 933.3 933.4 1006.4 0.002 0.147 0.015
No.3-10 480 480 480 0.016 0.046 0.004
No.4-1 107.6 107.8 118.2 0.063 0.159 0.078
No.4-2 1583.5 1585.2 1622 0.062 0.285 0.093
No.4-4 19528.4 19531.3 20119 0.075 0.968 0.068
No.4-5 2466.9 2468.2 2880.2 0.072 0.625 0.046
No.4-6 151.7 152.1 161.9 0.093 1.046 0.167
No.4-7 3171.1 3173.8 3227.5 0.047 0.692 0.073
No.4-8 467.1 467.1 467.1 <0.001 0.036 <0.001
No.4-9 376.3 376.3 382.5 <0.001 0.081 0.003
No.4-10 205.9 205.9 227.6 0.026 0.422 0.031

Table 4. Comparison I between PSO-NLTP, GA and EP with penalty strategy

Particle Swarm Optimization

288

Problem PSO-NLTP
Average

GA
Average

EP
Average

PSO-NLTP
Time(s)

GA
Time(s)

EP
Time(s)

No.1-11 1113.4 1143.09 1158.2 0.031 0.065 0.046
No.1-12 429.3 440.3 488.3 0.187 1.312 0.203
No.1-13 740.5 740.5 863.6 0.09 2.406 0.781
No.1-14 2519.4 2529.0 2630.3 0.015 0.067 0.016
No.1-15 297.2 297.9 309.2 0.046 0.178 0.058
No.1-16 219.92 220.8 234.6 0.040 1.75 0.060
No.2-11 49.7 51.9 64.2 <0.001 0.001 <0.001
No.2-12 78.4 78.4 104.5 0.001 0.025 <0.001
No.2-13 150.2 150.4 177.9 <0.001 0.015 <0.001
No.2-14 118.6 118.2 148.4 <0.001 0.001 <0.001
No.2-15 64.5 64.5 64.5 <0.001 0.031 <0.001
No.2-16 47.1 47.8 53.4 <0.001 0.015 <0.001
No.3-11 13.3 13.3 13.3 0.015 0.734 0.031
No.3-12 21.0 21.0 26.3 0.018 0.308 0.036
No.3-13 37.2 37.4 43.5 0.171 1.906 0.156
No.3-14 37.5 37.8 46.7 0.011 0.578 0.008
No.3-15 28.3 28.1 33 0.009 0.325 0.013
No.3-16 22.5 23.0 29.6 <0.001 0.059 0.015
No.4-11 8.6 8.8 37.4 0.001 0.106 0.001
No.4-12 20.0 23.1 40.8 0.253 2.328 0.234
No.4-13 49.0 52.3 72.1 0.109 2.031 0.359
No.4-14 47.7 51.2 82.2 0.003 0.629 0.006
No.4-15 11.97 12.06 36.58 0.019 0.484 0.026
No.4-16 2.92 3.08 8.1 0.031 0.921 0.045

Table 5. Comparison II between PSO-NLTP, GA and EP with penalty strategy

As Table 4 and Table 5 indicate, PSO-NLTP performs the best of three in the items of
average transportation cost and average computational cost. The NLTP solutions found by
EP with penalty strategy cost more than PSO-NLTP and GA, which indicates recombination
of PSO-NLTP and crossover of GA handle the constraints of NLTP (Exp. 4) better than the
penalty strategy. However, EP with penalty strategy cost less time than GA to converge
because the crossover and mutation operator of GA is more complicated. PSO-NLTP can
cost the least to obtain the best NLTP solution of the three tested methods. Its recombination
makes the particles feasible and evolutionary for optimization. The combination of updating
rule and mutation operators can play a part of global searching quickly, which makes PSO-
NLTP effective for solving NLTPs.

Particle Swarm Optimization Algorithm for Transportation Problems

289

5. Discussions and Conclusions
Most of the methods that solve linear transportation problems well cannot handle the non-
linear TP. An particle swarm optimization algorithm named PSO-NLTP is proposed in the
present paper to deal with NLTP. The updating rule of PSO-NLTP can make the particles of
the swarm optimally in the feasible solution space, which satisfies the constraints of NLTP.
A mutation operator is added to strengthen the global optimal capacity of PSO-NLTP. In the
experiment of computing 56 NLTP instances, PSO-NLTP performs much better than GA
and EP with penalty strategy. All of the parameters of PSO-NLTP are set adaptively in the
iteration so that it is good for the application of the proposed algorithm. Moreover, PSO-
NLTP can also solve linear TPs.
The design of the updating rule of PSO can be considered as an example for solving
optimization problems with special constraints. The operator is different from other
methods such as stochastic approach, greedy decoders and repair mechanisms, which are to
restrict the searching only to some feasible sub-space satisfying the constraints. It uses both
the local and global heuristic information for searching in the whole feasible solution space.
Furthermore, through the initial experimental result, it performs better than the penalty
strategy which is another popular approach for handling constraints.

6. References
Papamanthou C., Paparrizos K., and Samaras N., Computational experience with exterior

point algorithms for the transportation problem, Applied Mathematics and
Computation, vol. 158, pp. 459-475, 2004. [1]

Vignaux G.A. and Michalewicz Z., A genetic algorithm for the linear transportation
problem, IEEE Transactions on Systems, Man, and Cybernetics, vol. 21, no. 2,
MARCWAPRIL, pp.445-452, 2004. [2]

Hitchcock F., The distribution of a product from several sources to numerous location,
Journal of Mathematical Physics, vol. 20, pp. 224-230, 1941. [3]

Michalewicz Z., et al, A non-Standard Genetic Algorithm for the Nonlinear Transportation
Problems, ORSA Journal on Computing, vol. 3, no. 4, pp.307-316, 1991. [4]

Li Y.Z., Ida K.C. and Gen M., Improved genetic algorithm for solving multi objective solid
transportation problem with fuzzy numbers, Computers ind. Engng, vol. 33, no.3-4,
pp. 589-592, 1997. [5]

Gen M., et al, Solving bicriteria solid transportation problem by genetic algorithms,
Proceedings of the 16th International Conference on computers and industrial engineering,
Ashikaga, Japan, pp.572-575, 1994. [6]

Dantzig G.B., Application of the simplex method to a transportation problem, in: T.C.
Koopmans (Ed.), Activity of production and application, John Wiley & Sons, NY, pp.
359-373, 1951. [7]

Orlin J.B., Plotkin S.A. and Tardos E., Polynomial dual network simplex algorithms, Math.
Program, vol. 60, pp. 255-276, 1993. [8]

Paparrizos K., An exterior point simplex algorithm for general linear problems, Ann. Oper.
Res., vol. 32, pp. 497-508, 1993. [9]

Papamanthou C., Paparrizos K. and Samaras N., Computational experience with exterior
point algorithms for the transportation problem, Applied Mathematics and
Computation, vol. 158, pp. 459-475, 2004. [10]

Particle Swarm Optimization

290

Sharma R.R.K. and Sharma K.D., A new dual based procedure for the transportation
problem, European Journal of Operational Research, vol. 122, pp. 611-624, 2000. [11]

Yang X. and Gen M., Evolution program for bicriteria transportation problem, Proceedings of
the 16th International Conference on computers and industrial engineering, Ashikaga,
Japan, pp. 451-454, 1994. [12]

Kennedy J. and Eberhart R.C., Particle swarm optimization, in Proc IEEE Int. Conf. Neural
Networks, Perth, Austalia,pp. 1942-1948, Nov. 1995. [13]

Kennedy J., The particle swarm: Social adaptation knowledge, in Proc. 1997 Int. Conf.
Evolutionary Computation, Indianapolis, IN, pp. 303-308, Apr. 1997. [14]

Fourie P.C. and Groenwold A.A., The particle swarm optimization algorithm in size and
shape optimization, Struct Multidisc Optim, vol. 23, pp. 259-267, 2000. [15]

Shi Y.H. and Eberhart R.C., A modified particle swarm optimizer, Proc. Int. Conf. On
Evolutionary Computation, pp.69-73, 1998. [16]

18

A Particle Swarm Optimisation Approach to
Graph Permutations

Omar Ilaya and Cees Bil
RMIT University

Australia

1. Introduction
In many real-world applications, the arrangement, ordering, and selection of a discrete set of
objects from a finite set, is used to satisfy a desired objective. The problem of finding optimal
configurations from a discrete set of objects is known as the combinatorial optimisation
problem. Examples of combinatorial optimisation problems in real-world scenarios include
network design for optimal performance, fleet management, transportation and logistics,
production-planning, inventory, airline-crew scheduling, and facility location.
While many of these combinatorial optimisation problems can be solved in polynomial time,
a majority belong to the class of NP -hard (Aardal et al., 1997). To deal with these hard
combinatorial optimisation problems, approximation and heuristic algorithms have been
employed as a compromise between solution quality and computational time (Festa and
Resende, 2008). This makes heuristic algorithms well-suited for applications where
computational resources are limited. These include dynamic ad-hoc networks, decentralised
multi-agent systems, and multi-vehicle formations. The success of these heuristic algorithms
depends on the computational complexity of the algorithm and their ability to converge to
the optimal solution (Festa and Resende, 2008). In most cases, the solutions obtained by
these heuristic algorithms are not guaranteed optimal.
A recently developed class of heuristic algorithms, known as the meta-heuristic algorithms,
have demonstrated promising results in the field of combinatorial optimisation. Meta-
heuristic algorithms represent the class of all-purpose search techniques that can be applied
to a variety of optimisation problems including combinatorial optimisation. The class of
meta-heuristic algorithms include (but not restricted to) simulated annealing (SA), tabu
search, evolutionary algorithms (EA) (including genetic algorithms), ant colony
optimisation (ACO) (Aguilar, 2001), bacterial foraging (Passino, 2002), scatter search, and
iterated local search.
Recently, a new family of computationally efficient meta-heuristic algorithms better posed
at handling non-linear constraints and non-convex solution spaces have been developed.
From this family of meta-heuristic algorithms, is particle swarm optimisation (PSO)
(Kennedy and Eberhart, 1995). Like other biologically inspired meta-heuristic algorithms,
PSO is an adaptive search technique that is based on the social foraging of insects and
animals. In PSO, a population of candidate solutions are modelled as a swarm of particles.
At each iteration, the particles update their position (and solution) by moving stochastically

Particle Swarm Optimization

292

towards regions previously visited by the individual particle and the collective swarm. The
simplicity, robustness, and adaptability of PSO, has found application in a wide-range of
optimisation problems over continuous search spaces. While PSO has proven to be
successful on a variety of continuous functions, limited success has been demonstrated to
adapt PSO to more complex richer spaces such as combinatorial optimisation.
In this chapter, the concepts of the standard PSO model are extended to the discrete
combinatorial space and a new PSO is developed to solve the combinatorial optimisation
problem. The chapter is organised as follows: In Section 2, a brief review of related works to
solving the combinatorial optimisation space using meta-heuristics is presented. In Section
3, the standard PSO model is introduced. The nature of the combinatorial optimisation
problem is then presented in Section 4 before the concepts of the standard PSO model are
adapted to the combinatorial space in Section 5. Section 6 analyses the stability and
performance of the newly developed algorithm. The performance of the newly developed
algorithm is then compared to the performance of a traditional genetic algorithm in Section
7 before Section 8 concludes with final remarks.

2. Related Works
In recent years, variants of traditional PSO have been used to solve discrete and
combinatorial optimisation problems. A binary PSO was first developed in (Kennedy and
Eberhart, 1997) to solve discrete optimisation problems. In the binary PSO, each particle
encoded a binary string in the solution space. A particle moved according to a probability
distribution function determined using the Hamming distance between two points in the
binary space. The early concepts introduced by the binary PSO appeared in later PSO
algorithms for combinatorial optimisation such as in (Shi et al., 2006); (Tasgetiren et al.,
2004); (Liu et al., 2007b); (Pang et al., 2004); (Martínez García and Moreno Pérez, 2008); (Song
et al., 2008); and (Wang et al., 2003). Tasgetiren et al. (Tasgetiren et al., 2004) introduced the
smallest position value rule (SPV) to enable the continuous PSO algorithm to be applied the
class of sequencing and combinatorial problems. In SPV, each particle assigns a position
value in continuous space to each dimension in the discrete space. At each iteration, the
position value is updated according to the traditional velocity update equation and the
sequence of objects is re-sorted according to the values assigned to the continuous space.
The method proposed by (Tasgetiren et al., 2004) is similar to the random keys in GA (Bean,
1994). Following a similar method to (Kennedy and Eberhart, 1997), Wang et al. (Wang et
al., 2003) introduced the concept of a swap operator to exchange dimensions in the particle
position. In (Wang et al., 2003), each particle encoded a permutation of objects and a
transition from one position to the next was achieved by exchanging elements in the
permutation. To account for both the personal best positions and global best positions,
Wang et al. extended the concept of swap operator to swap sequence. The swap sequence
was used to move a particle from one position to the next by successively applying a
sequence of swap operators. Using this approach, the notion of velocity on the
combinatorial space was defined; and the Hamming distance was used to exclusively
determine the motion of a particle. Premature convergence was addressed by randomly
applying the swap operator to the particle. Similar approaches to Wang et al. include (Shi et
al., 2006); (Martínez García and Moreno Pérez, 2008); and (Bonyadi et al., 2007), where a
swap sequence was also constructed through the concatenation of successive swap
operators. The ordering of these swap operators influences the position of the particle at the

A Particle Swarm Optimisation Approach to Graph Permutations

293

end of each iteration. In (Wang et al., 2003); (Shi et al., 2006); (Martínez García and Moreno
Pérez, 2008); and (Bonyadi et al., 2007), the swap sequence is constructed by first applying
the swap operators that move the particle to it’s personal best, followed by the swap
operators that move the particle to it’s global best. For sufficiently small perturbations, the
particles will tend towards the global best position of the swarm and stimulate the loss of
solution diversity. This invariably leads to the rapid convergence of the algorithm and poor
solution quality. For large complex optimisation problems, the PSO must compromise the
local and global search strategies effectively to find high-quality (if not optimal) solutions
rapidly. In addition, the PSO framework must be sufficiently robust to adapt to a wide
variety of discrete and combinatorial optimisation problems. In this chapter, a generalised
combinatorial optimisation framework is introduced that builds on the works of (Wang et
al., 2003); (Shi et al., 2006); (Tasgetiren et al., 2004); and (Kennedy and Eberhart, 1997) to
develop a new combinatorial optimisation PSO. In the following section, a brief introduction
into the traditional PSO is presented before the main results of this chapter are developed.

3. The Standard Particle Swarm Optimisation Model
Let P denote a D -dimensional problem, and R→Xxf :)(an objective function for the
problem that maps X to the set of real numbers. Without loss of generality, consider the
following optimisation problem)(minarg xfxXx Xx∈

∗∗ =⇔∈ Xx ∈∀ . In traditional PSO, a
solution i is represented by a particle in a swarm P moving through D -dimensional space
with position vector))(,),(,),1((Dxdxxx i

k
i
k

i
k

i
k KK= for any time k . At each iteration, the

particles adjust their velocity i
kv along each dimension according to the previous best

position of the i -th particle i
kp and the best position of the collective swarm g

kp (see Fig. 1).
The position i

kx for the i -th particle is updated according to the following velocity function:

)()(22111
i
k

g
k

i
k

i
k

i
k

i
k xprcxprcvwv −⋅⋅+−⋅⋅+⋅=+ (1a)

 i
k

i
k

i
k vxx +=+1 (1b)

where]1,0[, 21 ∈rr are random variables affecting the search direction, R∈21,cc are
configuration parameters weighting the relative confidence in the personal best solutions
and the global best solutions respectively, and w is an inertia term influencing the
momentum along a given search direction. Algorithm 1 summarises the iterative nature of
the PSO algorithm.
The terms 1c and 2c are the main configuration parameters of the PSO that directly influence
the convergence of the algorithm. For large values of 1c , exploration of particles is bounded
to local regions of the best previously found solutions i

kp . This maintains population
diversity and is favourable when the problem is characterised by non-linear and non-convex
solution spaces. In contrast, large 2c values will encourage particles to explore regions closer
to the global best solution g

kp at each iteration. Generally, this search strategy will converge
faster and is practical for convex solution spaces with unique optima. Adjusting the inertia
term w affects the relative weighting of the local and global searches. A large w encourages
the particles to explore a larger region of the solution space at each iteration and maximise

Particle Swarm Optimization

294

global search ability, whilst a smaller w will restrict the particles to local search at each
iteration (Shi and Eberhart, 1998b).

x1

x 2

Iteration k

18 20 22 24 26 28 30 32 34 36 38

14

16

18

20

22

24

26

28

30

32

-350

-300

-250

-200

-150

-100

-50

0

50

100

x*

vk+1
i =w×+c1

×r1×(pk
i -xk

i)+c2
×r2×(pk

g-xk
i)

pk
g

xk
i

w×vk
i

c1
×r1×(pk

i -xk
i)

c2
×r2×(pk

g-xk
i)

vk
i

pk
i

xk+1
i

Figure 1. Particle position and velocity on a two-dimensional vector space

0: for all particle i do
1: initialise position i

kx randomly in the search space
2: end for
3: while termination criteria not satisfied do
4: for all particle i do
5: set personal best i

kp as the best position found by the particle so far
6: set global best g

kp as the best position found by the swarm so far
7: end for
8: for all particle i do
9: update velocity according to
)()(22111

i
k

g
k

i
k

i
k

i
k

i
k xprcxprcvwv −⋅⋅+−⋅⋅+⋅=+

10: update position according to
 i

k
i
k

i
k vxx +=+1

11: end for
12: end while

Algorithm 1. Traditional PSO

4. Problem Description and Model Construction

The combinatorial optimisation problem for PSO is now discussed. Let },,,,{ 21 KK ixxxX =
denote the finite set of solutions to the combinatorial optimisation problem with objective
function R→Xf : . Assume the objective of the combinatorial optimisation problem is to
find Xx ∈∗ , such that)(minarg xfxXx Xx∈

∗∗ =⇔∈ Xx ∈∀ . Consider the case where a

A Particle Swarm Optimisation Approach to Graph Permutations

295

solution Xxi ∈ to the combinatorial optimisation problem is given by the linear ordering of
elements in the set },,2,1{][nn K= , such that Xxi ∈∀ , },,2,1{))(,),2(),1((nnxxxx iiii KK ∈= .
Then !nX = . Each integer value in the list encodes the relative ordering of a set of objects
and is referred to as a permutation of objects (Bóna, 2004). These include cities in a tour,
nodes in a network, jobs in a schedule, or vehicles in a formation. For convenience, a
permutation is represented using two-line form. Let][][: ndg → be a bijection on the ordered
list. If][n describes the list of numbers },,1{][nn K= , then },,1{][nd K= and g is also a
permutation of the set][n (Bóna, 2004).
Example 1.
As an example, consider the following permutation }2,5,1,4,3{ . The function]5[]5[: →g
defined by 3)1(=g , 4)2(=g , 1)3(=g , 5)4(=g , and 2)5(=g is also permutation of]5[
(Bóna, 2004). In two-line form, the set]5[can be written as:

25143
54321

=g

where it is implied that g maps 1 to 3, 2 to 4, 3 to 1, 4 to 5, and 5 to 2.

5. Fitness Landscape
In order to adapt PSO to the combinatorial space, it is convenient to define a metric space
characteristic of the combinatorial optimisation problem. Let XX 2: →N denote a syntactic
neighbourhood function that attaches to each solution Xxi ∈ the neighbouring set of
solutions Xxx i

i
j ⊆∈)(N that can be reached by applying a unitary syntactic operation

moving ji xx a (Moraglio and Poli, 2004). Denote this unitary syntactic operator by ϕ and
assume that the operation is reversible, i.e.)()(j

j
ii

i
j xxxx NN ∈⇔∈ . Such a

neighbourhood can be associated to an undirected neighbourhood graph),(EVG = , where
V is the set of vertices representing the solutions Xxi ∈ , and E the set of edges representing
the transformation paths for permutations. By definition, the combinatorial space endowed
with a neighbourhood structure)(i

i xN and induced by a distance function),(ji
ij xxh is a

metric space. Formally, the definition of a metric or distance function is any real valued
function),(ji

ij xxh that conforms to the axioms of identity, symmetry, and triangular
inequality, i.e.:

1. 0),(≥ji
ij xxh and 0),(=ii

ij xxh (identity);

2.),(),(ij
ij

ji
ij xxhxxh = (symmetric);

3.),(),(),(ji
ij

il
li

jl
ij xxhxxhxxh +≤ (triangle inequality);

4. if ji ≠ , then 0),(>ji
ij xxh .

A neighbourhood structure)(i
i xN induced by a distance function),(ji

ij xxh can then be
formally expressed as:

 }),(,|{)(sxxhXxxx ji
ij

jji
i ≤∈=N (2)

Particle Swarm Optimization

296

where R∈s . On a combinatorial space with syntactic operator ϕ , any configuration ix can
be transformed into any other jx by applying the operator ϕ a finite number of times
(ns ≤<1) (Misevicius et al., 2004). In such a case, the distance metric),(ji

ij xxh is given by
the Hamming distance:

∑
=

−=
n

l

jiji
ij dxdxxxh

1

)()(sgn),(

and s represents the minimum number of exchanges to transform ix into jx . Other distance
metrics can be similarly defined (see (Ronald, 1997); (Ronald, 1998); and (Moraglio and Poli,
2004) references therein for a comprehensive treatment on distance metrics defined on the
combinatorial space).
For generality, only the deviation distance metric (Ronald, 1998) will be considered hereafter.
While other distance metrics can be defined for discrete and combinatorial spaces, the
decision to use the deviation distance metric is trivial with respect to algorithmic design.
Other problem-specific metrics can be substituted into the developed algorithm with little
influence on the procedural implementations of the algorithm.
The deviation distance metric provides a measure of the relative distance of neighbouring
elements between two permutations ix and jx . In problems where the adjacency of two
elements influences the cost of the objective function)(xf , such as in TSP and flow-shop
scheduling, the deviation distance function provides an appropriate choice of metric for the
problem space (Ronald, 1998). Formally, the positional perturbation aΔ of one element value

)(1dxi to its matching value in)(2dx j , such that adxdx ji ==)()(21 ,][na ∈ , is given by the
following:

 21 dda −=Δ (3)

For convenience, aΔ is normalised]1,0[∈Δa :

1−

Δ=Δ
n

a
a (4)

The deviation distance),(ji
ij xxh is then defined as the sum of the aΔ values:

 ∑Δ=
n

a
a

ji
ij xxh),((5)

From Eq. (5) a large position deviation induces a greater distance in the metric space. The
notion of position deviation is now used to construct the combinatorial optimisation PSO.

6. Proposed Algorithm
In Section 4.1, the concept of a syntactic operatorϕ was discussed as a method of
transforming one configuration ix to another)(i

i
j xx N∈ . In the following section, the

parallel between a syntactic operator ϕ and the motion of a particle i in the combinatorial

A Particle Swarm Optimisation Approach to Graph Permutations

297

space is described. Let Xxi ∈ encode a permutation of][d objects in D -dimensional space.
The position Xxi ∈ of a particle i in the D -dimensional space corresponds to a
permutation of][d objects. Define ϕ by a two-way perturbation (transformation) operator

),(: 21 ddSO=ϕ as the swap operator that exchanges elements 1d and 2d in solution ix , such
that XX → , },2,1{, 21 Ddd K∈ , 21 dd ≠ . Applying the swap operator to the permutation ix ,
the following solution is derived:

),(211 ddSOxx i
k

i
k ⊕=+ (6)

where adxdx ji ==)()(21 , and)(,, 1 i
ki

ji
k

j
k xxxx N∈+ , and the notation ⊕ is used to

denote i
kx 1+ is obtained from i

kx by applying the perturbation),(21 ddSO . In the combinatorial
optimisation PSO, i

kx and Xxx i
ki

j
k ⊆∈)(N , j

k
i
k xx ≠ encode two permutations in the

combinatorial optimisation problem and represents positions in the combinatorial search
space. Applying the notions of swap operator to PSO, the swap operator),(21 ddSO for a
particle i can be interpreted as a motion of the particle i

kx to a position j
kx displaced from i

kx
by the deviation distance),(j

k
i
kij xxh . Consider the case when)(i

ki
j

k xx N∉ . Then, the

following transition j
k

i
k xx a is not possible by Eq. (6) alone. Define the following swap

sequence (Knuth, 1998):
 },,,{ 21 nSOSOSOSS K= (7)

where SS is the concatenation of swap operators and the order of the swap operators iSO ,
ni ,,1K= is influential to the final position i

kx 1+ . The minimum number of swap operators
required to move j

k
i
k xx a is given by the Hamming distance and is referred to as the basic

swap sequence (Knuth, 1998).
Suppose particle i moves according to i

k
i
k px a . The basic swap sequence transforming i

kx
to i

kp can be determined by moving along each dimension of the initial position i
kx and

applying the Partially Mapped Crossover function (PMX) (Goldberg and Lingle, 1985) to
each dimension along i

kx . The PMX function maps each dimension in the current position
i
kx to the corresponding dimension in i

kp (see Fig. 2). A swap operator is invoked if the
object in the 1d -th dimension of the i

kp solution and the i
kx are inconsistent. The 1d -th

element in i
kx is then swapped with the 2d -th element in i

kx such that)()(12 dpdx i
k

i
k = .

Algorithm 2 summarises the basic swap operator used to move i
k

i
k px a

1: while 0),(≠ji xxd
2: if)()(11 dxdx j

k
i
k ≠ then

3: find 2d such that 112)()(adxdx j
k

i
k == , and },,1{, 21 Ddd K∈

4: set),(21 ddSOj and store as j -th entry in SS
5: else, end if
4: end while
Algorithm 2. Basic Swap Operator

Particle Swarm Optimization

298

Note, applying the algorithm from left-right gives 12 dd > , },,2,1{, 21 Ddd K∈ .
Example 2.

Consider the following two solutions)(
54321
54321=ix and)(

45132
54321=jx represented in two-

line form. Applying Algorithm 2 from left to right, the first swap operator is invoked if
)1()1(ji xx ≠ . Since 1)1(=ix and 2)1(=jx , the following mapping is observed between

object 21→ . The first swap operator is then given by the exchange of elements 1 and 2 in
ix ,)2,1(1SO . Following)2,1(1SO , particle i is now at position)(

54312
54321=′x .

Comparing x′ to jx , the following mapping 31 ↔ is now observed between object

)2(x′ and)2(jx . The next mapping is then given by)3,2(2SO taking x′ to)(
54132
54321=′′x .

Repeating this procedure, the swap sequence SS that takes ix to jx is then given by
)}5,4(),3,2(),2,1({ 321 SOSOSOSS = such that SSxx ij ⊕= .

)5,4(
)1,3(
)3,2(
)2,1(

SO
SO
SO
SO

2 3 1 5 4

1 2 3 4 5=:ix

=:jx

Figure 2. Partially-mapped crossover (PMX)

In traditional PSO, the motion of a particle is influenced by the personal best position i
kp

and global best of the swarm g
kp . In the combinatorial optimisation PSO, each position

encodes a permutation to the combinatorial optimisation problem. If the personal best and
global best positions are not coincident, i.e. g

k
i
k pp ≠ , then the swap sequences 1SS and

2SS that moves the i -th particle along the transformations i
k

i
k px a and g

k
i
k px a

respectively, are not equivalent, i.e. 21 SSSS ≠ . Application of 1SS or 2SS will yield i
k

i
k px =+1

or g
k

i
k px =+1 and will cause the particles to converge towards the personal best solution, or

the global best solution respectively. This leads to rapid convergence and sub-optimal
solution quality. The local search induced by the exclusive application of 1SS , and the global
search induced by the exclusive application of 2SS is now combined to develop a velocity
update function with similar characteristics to the original PSO algorithm.
In the traditional PSO algorithm, the velocity of a particle is composed of three parts; the
momentum term, i.e. wv ⋅ , the cognitive velocity)(11

i
k

i
k xprc −⋅⋅ , and the social velocity

)(22
i
k

g
k xprc −⋅⋅ . Using the notions of momentum, cognitive velocity, and social velocity, the

following decoupled velocity update for a particle in the combinatorial space with deviation
distance metric aΔ is defined:

)),((1
,,

1
i
k

i
ka

il
k

il
k pxcvwv Δ′⋅+⋅=+ (8a)

A Particle Swarm Optimisation Approach to Graph Permutations

299

)),((2
,,

1
g
k

i
ka

ig
k

ig
k pxcvwv Δ′⋅+⋅=+ (8b)

where w , 1c , and 2c have the same meanings as the original PSO algorithm. For convenience,
denote Eq. (8a) as the local velocity and Eq. (8b) as the global velocity. Equation (8a) and (8b)
preserve the same tuning parameters as the original PSO without the random variables

]1,0[, 21 ∈rr . The decision to omit the random variables is trivial, but will become apparent in
the proceeding section.
Recall, the position of each particle i

kx , Pi ∈∀ is a vector in the D -dimensional
combinatorial space Xxi

k ∈ and moves along the dimensions of the D -dimensional
hypercube by exchanging elements via the swap operator),(21 ddSO . The velocity of each
particle i

kv , Pi ∈∀ is a vector in the D -dimensional continuous space Di
kv R∈ and describes

the local gradient of the fitness landscape using the deviation distance metric. Using the
velocity Di

kv R∈ , a probability mapping is described that invokes the swap operator and
preserves the contributions of both the local velocity and global velocity. Let

))(|)(Pr(dpdx ii and))(|)(Pr(dpdx gi denote the sampling probability of the i -th particle for
dimension d in the particle when the individual best is)(dpi and global best is)(dp g
respectively. Then, the probability that)(dxi moves to)(dpi and)(dp g is given by the
following statements:

 il
k

i
k

i
k vdpdx ,:))(|)(Pr(= (9a)

 ig
k

g
k

i
k vdpdx ,:))(|)(Pr(= (9b)

Since)(dpi and)(dp g is a mapping for)()(dpdx ii a and)()(dpdx gi a respectively, the
probability that the swap operator),(21 ddSOj is invoked by moving)()(dpdx ii a or

)()(dpdx gi a using Algorithm 2 is defined using the local and global velocities
respectively:

 il
kvddSO ,

21 :)),(Pr(= (10a)

 ig
kvddSO ,

21 :)),(Pr(= (10b)

where)()(12 dpdx ii = or)()(12 dpdx gi = for)()(dpdx ii a and)()(dpdx gi a respectively.
Following Eq. (10a) and Eq. (10b), the velocity)(dvi

k describes the probability that an
element in)(dxi

k will swap with the corresponding element in)(dx j
k and invoke Algorithm

2, then the velocity on each dimension Dd ∈ must be bounded over the interval
]1,0[)(∈dvi

k . The velocities described in Eq. (10a) and Eq. (10b) are normalised according to:

},max{arg ,

1
,

1

,
1,

1 ig
k

il
k

il
kil

k vv
vv

++

+
+ = (11a)

Particle Swarm Optimization

300

},max{arg ,

1
,

1

,
1,

1 ig
k

il
k

ig
kig

k vv
vv

++

+
+ = (11b)

Normalising the velocities with respect to both the personal best and global best velocity
profiles is used to prioritise the order of swap operations and preserve the probability map.
Once an element)(1dxi

k has been swapped with the corresponding element)(2dxi
k in

)(1dpi
k , the associated velocity)(2dvi

k at element)(2dxi
k is set to zero if)()(22 dpdx i

k
i
k = to

prevent cyclic behaviour.
Using the definition of the sample probability in Eq. (10a) and Eq. (10b) for the personal best
and global best respectively, the swap sequence induced by the combinatorial optimisation
PSO can now be described. From Eq. (8a) and Eq. (8b), large deviation distances incur a
large velocity. This observation is complimentary to the original concepts of the traditional
PSO algorithm. Following Eq. (10a) and Eq. (10b) a large velocity will induce a greater
probability that a swap operation is invoked with either the personal best or global best.
Using this concept, a swap sequence can be defined using the relative probabilities of the
personal best and global best velocity profiles. Consider the case when)()(,, dvdv ig

k
il

k > . Then,
the probability of exchanging)()(dpdx i

k
i
k a is greater than the probability of exchanging

)()(dpdx g
k

i
k a . In the swap sequence, the larger of the two probabilities will receive a

higher priority in the swap sequence and take precedence over the lower probability swap
operations. At a given iteration, particle i will move according to the following swap
sequence:

 SSxx i
k

i
k ⊕=+1 (12)

where)))(),(()),(),(((21 dpdxSOdpdxSOSS g
k

i
k

i
k

i
k= if ig

k
il

k vv ,, > . Algorithm 3 describes the
implementation of the swap sequence SS .

0: for all Dd ∈ do
1: if)()(,, dvdv ig

k
il

k > do
2: invoke swap operator),(21 ddSOj for i

k
i
k px a using Algorithm 2

3: if)()(22 dpdx i
k

i
k = do

4: set 0)(2
, =dv il

k
5: else, end if
6: goto 8
7: otherwise if)()(,, dvdv il

k
ig

k > do
8: invoke swap operator),(21 ddSOj for g

k
i
k px a using Algorithm 2

9: if)()(22 dpdx g
k

i
k = do

10: set 0)(2 =dv g
k

11: else, end if
12: goto 2
13: end if
14: end for
Algorithm 3. Swap Sequence

A Particle Swarm Optimisation Approach to Graph Permutations

301

Following the definition of the basic swap sequence and swap sequence in Algorithm 2 and
Algorithm 3 respectively, the proposed combinatorial PSO algorithm can now be defined.
Algorithm 4 describes the procedural implementation of the swap sequence within the
context of the traditional PSO algorithm.

7. Algorithmic Analysis
The behaviour of each particle in the swarm can be viewed as a traditional line-search
procedure dependent on a stochastic step size and a stochastic search direction. Both the
stochastic step size and search direction depend on the selection of social and cognitive
parameters. In addition, the stochastic search direction is driven by the best design space
locations found by each particle and by the swarm as a whole. Unlike traditional line-search
procedures however, PSO uses information from neighbouring particles to influence the
search direction at each iteration. This exchange of information plays an important role in
the stability and performance of the swarm. In the following section, the spectral properties
of algebraic graph theory are used to show that for a fully interconnected swarm, the
particles will reach a consensus on the equilibrium. The analysis begins by considering the
original PSO algorithm with velocity and position update given by Eq. (1a) and Eq. (1b).

0: for all particle i do
1: initialise position i

kx randomly in the search space
2: end for
3: while termination criteria not satisfied do
4: for all particle i do
5: set personal best i

kp as the best position found by the particle so far
6: set global best g

kp as the best position found by the swarm so far
7: end for
8: for all particle i do
9: update local velocity according to
)),((1

,,
1

i
k

i
kv

il
k

il
k pxcvwv Δ′⋅+⋅=+

10: update global velocity according to
)),((2

,,
1

g
k

i
kv

ig
k

ig
k pxcvwv Δ′⋅+⋅=+

11: normalise local velocity according to
 },max{arg ,,,,

1
ig

k
il

k
il

k
il

k vvvv =+
12: normalise global velocity according to
 },max{arg ,,,,

1
ig

k
il

k
ig

k
ig

k vvvv =+
13: update position according to
 SSxx i

k
i
k ⊕=+1

 where SS is determined from Algorithm 3
14: end for
15: end while
Algorithm 4. Combinatorial Optimisation PSO

Particle Swarm Optimization

302

Without loss of generality, consider the following objective function for the combinatorial
optimisation problem:

)(minarg xfx Xx∈
∗ = Xx ∈∀

Then, the personal best i
kp is the current best solution of the i -th particle found so far; i.e.

ii
k xp ττminarg= ,],0(k∈∀τ ; and the global best g

kp is the current best solution of the global
swarm found so far; i.e. ig

k xp ττminarg= ,],0(k∈∀τ , Ni ∈∀ . The swarm of particles is said
to have reached an equilibria if and only if all the particles have reached a consensus on the
value of g

kp , i.e., eg
k

l
k ppp == . For asymptotic convergence, all the particles in the swarm

must globally asymptotically reach a consensus on the global best solution, such that
i
kk

e xx +∞→= lim , and)min(,, Xxx je
k

ie
k == , Xji ∈∀ , , ji ≠ . For convenience, Eq. (1a) and Eq.

(1b) are combined into compact matrix form:

 ⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⋅⎥
⎦

⎤
⎢
⎣

⎡
+−
+−

=⎥
⎦

⎤
⎢
⎣

⎡

+

+
g
k

i
k

i
k

i
k

i
k

i
k

p
p

rcrc
rcrc

v
x

wrcrc
wrcrc

v
x

2211

2211

2211

2211

1

1

)(
)(

 (13)

which can be considered as a discrete-dynamic system representation of the original PSO
algorithm.

7.1 Equilibrium of the PSO
Before the main analysis results are presented, a brief introduction into algebraic graph
modelling of swarms is presented. The information flow in the swarm of particles can be
represented using an interconnected graph),(EVG = , where V is the enumerated set of
particles Vxi

k ∈ , },,1{ Ni K∈ in the swarm, and VVE ×⊆ is the set of edge relations between
neighbouring particles. The order V and size E of the graph G physically represents the
number of particles in the swarm and the number of edge connections. For a fully connected
swarm, each particle communicates with every other particle in the population, and the
graph is said to be complete. This is the case of the original PSO algorithm. The connectivity
of a graph is described by the square matrix A , with size V , and elements ija describing the

connectivity of adjacent vertices ix and jx , such that:

()
otherwise

, if
,0
,1 Exx

a
ji

ij

∈

⎩
⎨
⎧

= (14)

The matrix A uniquely defines the connectivity of the graph G and is referred to as the
adjacency matrix. Associated with the adjacency matrix A is the graph Laplacian L , and its
Laplacian potential GΨ :

)(1 AL −ΛΛ= − (15)

A Particle Swarm Optimisation Approach to Graph Permutations

303

 LxxT
G 2

1=Ψ (16)

where Λ is the square matrix containing the out-degree of each vertex along the diagonal,
and x is the concatenation of particles in the swarm. A well-known property of the
Laplacian potential is that it is positive semi-definite and satisfies the following sum-of-
squares property (Godsil and Royle, 2001):

 () n

Eji

ij
ij

T xxxALxx R∈−= ∑
∈

,
,

2 (17)

Using Eq. (17), the objective is to show that the personal best positions of each particle
reaches a consensus (by way of equilibria) coincident to the global best of the swarm, i.e.

g
k

i
k pp = , P∈∀ . Eq. (16) becomes:

 () ni
k

Eji

i
k

j
kij

T pppALpp R∈−= ∑
∈

,
,

2 (18)

where p is the concatenated states of the personal best of each of the particles in the swarm.
The closed-loop dynamics of the global best position evolve according to the following
continuous-time dynamic equation:

 GLpp Ψ−∇=−=& (19)

The equilibrium points of Eq. (19) correspond to stationary points of GΨ and the region
outside of these points, the potential is strictly decreasing (Moreau, 2004); i.e., if ex is an
equilibrium of Eq. (18), then 0=eLx . From Eq. (16):

 0)(
2
1)(==Ψ eTee

G Lppp (20)

Following the connectivity of G , cpp e
j

e
i == , Nji ∈∀ , , i.e. Te ccp),,(K= , Xc ∈ . Since the

Laplacian potential equals zero at equilibrium, then)min(pp g = is an invariant quantity,
Given the invariance property of)min(p , then))0(min()min(ppe = , and cpe =)min(. This
implies))0(min(, pp ie

k = , Pi ∈∀ (Olfati-Saber and Murray, 2003). This leads to the following
observations for the particle dynamics in Eq. (1a) and Eq. (1b) that are consistent with the
works of (Clerc and Kennedy, 2002); (Trelea, 2003); and (Kadirkamanathan et al., 2006):

1. The system dynamics are stochastic and order two;
2. The system does not have an equilibrium point if l

k
g
k pp ≠ ;

3. If eg
k

l
k ppp == is time invariant, there is a unique equilibrium at 0=ev , ee px = .

An equilibrium point thus exists only for the best particle whose local best solution is the
same as the global best solution (Kadirkamanathan et al., 2006).
Consider the case for a given particle i when the external input is constant (as is the case
when no personal or global better positions are found). From Eq. (15) the eigenvalues of L−

Particle Swarm Optimization

304

are negative in the complex plane. Then, for particle i , the position asymptotically
converges to the point ex in the eigenspace associated to the global minimum found by the
swarm of particles (Olfati-Saber and Murray, 2003). Such a position ex is not necessarily a
local or global minimiser of the combinatorial optimisation problem. Instead, it will improve
towards the optimum ∗x if a better individual or global position is found. Discovery of
better individual or global positions can be improved by increasing the population diversity
of the swarm through the introduction of chaos or turbulence (Kennedy and Eberhart, 1995).
In the following section, a non-stationary Markov chain is constructed to integrate the
discrete syntactic swap operators introduced in Section 5 to the continuous time-dynamics
of the traditional PSO

7.2 Non-Stationary Markov Model of combinatorial PSO
Markov chains are important in the theoretical analysis of evolutionary algorithms
operating on discrete search spaces (Poli et al., 2007) and have been used to model the
probabilistic convergence of population-based meta-heuristic algorithms (see (Rudolph,
1996); (Cao and Wu, 1997); (Poli and Langdon, 2007); and (Greenwood and Zhu, 2001) for
examples of their implementation). While traditional PSO has operated on a continuous
search space, the combinatorial PSO operates on a discrete combinatorial space. This makes
Markov chains a suitable method of modelling and analysing the behaviour of the
combinatorial PSO. The use of Markov chains on bare-bones PSO has previously been
investigated by (Poli and Langdon, 2007) where the continuous search space was discretised
using a hypercube sampling. In the following section, a non-stationary Markov chain is used
to model the combinatorial PSO and account for the newly introduced swap operator.
Let X denote the finite state space describing the set of permutation encodings with

!nXr == possible solutions. Let XP ⊂ be a population of solutions from X with size

NP = . Then a finite Markov chain X⊆Γ describes a probabilistic trajectory over the finite

state space X (Rudolph, 1996) with)(1!
1!

−+
−= nm

nN possible populations as states; i.e.:

 },,,{ 21 NSSSX K= (21)

The probability)(Pr: 1
,1 m

k
n

k
mn

mn
kk SSq =Γ=Γ= −

− of transitioning from state XSm ∈ to XSn ∈ ,

N∈nm, at step k is called the transition probability from m to n at step k . The transition
probability of a finite Markov chain can be gathered into a transition matrix }{ ,1

mn
kkk qQ −=

(Rudolph, 1994), where each dimension]1,0[,1 ∈−
mn

kkq . In a stationary Markov chain the
probabilities remain fixed, and the Markov chain is said to be homogenous; i.e.,

}{ ,1
mn

kkk qQQ −== , K,2,1=∀k , and N,,2,1, K=nm . In the case of the combinatorial PSO, the
probabilities of the swap operator are updated according to Eq. (8a) and Eq. (8b). This
results in a non-stationary Markov chain. The transition probabilities of non-stationary
Markov chains are calculated by considering how the population incidence vector

jS describes the composition of the next iteration (Cao and Wu, 1997). Denote
il

k
i
k

i
k

il
k vpxz ,,)Pr(== as the sampling probability when the personal best is i

kp ; likewise,

A Particle Swarm Optimisation Approach to Graph Permutations

305

denote g
k

g
k

i
k

ig
k vpxz ==)Pr(, as the sampling probability when the global best is g

kp . The

probability that a particle i will move according to i
k

i
k px a or g

k
i
k px a i

kx is given by

)(g
k

i
k

i
k ppz U= . From Algorithm 3, the dimension for)Pr(, i

k
i
k

il
k pxz = and)Pr(, g

k
i
k

ig
k pxz = is

calculated independently using Eq. (8a) and Eq. (8b) and the probability of a particle
sampling i

kp or g
kp is given by:

 ()∏
=

=
D

d

g
k

i
k

g
k

i
k

g
k

i
k dpdpdpdppp

1

)(),()()(Pr)Pr(UU (22a)

))(Pr())(Pr())(Pr())(Pr()Pr(
1

dpdpdpdppp g
k

D

d

i
k

g
k

i
k

g
k

i
k ∏

=

⋅−+=U (22b)

Since personal bests can only change if there is a fitness improvement, only certain state
transitions can occur. That is, a transition from state nm SS a is possible only if the fitness of
at least one particle in the swarm improves (Poli and Langdon, 2007). Because of the
independence of the particles (over one time step), the state transition probability for the
whole PSO is given by:

 ∏=−
i

g
k

i
k

mn
kk ppq)Pr(,1 U (23)

From Sec. 6.1, the local velocity il
kv , and global velocity ig

kv , will tend to zero as +∞→k . This
implies 0limlimlim ,,

,1 === ∞→∞→−∞→
ig

kk
il

kk
mn

kkk vvq , N,,2,1, K=nm . Therefore, the swap operator
preserves the convergent behaviour of traditional PSO and the combinatorial PSO converges
to the equilibrium pair),(ee vx .

8. Numerical Examples
8.1 The Travelling Salesman Problem
To test the efficiency of the proposed algorithm, the combinatorial optimisation PSO is
tested on the travelling salesman problem (TSP). TSP is an invaluable test problem that
belongs to the class of NP -hard combinatorial optimisation problems. The objective of
TSP is to find a minimum-cost tour that visits a set of n cities and returns to an initial
point (Applegate et al., 2006). Mathematically, TSP is a combinatorial optimisation
problem on an undirected graph),(EVG = . Each city][nci ∈ , ni ,,2,1 K= , is represented
by a vertex Vvi ∈ in the graph),(EVG = with cost of travel between adjacent cities given
by Ehij ∈ . A solution to TSP can be represented as a sequence of cities encoded by a
permutation Xx ∈ . Mathematically, the objective of TSP is given by the following
optimisation problem:

))1(),(())1(),((minarg 1

1
xnxhdxdxhxXx ij

n

d ijXx ++=⇔∈ ∑ −

=∈
∗∗ (24)

Particle Swarm Optimization

306

Various problems, including path-finding, routing, and scheduling, can be modelled as a
TSP. A repository of test-instances (and their solutions) is available through the TSPLIB
library (Reinelt, 1991). In the following section, the combinatorial PSO is tested on several
instances of the TPSLIB library. Table 1 summarises the test instances of TSPLIB used to
validate and compare the combinatorial PSO.

Name Dimension Optimal)(xf Optimal Solution

burma 14 30.8785

gr17 17 2085

gr24 24 1272

eil51 51 426

Table 1. Test instances taken from TSPLIB (Reinelt, 1991) used for the validation of the
combinatorial PSO

A Particle Swarm Optimisation Approach to Graph Permutations

307

8.2 Optimisation Results and Discussion
In the following experiments, the combinatorial PSO is applied to each case of the TSP in
Table 1. The parameters used in each experiment are selected based on the findings reported
in the literature (Zhang et al., 2005); (Shi and Eberhart, 1998a); (Zheng et al., 2003); (Clerc
and Kennedy, 2002); and (Eberhart and Shi, 2000). While the inertia weight, cognitive and
social parameters are sensitive to the problem domain in traditional PSO, a parametric
analysis of their influence on the combinatorial PSO is beyond the scope of this chapter. For
illustrative purposes, the parameters given in Table 2 are considered throughout the
remainder of this chapter. The influence of these parameters on the performance of the
combinatorial PSO remains the subject of future research.

Parameter Value

w 0.8

1c 2.025

2c 2.025

Table 2. Combinatorial PSO parameters

To demonstrate the relative efficiency of the proposed algorithm, the performance of the
combinatorial PSO is compared to a genetic algorithm. Each TSP experiment was trialled
100 times using randomly generated individuals. In both algorithms, a population of

30=P was maintained for each iteration. The fitness values obtained by the combinatorial
PSO and the GA over the 100 trials are presented in Table 3. Table 4 compares the success
rate of the PSO and GA for each of the problems. Figure 3 compares the percentage of the
solution space explored by the combinatorial PSO and the GA. This is determined as the
number of unique solutions tested Xxi

k ∈ , Pi ∈∀ , 1000,,1K=k by the PSO and GA versus
the size of the solution space !nX = .

Minimum Maximum Average
Problem Optimal

Solution PSO GA PSO GA PSO GA

burma 30.87 30.87 30.87 30.87 34.62 30.87 31.20

gr17 2085 2085 2085 2687 2489 2141.55 2175.02

gr24 1272 1272 1282 1632 1810 1453.52 1488.68

eil51 426 494.80 495.46 687.52 671.85 573.55 573.95

Table 3. Performance of the proposed algorithm compared to a traditional genetic algorithm
for combinatorial optimisation

From Table 3, the combinatorial PSO outperformed the GA in all problem instances, except
for the 51 variable eil51 problem. In this case, both the GA and combinatorial PSO failed to
find the best solution over the 100 trials. Examination of Fig. 3 suggests that both the
combinatorial PSO and GA were only able to search a small percentage (%1<<) of the total
solution space over the 1000 iterations. This suggests, that both the combinatorial PSO and
GA experience a loss of solution diversity over the optimisation procedure. Figure 3 also

Particle Swarm Optimization

308

indicates that the GA was able to cover a larger percentage of the solution space for each
trial than the combinatorial PSO. This suggests that the combinatorial PSO suffers from the
same rapid convergence and stagnation issues of traditional PSO. Loss of solution diversity
and rapid convergence is a well-known problem in traditional PSO. In traditional PSO, the
performance of the algorithm deteriorates as the number of iterations increases. Once the
algorithm has slowed down (becomes stagnant), it is usually difficult to achieve a better
fitness value; particularly for high-dimensionality problem spaces.

Success Rate (%)
Problem

PSO GA
burma 100 92
gr17 36 17
gr24 4 0
eil51 0 0

Table 4. Success rate of the combinatorial PSO and GA

Recently, several methods have been proposed to improve solution diversity and avoid
stagnation in traditional PSO. These methods include the use of chaos variables (Fieldsend
and Singh, 2002); (Kennedy and Eberhart, 1995); and (He et al., 2004); variable
neighbourhood topologies (Kennedy, 1999); and (Liu et al., 2007a); and mutation operators
(Liu et al., 2007b); and (Andrews, 2006). Many of these techniques have had varying levels
of success on the traditional PSO algorithm. It is expected, that these same strategies can be
adapted to the combinatorial PSO. Future work aims to investigate the potential to
implement these algorithmic improvements to the combinatorial PSO and solve for larger
scale combinatorial optimisation problems.

Average % Solution Space Searched

1.00E-60

1.00E-54

1.00E-48

1.00E-42

1.00E-36

1.00E-30

1.00E-24

1.00E-18

1.00E-12

1.00E-06

1.00E+00

Test Instances

%
 S

ol
ut

io
n

Sp
ac

e
Se

ar
ch

ed

PSO
GA

PSO 1.58E-05 7.65E-09 2.05E-17 2.35E-60

GA 2.54E-05 2.78E-08 3.34E-17 5.74E-59

burma gr17 gr24 eil51

Figure 3. Comparison of the solution space searched by the combinatorial PSO and the GA

A Particle Swarm Optimisation Approach to Graph Permutations

309

9. Conclusion
The PSO’s simplicity, robustness, and low computational costs, makes it an ideal method for
continuous optimisation problems. Previous efforts to adapt the traditional PSO algorithm
to combinatorial spaces have shown varying levels of success. In this chapter, a new
combinatorial optimisation PSO that builds on previous works is introduced. A distance
metric was introduced to define a metric space for the combinatorial optimisation problem
and a syntactic swap operator introduced. Motion was induced by associating a probability
sampling function to the velocity profile of a particle on the combinatorial space and
invoking the defined swap operator. The proposed algorithm was tested on several
instances of TSPLIB and compared to the performance of a GA. Preliminary test results
demonstrated superior performance over the GA in all test cases. For larger set sizes, the
proposed algorithm failed to converge to the optimal solution. Examination of the sampled
solution space suggested that the proposed algorithm suffered from the same rapid
convergence and stagnation issues observed in traditional PSO. Further research is needed
to clarify the effect of the various tuning parameters on the performance of the proposed
algorithm, and their influence on loss of solution diversity. The generalised approach to the
algorithm’s development allows for the consideration of other metrics on discrete spaces,
and the implementation of further algorithmic improvements. Future work aims to
investigate methods to mitigate the stagnation issues of the proposed algorithm and
extending the combinatorial optimisation PSO’s capabilities to other discrete optimisation
problems.

10. References
Aardal, K., Hoesel, S. v., Lenstra, J. K. and Stougie, L. (1997). A Decade of Combinatorial

Optimization. Department of Information and Computing Sciences, Utrecht
University, UU-CS-1997-12,

Aguilar, J. (2001). A General Ant Colony Model to solve Combinatorial Optimization
Problems. Revista Colombiana De Computación, 2, 7 - 18.

Andrews, P. S. (2006). An Investigation into Mutation Operators for Particle Swarm
Optimization, Proceedings of IEEE Congress on Evolutionary Computation, pp. 1044 -
1051, Vancouver BC, Canada, July,

Applegate, D. L., Bixby, R. E., Chvátal, V. e. and Cook, W. J. (2006). The Traveling Salesman
Problem, Princeton University Press, New Jersey.

Bean, J. (1994). Genetic Algorithms and Random Keys for Sequencing and Optimization.
ORSA Journal on Computing, 6, 154 - 160.

Bóna, M. (2004). Combinatorics of Permutations, Chapman & Hall/CRC, New York.
Bonyadi, M. R., Azghadi, S. M. R. and Hosseini, H. S. (2007). Solving Traveling Salesman

Problem Using Combinational Evolutionary Algorithm, In Artificial Intelligence and
Innovations 2007: From Theory to Applications, Vol. 247 (Eds, Boukis, C.,
Pnevmatikakis, L. and Polymenakos, L.) Springer, Boston, pp. 37 - 44.

Cao, Y. J. and Wu, Q. H. (1997). Convergence Analysis of Adaptive Genetic Algorithms,
Proceedings of Genetic Algorithms in Engineering Systems: Innovations and Applications,
pp. 85 - 89, 2 - 4 September,

Particle Swarm Optimization

310

Clerc, M. and Kennedy, J. (2002). The Particle Swarm - Explosion, Stability, and
Convergence in a Multidimensional Complex Space. IEEE Transactions on
Evolutionary Computation, 6, 58 - 73.

Eberhart, R. C. and Shi, Y. (2000). Comparing Inertia Weights and Constriction Factors in
Particle Swarn Optimization, Proceedings of IEEE Congress on Evolutionary
Computation, pp. 84-88, San Diego, CA,

Festa, P. and Resende, M. G. C. (2008). Hybrid Grasp Heuristics. AT&T Labs Research,
Florham Park, July

Fieldsend, J. E. and Singh, S. (2002). A Multi-Objective Algorithm Based Upon Particle
Swarm Optimisation, an Efficient Data Structure and Turbulence, Proceedings of UK
Workshop on Computational Intelligence, pp. 37 - 44, UK,

Godsil, C. and Royle, G. (2001). Algebraic Graph Theory, Springer-Verlag, New York.
Goldberg, D. and Lingle, J. R. (1985). Alleles, Loci and the TSP, Proceedings of First

International Conference on Genetic Algorithms and Their Applications, pp. 154 - 159,
Hillsdale, Hew Jersey,

Greenwood, G. W. and Zhu, Q. J. (2001). Convergence in Evolutionary Programs with Self-
Adaptation. Evolutionary Computation, 2, 147 - 157.

He, S., Wu, Q. H., Wen, J. Y., Saunders, J. R. and Paton, R. C. (2004). A Particle Swarm
Optimizer with Passive Congregation. Biosystems, 78, 135 - 147.

Kadirkamanathan, V., Selvarajah, K. and Fleming, P. J. (2006). Stability Analysis of the
Particle Dynamics in Particle Swarm Optimizer. IEEE Transactions on Evolutionary
Computation, 10, 245 - 255.

Kennedy, J. (1999). Small Worlds and Mega-Minds: Effects of Neighborhood Topology on
Particle Swarm Performance, Proceedings of Congress on Evolutionary Computation,
pp. 1931 - 1938, Washington DC, USA,

Kennedy, J. and Eberhart, R. (1995). Particle Swarm Optimization, Proceedings of IEEE
International Conference on Neural Networks, pp. 1942-1948, 27th November - 1
December, 1995,

Kennedy, J. and Eberhart, R. C. (1997). A Discrete Binary Version of the Particle Swarm
Algorithm, Proceedings of IEEE International Conference on Systems, Man, and
Cybernetics, pp.

Knuth, D. E. (1998). The Art of Computer Programming, Addison-Wesley, Reading.
Liu, H., Abraham, A. and Grosan, C. (2007a). A Novel Variable Neighborhood Particle

Swarm Optimization for Multi-Objective Flexible Job-Shop Scheduling Problems,
Proceedings of 2nd International Conference on Digital Information Management, pp. 138
- 145, October,

Liu, J., Fan, X. and Qu, Z. (2007b). An Improved Particle Swarm Optimization with Mutation
Based on Similarity, Proceedings of Third International Conference on Natural
Computation, pp. Haikou, China,

Martínez García, F. J. and Moreno Pérez, J. A. (2008). Jumping Frogs Optimization: A New
Swarm Method for Discrete Optimization. Department of Statistics, O. R. and
Computing, University of La Laguna, Tenerife, Spain, DEIOC 3/2008,

Misevicius, A., Blažauskas, T., Blonskis, J. and Smolinskas, J. (2004). An Overview of Some
Heuristic Algorithms for Combinatorial Optimization Problems. Information
Technology and Control, 30, 21 - 31.

A Particle Swarm Optimisation Approach to Graph Permutations

311

Moraglio, A. and Poli, R. (2004). Topological Interpretation of Crossover, In Genetic and
Evolutionary Computation - GECCO 2004, Vol. 3102/2004 Springer
Berlin/Heidelberg, Berlin/Heidelberg, pp. 1377 - 1388.

Moreau, L. (2004). Stability of Continuous-Time Distributed Consensus Algorithms,
Proceedings of 43rd IEEE Conference on Decision and Control, pp. 3998 - 4003, Atlantis,
Paradise Island, Bahamas, December,

Olfati-Saber, R. and Murray, R. M. (2003). Consensus Protocols for Networks of Dynamic
Agents, Proceedings of American Control Conference, pp. 951-956,

Pang, W., Wang, K.-p., Zhou, C.-g. and Dong, L.-j. (2004). Fuzzy Discrete Particle Swarm
Optimization for Solving Traveling Salesman Problem, Proceedings of 4th
International Conference on Computer and Information Technology (CIT04), IEEE
Computer Society, pp.

Passino, K. M. (2002). Biomimicry of Bacterial Foraging for Distributed Optimization and
Control. IEEE Control Systems Magazine, 22, 52 - 67.

Poli, R. and Langdon, W. B. (2007). Markov Chain Models of Bare-Bones Particle Swarm
Optimizers, Proceedings of 9th Annual Conference on Genetic and Evolutionary
Computation, pp. 142 - 149, London, England, 7 - 11 July,

Poli, R., Langdon, W. B., Clerc, M. and Stephens, C. R. (2007). Continuous Optimisation
Theory Made Easy? Finite-Element Models of Evolutionary Strategies, Genetic
Algorithms and Particles Swarm Optimizers, In Foundations of Genetic Algorithms,
Vol. 4436/2007 Springer Berlin/Heidelberg, Berlin, pp. 165 - 193.

Reinelt, G. (1991). TSPLIB - Traveling Salesman Problem Library. ORSA Journal on
Computing, 3, 376 - 384.

Ronald, S. (1997). Distance Functions for Order-Based Encodings, Proceedings of IEEE
International Conference on Evolutionary Computation, pp. 49 - 54, Indianapolis, USA,

Ronald, S. (1998). More Distance Functions for Order-Based Encodings, Proceedings of IEEE
Conference on Evolutionary Computation, pp. 558 - 563, IEEE Press

Rudolph, G. (1994). Convergence Analysis of Canonical Genetic Algorithms. IEEE
Transactions on Neural Networks, 5, 96 - 101.

Rudolph, G. (1996). Convergence of Evolutionary Algorithms in General Search Spaces,
Proceedings of IEEE International Conference on Evolutionary Computation, pp. 50 - 54,
Nagoya, Japan, 20 - 22 May,

Shi, X. H., Zhou, Y., Wang, L. M., Wang, Q. X. and Liang, Y. C. (2006). A Discrete Particle
Swarm Optimization Algorithm for Travelling Salesman Problem, In Computational
Methods(Eds, Liu, G. R., Tan, V. B. C. and Han, X.) Springer Netherlands,
Netherlands, pp. 1063 - 1068.

Shi, Y. and Eberhart, R. C. (1998a). A Modified Particle Swarm Optimiser, Proceedings of
IEEE International Conference on Evolutionary Computation, pp. Anchorage, Alaska,
May,

Shi, Y. and Eberhart, R. C. (1998b). Parameter Selection in Particle Swarm Optimization,
Proceedings of 7th International Conference on Evolutionary Programming, pp. 591 - 600,

Song, X., Chang, C. and Cao, Y. (2008). New Particle Swarm Algorithm for Job Shop
Scheduling Problems, Proceedings of 7th World Congress on Intelligent Control and
Automation, pp. 3996 - 4001, Chongqing, China, 25 - 27 June,

Particle Swarm Optimization

312

Tasgetiren, M. F., Sevkli, M., Liang, Y. C. and Gencyilmaz, G. (2004). Particle Swarm
Optimization Algorithm for Permutation Flowshop Sequencing Problem, In Ant
Colony, Optimization and Swarm Intelligence, Vol. 3172/2004 Springer
Berlin/Heidelberg, Berlin, pp. 382 - 389.

Trelea, I. C. (2003). The Particle Swarm Optimization Algorithm: Convergence Analysis and
Parameter Selection. Information Processing Letters, 85, 317 - 325.

Wang, K.-p., Huang, L., Zhou, C. G. and Pang, W. (2003). Particle Swarm Optimization for
Traveling Salesman Problem, Proceedings of Second International Conference on
Machine Learning and Cybernetics, pp. 1583 - 1585, Xi'an, China, November,

Zhang, L.-p., Yu, H.-j. and Hu, S.-X. (2005). Optimal Choice of Parameters for Particle
Swarm Optimization. Journal of Zhejiang University Science, 6, 528-534.

Zheng, Y.-L., Ma, L.-H., Zhang, L.-Y. and Qian, J.-X. (2003). On the Convergence Analysis
and Parameter Selection in Particle Swarm Optimization, Proceedings of Second
International Conference on Machine Learning and Cybernetics, pp. 1802 - 1807, Xi'an,
China, November,

19

Particle Swarm Optimization Applied to
Parameters Learning of Probabilistic Neural

Networks for Classification of Economic
Activities

Patrick Marques Ciarelli, Renato A. Krohling and Elias Oliveira
Universidade Federal do Espírito Santo

Brazil

1. Introduction
Automatic text classification and clustering are still very challenging computational
problems to the information retrieval (IR) communities both in academic and industrial
contexts. Currently, a great effort of work on IR, one can find in the literature, is focused on
classification and clustering of generic content of text documents. However, there are many
other important applications to which little attention has hitherto been paid, which are as
well very difficult to deal with. One example of these applications is the classification of
companies based on the descriptions of their economic activities, also called mission
statements, which represent the business context of the companies’ activities, in other
words, the business economic activities from free text description by the company’s
founders.
The categorization of companies according to their economic activities constitute a very
important step towards building tools for obtaining correct information for performing
statistical analysis of the economic activities within a city or country. With this goal, the
Brazilian government is creating a centralized digital library with the business economic
activity descriptions of all companies in the country. This library will serve the three
government levels: Federal; the 27 States; and more than 5.000 Brazilian counties. We
estimate that the data related to nearly 1.5 million companies will have to be processed
every year (DNRC, 2007) into more than 1.000 possible different activities. It is important to
highlight that the large number of possible categories makes this problem particularly
complex when compared with others presented in the literature (Jain et al., 1999; Sebastiani,
2002).
In this paper, we proposed a slightly modified version of the standard structure of the
probabilistic neural network (PNN) (Specht, 1990) so that we could deal with the multi-label
problem faced in this work. We compared the PNN performance trained by a canonical
Particle Swarm Optimization (PSO) and a Bare Bones Particle Swarm Optimization
(BBPSO). Our results show that, in the categorization of free text descriptions of economic
activities, the PNN trained by BBPSO got slightly better results than the PNN trained by
PSO.

Particle Swarm Optimization

314

This work is organized as follows. In Section 2, we detail more the characteristics of the
problem and its importance for the government institutions in Brazil. Related works are
mentioned in Section 3. We describe our probabilistic neural network algorithm in Section 4.
Section 5 describes the Particle Swarm Optimization algorithm and a special version named
Bare Bones Particle Swarm Optimization. In Section 6, the experimental results are
discussed. Finally, we present our conclusions and indicate some future paths for future
research in Section 7.

2. The Problem of Multi-label Text Categorization
In many countries, companies must have a contract (Articles of Incorporation or Corporate
Charter, in USA) with the society where they can legally operate. In Brazil, this contract is
called a social contract and must contain the statement of purpose of the company – this
statement of purpose describe the business activities of the company and must be
categorized into a legal business activity by Brazilian government officials. For that, all legal
business activities are cataloged using a table called National Classification of Economic
Activities, for short, CNAE (CNAE, 2003).
To perform the categorization, the government officials (at the Federal, State and County
levels) must find the semantic correspondence between the company economic activities
description and one or more entries of the CNAE table. There is a numerical code for each
entry of the CNAE table and, in the categorization task, the government official attributes
one or more of such codes to the company at hand. This can happen on the foundation of
the company or in a change of its social contract, if that modifies its economic activities.
The work of finding the semantic correspondence between the company economic activities
description and a set of entries into the CNAE table are both very difficult and labor-
intensive task. This is because of the subjectivity of each local government officials who can
focus on their own particular interests so that some codes may be assigned to a company,
whereas in other regions, similar companies, may have a totally different set of codes.
Sometimes, even inside of the same state, different level of government officials may count
on a different number of codes for the same company for performing their work of assessing
that company. Having inhomogeneous ways of classifying any company everywhere in all
the three levels of the governmental administrations can cause a serious distortion on the
key information for the long time planning and taxation. Additionally, the continental size
of Brazil makes this problem of classification even worse.
In addition, the number of codes assigned by the human specialist to a company can vary
greatly, in our dataset we have seen cases where the number of codes varied from 1 up to
109. However, in the set of assigned codes, the first code is the main code of that company.
The remaining codes have no order of importance.
Due to this task is up to now decentralized, we might have the same job being performed
many times by each of the three levels of the government officials. Nevertheless, it is known
that there has been not enough staff to do this job properly.
For all these reasons, the computational problem addressed by us is mainly that of
automatically suggesting the human classifier the semantic correspondence between a
textual description of the economic activities of a company and one or more items of the
CNAE table. Or, depending on the level of certainty the algorithms have on the automatic
classification, we may consider bypassing thus the human classifier.

Particle Swarm Optimization Applied to Parameters Learning of
Probabilistic Neural Networks for Classification of Economic Activities

315

2.1 Metrics for Evaluating of Multi-label Text Categorization
Typically, text categorization is mainly evaluated by the Recall and Precision metrics in the
single-labled cases (Baeza-Yates & Ribeiro-Neto, 1998). Nonetheless, other authors have
already proposed different metrics for multi-label categorization problems (Schapire &
Singer, 2000; Zhang & Zhou, 2007).
Formalizing the problem we have at hand, text categorization may be defined as a task of
assigning documents to a predefined set of categories, or classes (Sebastiani, 2002). In multi-
label text categorization a document may be assigned to one or more categories. Let D be
the domain of documents, { }CcccC ,,, 21 K= a set of predefined categories, and

{ }WdddW ,,, 21 K= an initial set of documents previously categorized by some human

specialists into subsets of categories of C .
In multi-label learning, the training (-and validation) set { }TVdddTV ,,, 21 K= is

composed of a number of documents, each associated with a subset of categories in C . TV
is used to train and validate (actually, to tune eventual parameters of) a categorization
system that associates the appropriate combination of categories to the characteristics of
each document in the TV . The test set { }WTVTV dddTe ,,, 21 K++= , on the other hand,

consists of documents for which the categories are unknown to the automatic categorization
systems. After being trained, as well as tuned, by the TV , the categorization systems are
used to predict the set of categories of each document in Te .
A multi-label categorization system typically implements a real-valued function of the form

ℜ→×CDf : that returns a value for each pair CDcd ij ×∈, that, roughly speaking,

represents the evidence for the fact that the test document jd should be categorized under

the category ii Cc ∈ , where CCi ⊂ . The real-valued function ().,.f can be transformed into

a ranking function ().,.r , which is an one-to-one mapping onto { }C,,2,1 K such that, if

() ()21 ,, cdfcdf jj > , then () ()21 ,, cdrcdr jj < . If iC is the set of proper categories for the test

document jd , then a successful categorization system tends to rank categories in iC higher

than those not in iC . Additionally, we also use a threshold parameter so that those
categories that are ranked above the threshold τ (i.e., () τ≥kjk cdfc ,|) are the only ones to

be assigned to the test document.
We have used five multi-label metrics discussed by Zhang & Zhou (2007) to evaluate the
categorization performance of PNN: hamming loss, one-error, coverage, ranking loss, and
average precision. We now present each of these metrics:
• Hamming Loss (hlossj) evaluates how many times the test document jd is

misclassified, i.e., a category not belonging to the document is predicted or a category
belonging to the document is not predicted.

ij CP

C
Δ= 1hlossj

 (1)

Particle Swarm Optimization

316

where C is the number of categories and Δ is the symmetric difference between the

set of predicted categories jP and the set of appropriate categories iC of the test

document jd . The predicted categories are those with rank higher than the threshold

τ .
• One-error (one-errorj) evaluates if the top ranked category is present in the set of

proper categories iC of the test document jd .

 ()
⎪⎩

⎪
⎨
⎧ ∈

= ∈

otherwise1

,max argif0
error-one Cc

j
ij Ccdf

 (2)

where ()cdf j ,max arg
Cc∈

 returns the top ranked category for the test document jd .

• Coverage (coveragej) measures how far we need to go down the rank of categories in
order to cover all the possible categories assigned to a test document.

 () 1,maxcoveragej −=
∈

cdr jCc i

 (3)

where ()cdr j ,max
iCc∈

 returns the maximum rank for the set of appropriate categories of

the test document jd .

• Ranking Loss (rlossj) evaluates the fraction of category pairs lk cc , , for which ik Cc ∈

and il Cc ∈ , that are reversely ordered for the test document jd :

 () () (){ }
ii

ljkjlk

CC

,cdf,cd|f,cc ≤
=jrloss (4)

where () iilk CCcc ×∈, , and iC is the complementary set of iC in C .
• Average Precision (avgprecj) evaluates the average of precisions computed after

truncating the ranking of categories after each category ii Cc ∈ in turn:

 ()∑
=

=
iC

k
jk

i

R
C 1

jj precision1avgprec (5)

where jkR is the set of ranked categories that goes from the top ranked category until a

ranking position k where there is a category ii Cc ∈ for jd , and ()jkRjprecision is the

number of pertinent categories in jkR divided by jkR .

For p test documents, the overall performance is obtained by averaging each metric, that is,

∑
=

=
p

jp 1
jhloss1hloss , ∑

=

=
p

jp 1
jerror-one1error-one , ∑

=

=
p

jp 1
jcoverage1coverage ,

Particle Swarm Optimization Applied to Parameters Learning of
Probabilistic Neural Networks for Classification of Economic Activities

317

∑
=

=
p

jp 1
jrloss1rloss , ∑

=

=
p

jp 1
javgprec1avgprec . On the one hand, the smaller the value of

hamming loss, one-error, coverage and ranking loss, the better the performance of the
categorization system. On the other hand, for the average precision, the larger the value the
better the performance. So, the problem can be formulated as an optimization problem,
where the performance is optimal when hloss = one-error = rloss = 0 and avgprec = 1.
In the next section are mentioned some related works regarding the problem of economic
activities classification.

3. Related Works
The authors in (Souza et al., 2007) are among the first to tackle the problem of economic
activities classification. In their work they compared the results achieved between a Nearly
Neighbors algorithm approach and a Weightless Neural Network, called VG-RAM WNN,
using a metric to evaluate the performance equivalent to 1 – one-error, defined in Section
2.1. In the first algorithm they got the performance of 63.36%, while VG-RAM WNN showed
to be slightly better, with a performance of 67.56%. However, the use of a single metric
seemed to be not enough for evaluating multi-labled problems.
A different approach was performed by (Oliveira et al., 2007). In this work were used 83
arrays of small standard PNN for classification, whose main metrics used were Recall and
Precision. However, it was noted to be very difficult to merge the results returned of each
neural network array node. Thus the performance of the array as a whole was harmed.
Although it has found a reasonable value for the Recall, the value for the Precision was very
low, since almost every neural networks returned at least one class to each instance of test.
A PNN with a slightly modified architecture to treat problems of multi-label classification
was proposed in (Oliveira et al., 2008). Such neural network presents advantage over the
array of small standard PNN approach, used in (Oliveira et al., 2007), because only one PNN
is used to solve the problem of multi-label classification. Whereas, in the previous approach,
we need to build many neural networks (83 in that case) which complicate the process of
optimization.
The results achieved in (Oliveira et al., 2008) using the proposed PNN were better than the
achieved using the Multi-label k-Nearest Neighbors (ML-kNN) algorithm. The ML-kNN
was considered to be the best algorithm for all the database used in (Zhang & Zhou, 2007).
In order to evaluate the performance of the algorithms, the authors in that work used the
metrics presented in the Section 2. Moreover, the parameters of these algorithms were
optimized using a Genetic Algorithm (GA).
The cited previous works used the same database that we present in this work, but the
division of the database was performed in a different way for each work, making it difficult
conducting a comparison of results among them. However, in this work we will divide the
database in a similar way to used in (Oliveira et al., 2008), making possible a comparison
among results.
Another very close multi-label problem to one we are presenting in this paper, concern with
the economic activities classification, is that of patent categorization (Li et al., 2007). Our
problem and that are both based on free text descriptions of variety topics. So a large
volume of patents documents, are usually, up to these days, manually classified by the
patent offices, this is a labor-intensive and time-consuming task. A patent document may

Particle Swarm Optimization

318

cite another patent document, or articles, for comparing or contrasting reasons. Therefore,
besides using the content categorization approach, the authors in (Li et al., 2007) proposed
to extract and use the direct hyperlink citation relationships among patent documents in
order to improve the quality of the whole process of classification. Hyperlink citation is a
similar strategy some researchers have been widely applied to web page classification
studies. The experiments were conducted on a nanotechnology-related patent dataset from
the USPTO. The training dataset contained 13,913 instances, and the testing data set 4,358
data instances. The average of category for document was 36, and the total of categories was
up to 426. The results by the KGra kernel proposed approach yielded 86.67% accuracy
overcome the 81% of manually processing and the results of previous work (Koster et al.,
2003).
In the following, we describe a slightly modified Probabilistic Neural Network (PNN) used
to solve the optimization problem of text categorization.

4. Probabilistic Neural Network Architecture
The Probabilistic Neural Network was first proposed by Donald Specht in 1990 (Specht,
1990). This is an artificial neural network for nonlinear computing, which approaches the
Bayes optimal decision boundaries. This is done by estimating the probability density function
of the training dataset using the Parzen nonparametric estimator (Parzen, 1962).
The literature has shown that this type of neural network can yield similar results,
sometimes superior, in pattern recognition problems when compared with others
techniques (Fung et al., 2005; Patra et al., 2002).
The original Probabilistic Neural Network algorithm was designed for single-label
problems. Thus, we slightly modified its standard architecture, so that it is now capable of
solving multi-label problem addressed in this work.
In our modified version, instead of four, the Probabilistic Neural Network is now composed
of only three layers: the input layer, the pattern layer and the summation layer, as depicted in
Figure 1. Thus like the original, this version of Probabilistic Neural Network needs only one
training step, thus its training is very fast compared to the others feedforward neural
networks (Duda et al., 2001; Haykin, 1998). The training consists in assigning each training
sample iw of class iC to a neuron of pattern layer of class iC . Thus the weight vector of this
neuron is the characteristics vector of the sample.
For each pattern x passed by the input layer to a neuron in the pattern layer, it computes
the output for x . The computation is performed by Equation 6.

 () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −= 22

1exp
2

1
σπσ

ki
t

k,i
wxxF (6)

where x is the pattern characteristics input vector, and the kiw is the thk sample for a
neuron of class iC , iNk ∈ , whereas iN is the number of neurons of iC . In addition, x was

normalized so that 1=xxt and 1=ki
t

ki ww . The parameter σ is the Gaussian standard
deviation, which determines the receptive field of the Gaussian curve.

Particle Swarm Optimization Applied to Parameters Learning of
Probabilistic Neural Networks for Classification of Economic Activities

319

Figure 1. The modified Probabilistic Neural Network architecture

The next step is the summation layer. In this layer, all weight vectors are summed according
to Equation 7, in each cluster iC producing ()xpi values, where C is the total number of

classes.

 () ()

CiNk

xFxp

i

N

k
iki

i

,,2,1;,,2,1
1

,

KK ==

=∑
=

 (7)

Finally, for the selection of the classes, which will be assigned by neural network to each
sample, we consider the most likely classes pointed out by the summation layer based on a
chosen threshold.
Differently from other types of neural networks, such as the feedforward one (Haykin,
1998), the probabilistic neural network proposed needs few parameters to be configured: the
σ , (see Equation 6) and the determination of threshold value. The σ is used to narrow the
receptive field of the Gaussian curve in order to strictly select only the more likely inputs for
a given class. Other advantages of the probabilistic neural networks is that it is easy to add
new classes, or new training inputs, into the already running structure, which is good for
on-line applications (Duda et al., 2001). Moreover, it is reported in the literature (Duda et al.,
2001) that it is also easy to implement this type of neural network in parallel. On the other
hand, one of its drawbacks is the great number of neurons in the pattern layer, which can be,
nevertheless, mitigated by an optimization on the number of the neuron (Georgiou et al.,
2004; Mao et al., 2000).
Next, we propose a PSO algorithm to find out the σ parameters and tune the PNN
automatically.

5. The Canonical and the Bare Bones Particle Swarm Optimization
Particle Swarm Optimisation (PSO) has its origins in the simulation of bird flocking
developed by Reynolds (1987) and was further developed in the context of optimization by
Eberhart and Kennedy (Eberhart & Kennedy, 1995; Kennedy & Eberhart, 1995). PSO is
initialised with a population of random solutions. Each potential solution in PSO is also

Particle Swarm Optimization

320

associated with a randomised velocity, and the potential solutions, are called particles, that
move in the search space. Each particle keeps track of its coordinates in the problem space,
which are associated with the best solution (fitness) it has achieved so far. This value is
called pbest. Another best value that is tracked by the global version of the particle swarm
optimizer is the overall best value, and its location, obtained so far by any particle in the
population. This location is called gbest.
The particle swarm optimization concept consists of, at each time step, changing the velocity
of each particle moving toward its pbest and gbest locations (global version of PSO).
Acceleration is weighted by random terms, with separate random numbers being generated
for acceleration toward pbest and gbest locations, respectively. The PSO algorithm consists
basically in updating the velocities and positions of the particle, respectively as follows in
Equations 8 and 9 (Clerc & Kennedy, 2002):

 () () ()() ()()[]txgrandctxprandctvtv ibestibestii i
−+−+=+ 22111 λ (8)

 () () ()11 ++=+ tvtxtx iii (9)

4,where,
42

2with 21
2

>+=
−−−

= ϕϕ
ϕϕϕ

λ cc

where:
• []Tiniii xxxx ,,, 21 K= is the position of the thi particle in the n-dimensional search space;

• []Tiniii vvvv ,,, 21 K= is the velocity of the thi particle;

•
ibestp is the best previous thi particle position;

• bestg is the best particle among all particles;
• λ is the constriction factor;
• 1c and 2c are positive constants;
• 1rand and 2rand are random numbers in the range [0;1] generated using the uniform

probability distribution.
Usually, when the constriction factor is used, ϕ is set to 4.1 (05.221 == cc), and the
constriction factor λ is 0.729. In this paper, it is assumed minimization problems unless
stated otherwise.
In the meantime different versions of PSO have been proposed by (Krohling & Coelho,
2006). In this work we focus on the Bare Bones PSO (Kennedy, 2003). The Bare Bones PSO
(BBPSO) eliminates the velocity item and the Gaussian distribution is used to sampling the
search space based on the global best (gbest) and the personal best (pbest) particle. So, the
Equations 8 and 9 are replaced by Equation 10:

 ()2, iiN σμ= (10)

()
i

i
bestbesti

bestbest
i pg

pg
−=

+
= σμ ,

2
with

where N denotes the Gaussian distribution.

Particle Swarm Optimization Applied to Parameters Learning of
Probabilistic Neural Networks for Classification of Economic Activities

321

This version of PSO presents some advantages over other versions because its reduced
numbers of parameters of the algorithms to be tuned. The BBPSO is described in the Listing
1.

PSO and BBPSO Algorithms
Input parameters: swarm size P
FOR each particle i
// random initialization of a population of particles with positions ix using uniform

// probability distribution.

 () iiiii uxxxx ⋅−+= //
ix and ix stands for the lower and upper bound,

//respectively, and iu is a random number.

ibest xp

i
=

 compute ()ixf // fitness evaluation.

 (){ }igbest xfp min arg:= // global best particle.

END FOR
DO
 FOR each particle i
 update the position ix according to Equations 8 and 9 if PSO

 update the position ix according to Equation 10 if BBPSO

 compute ()ixf // fitness evaluation

 IF () ()
ibesti pfxf < THEN // update of the personal best.

ibest xp

i
=

 IF () ()gbesti pfxf < THEN // update the global best.

ibestgbest pp =

 END FOR
WHILE termination condition not met.
Output:

gbestp , ()gbestpf .

Listing 1 PSO and BBPSO Algorithms.

6. Experimental Results
We employed a series of experiments to compare PNNs optimized using canonical PSO and
BBPSO. We used a dataset containing 3264 documents of free text business descriptions of
Brazilian companies categorized into a subset of 764 CNAE categories. This dataset was

Particle Swarm Optimization

322

obtained from real companies placed in Vitoria County in Brazil. The CNAE codes of each
company in this dataset were assigned by Brazilian government officials trained for this
task. Then we evenly partitioned the whole dataset into four subsets of equal size of 816
documents. We joined to this categorizing dataset the brief description of each one of the 764
CNAE categories, totalizing 4028 documents. Hence, in all training (-and validation) set, we
adopted the 764 descriptions of CNAE categories and a subset of 816 business description
documents, and, as the test set, the other three subsets of business descriptions totalizing
2448 documents.

6.1 Categorization of Free-text Descriptions of Economic Activities
We pre-processed the dataset via term selection – a total of 1001 terms were found in the
database after removing stop words and trivial cases of gender and plural; only words
appearing in the CNAE table were considered. After that, each document in the dataset was
described as a multidimensional vector using the Bag-of-Words representation (Dumais et
al., 1998), i.e., each dimension of the vector corresponds to the number of times a term of the
vocabulary appears in the corresponding document. Table 1 summarizes the characteristics
of this dataset (dataset available at http://www.inf.ufes.br/~elias/vitoria.tar.gz).

#C #t Training set
NTD DC CD RC

Test/validation set
NTD DC CD RC

 764 1001 4.65 0.00 1.00 100.00 10.92 74.48 4.27 85.21

Table 1. Characteristics of the CNAE dataset

In this Table #C denotes the number of categories, #t denotes the number of terms in the
vocabulary, NTD denotes the average number of terms per document, DC denotes the
percentage of documents belonging to more than one category, CD denotes the average
number of categories for each document, and RC denotes the percentage of rare categories,
i.e., those categories associated with less than 1% of the documents of the dataset. The
training set is composed by 764 categories descriptions belonging at CNAE table, where
each description is concerning just one category and there is only one description by
category (one to one relationship), resulting in CD equal 1 and DC equal 0. As there are 764
instances of training and just one instance for category, the index RC is equal 100%. On the
other hand, the test/validation set is composed by 3264 instances, where 74.48% of instances
are assigned to more than one category and the average number of categories of each
instance is more than 4 per document. However, like we said in Section 2, this number vary
greatly. Moreover, we can note that RC value is high since there are few instances by
category.
The PNNs parameters σ , in Equation 6, were optimized for each class of the dataset and
just one threshold τ value for the whole neural network, resulting in 765 parameters, i. e.,
each particle is represented by a 765-dimensional vector. This is a quite huge amount of
parameters for optimization.
To tune these parameters we divided the training set (-and validation) set into a training set,
which was used to inductively build the categorizer, and a validation set, which was used to
evaluate the performance of the categorizer in the series of experiments aimed at parameter
optimization. The training set is composed of 764 descriptions of CNAE classes and the
validation set of 816 business description documents described previously. As a result, we

Particle Swarm Optimization Applied to Parameters Learning of
Probabilistic Neural Networks for Classification of Economic Activities

323

carried out a sequence of experiments with PSO and BBPSO. For each one of these
algorithms was carried out 48 experiments:
• 4 experiments each using algorithm with 100 particles and 500 iterations;
• 4 experiments each using algorithm with 50 particles and 500 iterations;
• 40 experiments each using algorithm with 50 particles and 100 iterations.
The two first experiments set were used to evaluate the performance of the algorithms for
different population sizes. The last 40 experiments were used for a statistical analysis.
In Figures 2 and 3 are shown the performance of the PNN optimized in function of the
number of iterations for 100 and 50 particles, respectively. Where is written in the legend 1st
subset means that the first subset was used for validation and the 764 descriptions were
used for training, in a similar way this is valid for others cases. The continuous lines are the
results of the canonical PSO algorithm and the dotted lines are the results of the BBPSO
algorithm. Here, the performance value is a linear combination of the several metrics, where
these metrics were described in the Section 2. Thus, performance is the sum of the hamming
loss, one error, coverage, ranking loss and precision average , where precision average = 1 -
average precision. The coverage value was divided by the factor 1−C to normalize it and

keep it in the same scale of the others metrics. A strategy for optimization could be the use
of weighted metrics, however in this work was regarded the same value of importance for
every metrics.
In both figures the smaller the value of the performance, the better the performance of the
neural network. We can observe in both figures that the BBPSO algorithm presented better
results than the canonical PSO algorithm. Although the determination of the optimal swarm
size is beyond the scope of this work, can be noted that exist no big differences between the
results obtained with 100 particles and 50 particles. Moreover, there is a large gain of
performance until the 100th iteration and a gain slower in the next iterations. Because of this
and since the experiments require substantial amount of run time, we carry out others
experiments using 50 particles and 100 iterations for statistical analysis purposes.
In the Table 2 are shown the best, mean, median, standard deviation and worst results
obtained in the validation with PSO and BBPSO. The results in bold indicate the best results
found for each subset. We can observe in Table 2 that BBPSO finds slightly better results
than the canonical PSO.
After tuning, the multi-label categorizers were trained with the 764 descriptions of CNAE
categories and tested with the 2448 documents of the test set. The Table 3 shows the best,
mean, median, standard deviation and worst results found in the validation with PSO and
BBPSO. In this table, where is written 1st means the 1st subset for validation and the others
subsets for test, in a similar way this is valid for the other subsets. Again, the results in bold
are the best results found for each subset. Similarly as occurred in Table 2, Table 3 also
shows that the BBPSO performs slightly better than the PSO.
The mean of results achieved for each metric are shown in Table 4 and 5 for the PNN trained
by canonical PSO and BBPSO, respectively. Comparing the results found in this tables we
noticed that there weren’t significant differences among them, this indicates that the
proposed PNN presents certain robustness on the dataset used for training/validation.

Particle Swarm Optimization

324

Figure 2. Experimental results of validation of the PNN using PSO and BBPSO with 100
particles and 500 iterations

Figure 3. Experimental results of validation of the PNN using PSO and BBPSO with 50
particles and 500 iterations

Particle Swarm Optimization Applied to Parameters Learning of
Probabilistic Neural Networks for Classification of Economic Activities

325

Subset Algorithm Best Mean Median Std. Deviation Worst

1st PSO
BBPSO

1.1334
1.0789

1.1744
1.1107

1.1617
1.1163

0.0292
0.0187

1.2194
1.1344

2nd PSO
BBPSO

1.0596
1.0334

1.0971
1.0652

1.1003
1.0671

0.0176
0.0192

1.1241
1.0864

3rd PSO
BBPSO

1.0320
0.9622

1.0475
0.9902

1.0488
0.9842

0.0087
0.0217

1.0608
1.0257

4th PSO
BBPSO

0.9741
0.9363

1.0060
0.9553

1.0072
0.9558

0.0202
0.0110

1.0435
0.9746

Table 2. Information about the validation phase

Subset Algorithm Best Mean Median Std. Deviation Worst

1st PSO
BBPSO

1.1465
1.1204

1.1766
1.1361

1.1671
1.1358

0.0284
0.0146

1.2332
1.1689

2nd PSO
BBPSO

1.1190
1.1107

1.1632
1.1429

1.1679
1.1432

0.0217
0.0209

1.1853
1.1798

3rd PSO
BBPSO

1.1537
1.1375

1.1873
1.1632

1.1912
1.1633

0.0203
0.0184

1.2202
1.2026

4th PSO
BBPSO

1.1841
1.1555

1.2260
1.1810

1.2260
1.1826

0.0345
0.0167

1.3057
1.2094

Table 3. Information about the test phase

Subeset Hamming loss One-error Coverage Ranking loss Average precision
1st
2nd
3rd
4th

0.0056
0.0056
0.0055
0.0056

0.3708
0.3688
0.3756
0.3857

144.3723
142.2521
143.9365
154.7565

0.0835
0.0874
0.0912
0.0937

0.4725
0.4850
0.4737
0.4619

Table 4. Results achieved with PNN trained by canonical PSO

Subeset Hamming loss One-error Coverage Ranking loss Average precision
1st
2nd
3rd
4th

0.0056
0.0056
0.0055
0.0056

0.3544
0.3592
0.3648
0.3634

143.9079
145.8953
147.5607
155.6463

0.0749
0.0805
0.0842
0.0874

0.4875
0.4937
0.4847
0.4794

Table 5. Results achieved with PNN trained by BBPSO

A comparison among the results obtained in this work with the found in (Oliveira et al.,
2008) is done in Table 6. The results mentioned are the mean of the four subsets for each
metric, and for those in bold are the best results found for each one of the metrics. It is
important to highlight that such comparison is a little unfair, since the GA algorithm was
executed with 80 individuals and 100 generations whereas the PSO and BBPSO were
simulated with 50 particles and 100 iterations. Nevertheless, the results achieved to PNNs
are similar. Furthermore, the approach using PSO and BBPSO got the best value of coverage
and one-error, respectively. We can note that there is a discrepant difference among the
performance of MLkNN and the performance obtained with the PNNs.

Particle Swarm Optimization

326

Again we can note a certain robustness of the PNN, because its performance didn’t change
significantly when trained by a PSO, BBPSO or GA algorithm.

Metrics PNN-PSO PNN-BBPSO PNN-GA ML-kNN-GA
Hamming loss
One-error
Coverage
Ranking loss
Average precision

0.0055
0.3752

146.3293
0.0889
0.4732

0.0055
0.3604

148.2525
0.0817
0.4863

0.0055
0.3736

156.4150
0.0798
0.4880

0.0055
0.4952

303.9029
0.1966
0.3813

Table 6. Comparison among different approaches of classification

7. Conclusions
The problem of classifying a large number of economic activities descriptions from free text
format every day is a huge challenge for the Brazilian governmental administration. This
problem is crucial for the long term planning in all three levels of the administration in
Brazil. Therefore, an either automatic or semi-automatic manner of doing that is needed for
making it possible and also for avoiding the problem of subjectivity introduced by the
human classifier.
In this work, we presented an experimental evaluation of the performance of Probabilistic
Neural Network on multi-label text classification. We performed a comparative study of
probabilistic neural network trained by PSO and BBPSO, using a multi-label dataset for the
categorization of free-text descriptions of economic activities. The approach using PSO and
BBPSO were compared with GA and it was noted that there weren’t significant differences
among them.
To our knowledge, this is one of the first few initiatives on using probabilistic neural
network for text categorization into a large number of classes as that used in this work and
the results are very promising. One of the advantages of probabilistic neural network is that
it needs only one parameter to be configured. In addition, the BBPSO employed is an almost
parameter free algorithm, just the number of particles needs to be specified.
A direction for future work is to boldly compare the probabilistic neural network
performance against other multi-label text categorization methods. Examining the
correlation on assigning codes to a set of descriptions of economic activities may further
improve the performance of the multi-label text categorization methods. We are planning on
doing that in future work.

8. Acknowledgments
We would like to thank Andréa Pimenta Mesquita, CNAE classifications coordinators at
Vitoria City Hall, for providing us with the dataset we used in this work. We would also like
to thank Min-Ling Zhang for all the help with the ML-KNN categorization tool. Thank to all
the colleagues, especially Alberto Ferreira De Souza, Claudine Badue, Felipe M. G. França
and Priscila Machado Vieira Lima for their technical support and valuable comments on this
work. This work is partially supported by the Internal Revenue Brazilian Service (Receita
Federal do Brasil) and Fundação Espírito Santense de Tecnologia— FAPES-Brasil (grant
41936450/2008) for their support of this research work. Furthermore, R. A. Krohling thanks

Particle Swarm Optimization Applied to Parameters Learning of
Probabilistic Neural Networks for Classification of Economic Activities

327

the partial funding of his research work provided by FAPES/MCT/CNPq (grant
37286374/2007).

9. References
Baeza-Yates, R. & Ribeiro-Neto, B. (1998). Modern Information Retrieval. Addison-Wesley,

New York, 1st edition.
Clerc, M. & Kennedy, J. (2002). The Particle Swarm: Explosion Stability and Convergence in

a Multi-dimensional Complex Space. IEEE Transactions on Evolutionary Computation,
vol. 6:58 – 73.

CNAE (2003). Classificação Nacional de Atividades Econômicas Fiscal. IBGE – Intituto
Brasileiro de Geografia e Estatística, Rio de Janeiro, RJ, 1.1 edition.
http://www.ibge.gov.br/concla.

DNRC (2007). Ranking das Juntas Comerciais Segundo Movimento de Constituição, Alteração e
Extinção e Cancelamento de Empresas. Ministério do Desenvolvimento, Indústria e
Comércio Exterior – Secretaria do Desenvolvimento da Produção, Departamento
Nacional de Registro do Comércio (DNRC).

Duda, R. O.; Hart, P. E. & Stork, D. G. (2001). Pattern Classification. Wiley-Interscience, New
York, 2nd edition.

Dumais, S. T.; Platt, J.; Heckerman, D. & Sahami, M. (1998). Inductive Learning Algorithms
and Representation for Text Categorization. In Proceedings of the 7th ACM
International Conference on Information and Knowledge Management, pages 148–155,
Bethesda, MD.

Eberhart, R. C. & Kennedy, J. (1995). A New Optimizer Using Particle Swarm Theory.
Proceedings of the Sixth International Symposium on Micro Machine and Human Science,
pages 39 – 43.

Fung, C. C.; Iyer, V.; Brown, W. & Wong, K. W. (2005). Comparing the Performance of
Different Neural Networks Architectures for the Prediction of Mineral
Prospectivity. Proceedings of International Conference on Machine Learning and
Cybernetics, 1:pages 394 – 398.

Georgiou, V. L.; Pavlidis, N. G.; Parsopoulos, K. E.; Alevizos, P. D. & Vrahatis, M. N. (2004).
Optimizing the Performance of Probabilistic Neural Networks in a Bioinformatic
Task. Proceedings of the EUNITE Conference, pages pages 34 – 40.

Haykin, S. (1998). Neural Networks – A Comprehensive Foundation. Prentice Hall, New Jersey,
2nd edition.

Jain, A. K.; Murty, M. N. & Flynn, P. J. (1999). Data Clustering: a Review. ACM Computing
Surveys, 31(3):264–323.

Kennedy, J. (2003). Bare Bones Particle Swarms. Proceedings of the IEEE Swarm Intelligence
Symposium, pages 80 – 87.

Kennedy, J. & Eberhart, R. C. (1995). Particle Swarm Optimization. Proceedings of the IEEE
International Conference on Neural Networks IV, pages 1942 – 1948.

Koster, C. H. A.; Seutter, M. & Beney, J. (2003). Multi-classification of Patent Applications
with Winnow. Ershov Memorial Conference, vol. 2890, pages 546 – 555.

Krohling, R. A. & Coelho, L. S. (2006). Co-evolutionary Particle Swarm Using Gaussian
Distribution to Solving Constraint Optimization Problems. IEEE Transactions on
Systems, Man and Cybernetics, part B, vol. 36:1407 – 1416.

Particle Swarm Optimization

328

Li, X.; Chen, H.; Zhang, Z. & Li, J. (2007). Automatic Patent Classification using Citation
Network Information: an Experimental Study in Nanotechnology. Proceedings of the
2007 Conference on Digital Libraries, pages 419 – 427.

Mao, K. Z.; Tan, K. C. & Ser, W. (2000). Probabilistic Neural-Network Structure
Determination for Pattern Classification. IEEE Transactions on Neural Networks,
11:1009–1016.

Oliveira, E.; Ciarelli, P. M.; Souza, A. F. & Badue, C. (2008). Using a Probabilistic Neural
Network for a Large Multi-label Problem. 10th Brazilian Symposium on Neural
Networks, pages 1 - 6.

Oliveira, E.; Ciarelli, P. M. & Lima, F. O. (2007). The Automation of the Classification of
Economic Activities from Free Text Descriptions using an Array Architecture of
Probabilistic Neural Network. VIII Simpósio Brasileiro de Automação Inteligente, pages
1 - 5.

Parzen, E. (1962). On Estimation of a Probability Density Function and Mode. The Annals of
Mathematical Statistics, 33:pages 1065 – 1076.

Patra, P. K.; Nayak, M.; Nayak, S. K. & Gobbak, N. K. (2002). Probabilistic Neural Network
for Pattern Classification. IEEE Proceedings of the 2002 International Joint Conference
on Neural Networks, volume 2, pages 1200–1205.

Reynolds, C. W. (1987). Flocks, Herds, and Schools: A Distributed Behavioral Model.
Computer Graphics, vol. 21(4):25 – 34.

Schapire, R. E. & Singer, Y. (2000). BoosTexter: A Boosting-based System for Text
Categorization. Machine Learning, 39(2/3):135–168.

Sebastiani, F. (2002). Machine Learning in Automated Text Categorization. ACM Computing
Surveys, 34(1):1–47.

Specht, D. F. (1990). Probabilistic Neural Networks. Neural Networks, 3(1):109–118.
Souza, A. F.; Pedroni, F.; Oliveira, E.; Ciarelli, P. M.; Henrique, W. F. & Veronese, L. (2007).

Automated Free Text Classification of Economic Activities using VG-RAM
Weightless Neural Networks. 7th International Conference on Intelligent Systems
Design and Applications, pages 1 - 5.

Zhang, M.-L. & Zhou, Z.-H. (2007). ML-KNN: A Lazy Learning Approach to Multi-Label
Learning. Pattern Recognition., 40:2038–2048.

20

Path Planning for Formations of Mobile
Robots using PSO Technique
Martin Macaš1, Martin Saska2, Lenka Lhotská1,

Libor Přeučil1 and Klaus Schilling2

1Dep. Of Cybernetics, Czech Technical University, 2 University of Wuerzburg
1Czech Republic, 2Germany

1. Introduction
Multi-robotics systems are currently subject of major interest in the robotics literature. In the
leading journals can be found hundreds of articles, published in the last few years,
concerning applications and theoretical studies of small groups maintaining in fixed
formation (Fua et al., 2007; Kaminka et al., 2008) as well as swarms of thousands robots
(Derenick & Spletzet, 2007; Daigle et. al, 2008).
The large systems can be moreover represented by work published in (Peasgood et al., 2008)
where collision free trajectories to reach individual goals are designed for 100 robots. The
method using graph and spanning tree representation is developed for utilization in
underground mine environment. In another example (Kloetzer & Belta,2007), a large swarm
of robots is controlled using hierarchical abstractions. Inter-robot collision avoidance and
environment containment are there guaranteed applying centralized communication
architecture. Finally work presented in (Milutinovi & Lima, 2006) applies a Stochastic
Hybrid Automation model for modeling and control of multi-agent population composed of
a large number of agents. In this method probabilistic description of task allocation as well
as distribution of the population over the work space is considered. As an example of
common multi-robots application highway traffic coordination can be mentioned. In
(Pallotino et al., 2007) is presented decentralized approach using traffic rules for control of
tens vehicles. The method enables dynamically adding and removing of the vehicles and is
based only on local communication which makes the algorithm scalable.
Algorithms designed for smaller groups of robots are usually aimed at maintaining of
vehicles in a predefined formation for the purpose of cooperative tasks accomplishing (as
can be e.g. box pushing (Vig & Adams, 2006), load carrying (Tanner et al., 2003), snow
shoveling (Saska et al., 2008) or aircraft as well as satellites cooperative mapping (Ren &
Beard, 2003; Kang & Sparks, 2000). Another interesting application of formation driving is
presented in (Fahimi, 2007) where autonomous boats are maintained in formations under
sliding mode, which provides faster movement. The hot research topics in formations of
autonomous robots, investigated nowadays, include e.g. data fusion: (Kaminka et al., 2008)
represents the sensing capabilities using a monitoring multigraph. This approach allows the
robots to adjust to sensory failures by switching of control graphs on-line. An application of
data fusion can be cooperative localization of mobile formations: (Mourikis & Roumeliotis,

Particle Swarm Optimization

330

2006b) addresses a problem of resource allocation which provides the sensing frequencies,
for each sensor on very robot, required in order to maximize the positioning accuracy of the
group. This work is extended by a performance analysis providing upper bound on the
robots' expected positioning uncertainty which is determined as a function of the sensors'
noise covariance and relative position measurements (Moutikis & Roumeliotis, 2006a).
Another separate branch of the research relevant to the formations of mobile robots is
solving how to achieve the desired formation. An approach considering this task without
assigning specific configuration to specific robots is published in (Kloder & Hutchinson,
2006) where a new representation for the configuration space of permutation-invariant
multi-robot groups is described.
This chapter is focussed on the path planning and formation driving of autonomous car-like
robots. In the literature formation driving approaches are divided into the three main
groups: virtual structure, behavioral techniques, and leader-following methods. In the
virtual structure approaches is the entire formation regarded as a single structure where to
each vehicle is given a set of control to follow the desired trajectory of formation as a rigid
body (Beard et al., 2001; Lalish et al., 2006). In behavior based methods the desired behaviors
are designated for each agent and the final control is derived as a weighted sum with
respect to the importance of each task (for basic ideas see (Langer et al., 1994; Parker, 1998).
These classical methods have been extended for maintaining of shape of formations using
desired patterns (Lawton et al., 2003; Balch & Arkin, 1998). In the leader-following
approaches, a robot or even several robots are designated as leaders, while the others are
following them (Desai et al., 2001; Das et al., 2003). Example of the methods using multiple
leaders is presented in (Fredslund & Mataric, 2002) where due to limited communication the
followers are leaded by their closest neighbors. Unfortunately all these results are focused
on the following of a leader's trajectory which is assumed as an input of the methods. It is
supposed that the trajectory is designed by a human operator or by a standard path
planning method modified for formation requirements. In the literature there is no adequate
method providing flexible control inputs for the followers as well as designing an optimal
path for the leader of formation responding to the environment which is necessary for fully
autonomous systems.
This chapter proposes a path planning approach developed for leader-following formations
of car-like robots which is an extension of work (published by the authors' team in (Saska et
al., 2006)) designed for single robot. In this extended method a reference path calculated by
the leader should be feasible for all following robots without changing a relative distance in
the formation. This requirement can be satisfied using a solution which is composed of
smoothly connected cubic splines and can be calculated on-line. Qualities of the result like
the length and minimal radius of the resulting path as well as the distance to obstacles are
merged into a discontinuous penalty function.
The resulting global minimization problem is solved with Particle Swarm Optimization
(PSO). Since the original PSO scheme has been developed, many various modifications were
proposed that more or less improve the method. In context of our optimization problem, we
are strongly limited by the requirement on low time complexity. Therefore, every
modification that could be used here must not lead to any slow down of the convergence.
This fact suspend some sequential hybridization of PSO and any other optimization
technique. Also, any sub-swarm based and multi-start algorithms are not suitable. It will be
shown that the original global-best PSO performs well and even significantly better than

Path Planning for Formations of Mobile Robots using PSO Technique

331

genetic algorithms. Nevertheless, the chapter shows some comparison of PSO with limited
maximum velocity and constricted PSO that can improve the result in case of small swarm
and number of iterations.

2. Formation Control
The formation driving method described in this section is based on a leader-follower
approach, in which the followers should follow a leader's trajectory. The method was
developed by Barfoot and Clark (Barfoot et al., 2002; Barfoot & Clark, 2004) and later
improved for following of trajectories with arbitrary shape within our team (Saska et al.,
2006; Hess et al., 2007). In this chapter there will be published only the parts of formation
control necessary for understanding of restrictions applied in the path planning while a
detailed description of control inputs for each vehicle can be found in (Saska et al., 2006;
Hess et al., 2007).
In the description of the method as well as in the final experiments, known map of
environment and utilization of car-like robots with limits for maximum velocity rv and

minimum turning radius rR will be assumed. Furthermore, around each vehicle will be

considered distance rd from its center in which the obstacles have to be avoided (rd is
usually a function of robot’s width).

Figure 1. Two subsequence snapshots of formation driving using fixed position of followers
in Cartesian (a) and Curvelinear (b) coordinates. Solid lines denote path of leader while
paths of followers are denoted by dashed lines
Important fact of the formation driving of car-like robots that needs to be considered is
caused by impossibility to change heading of the robot on spot. Due to this feature
formations with fixed relative distance in Cartesian coordinates cannot be used, because

Particle Swarm Optimization

332

such structure makes smooth movement of the followers impossible (simple example is
shown in Fig. 1. Therefore we utilized an approach in which the followers are maintained in
relative distance to the leader in curvelinear coordinates with two axes p and q, where p
traces movement of leader and q is perpendicular to p as is demonstrated in Fig. 1b. The
positive direction of p is defined from actual position of the leader back to the origin of its
movement and the positive direction of q is defined in the left half plane in direction of
forward movement.
The shape of formation is then uniquely determined by states)()(tpL i

tψ in travelled distance

pi(t) from actual position of the leader along its trajectory and by offset distance)()(tpi i
tq

between positions of the leader and the ith follower in perpendicular direction from the
leaders' trajectory. The parameters)(tpi and)(tqi defined for each follower i can be

varying during the mission and)(tpi
t is time when the leader was at the travelled distance

)(tpi behind the actual position.)}(),(),({)(ttytxt LLLL Θ=ψ denotes the

configuration of a leader robot at time t , and similarly)}(),(),({ ttytx iiii Θ=ψ , with

},,1{ rni …∈ , denote the configuration for each of the rn follower robots at time t . The

Cartesian coordinates tt yx , for an arbitrary configuration)(tψ define the position of a

robot and)(tΘ denotes its heading.
To convert the state of the followers in curvelinear coordinates to the state in rectangular
coordinates)(tiψ the following equations can be applied:

(1)

where)}(),(),({)()()()()(tpLtpLtpLtpL iiii
ttytxt Θ=ψ is state of the leader in time)(tpi

t .

Applying the leader following approach using qp, coordinates we can easily determine

inadmissible interval of turning radius for the leader of formation as)();(tRtR ff
+− , where

(2)

These restrictions must be applied due to the different turning radius of the robots on the
different position in the formation during turning. It is obvious that the robot following
inner track should go slower and with smaller turning radius than the robot further from
the centre of turning.

Path Planning for Formations of Mobile Robots using PSO Technique

333

Since the leader trajectory has to be collision free for the leader but also for the followers, the
shape of the formation should be included to the avoidance behaviour. The extended
obstacle free distance for the leaders' planning can be then expressed as

 (3)

Remark 2.1 Time dependence and asymmetry of the formation will be for simplification of
the algorithm description omitted and the variables will be considered as constants:

(4)

where T is total time of the formation movement.

3. Path Description and Evaluation
The path planning for the leader of formation can be realized by a search in the space of
functions. In this approach the space is reduced to a sub-space which only contains strings
of cubic splines. The mathematic notation of a cubic spline (Ye & Qu, 1999) is

 (5)

where s is within the interval >< 1;0 and DCBA ,,, are constants. The whole string of
the splines is then in 2D case uniquely determined by n8 variables (n denotes the amount
of splines in the string). The initial and desired state (position and orientation) of the
formation is specified by 8 equations, while continuity of first and second derivative in the
whole path, which is important for the formation driving as is shown in (Saska et al., 2006),
is guaranteed by)1(6 −n equations.

Figure 2. Path representation

Particle Swarm Optimization

334

Therefore, only)1(2 −n degree of freedom define the whole path, which conforms to
positions of the points in the spline connections. The whole path representation used in our
method is shown in Fig. 2.
Each solution achieved by the global optimization method is evaluated by a cost function.
The global minimum of this function corresponds to a smooth and short path that is safe
(there is sufficient distance to obstacles). The cost function was in introduced method used
in the form

 (6)

where part lengthf corresponds to the length of the path which in 2D case can be computed

by

 (7)

The component cedisf tan (Fig. 3a) penalizes the paths close to an obstacle and it is defined
by equation

(8)

where dfp penalizes solutions with a collision that can be avoided by a change in the

formation and drp penalizes paths with a collision of the leader. Parameter d denotes
minimal distance of the path to the closest obstacle and can be expressed as

 (9)

where O is set of all obstacles in the workspace of the robots.
The part of the cost function radiusf (Fig. 3b), that is necessary because of using the car-like
robots as well as due to presented formation driving approach, is computed according

(10)

Path Planning for Formations of Mobile Robots using PSO Technique

335

where solutions penalized only by rfp can be repaired by a formation changing, while

paths with radius smaller than rR do not meet even requirements for a single robot.
Parameter r is minimal radius along the whole path and it is defined by

(11)

Figure 3. (a) cedisf tan , (b) radiusf - components of cost function with denoted penalizations

4. Particle Swarm Optimization

Each particle i is represented as aD-dimensional position vector)(txi
G

and has a

corresponding instantaneous velocity vector)(tvi
G

. The position vector encodes robot path
according to the schema depicted in Fig. 2. In our simple case of three splines (two spline
connections), the position vector is 4-dimensional and },,,{)(,2,2,1,1 yxyxi PPPPtx =G

.

Furthermore, each particle remembers its individual best value of fitness function and
position)(tpi

G
 that has resulted in that value. During each iteration t, the velocity update

rule (12) is applied on each particle in the swarm:

(12)

Particle Swarm Optimization

336

The)(tpg
G

 is the best position of the entire swarm and represents the social knowledge.

Another alternative can be "local best PSO", where the best position from a local
neighborhood is used instead of)(tpg

G
. We chose the "global-best PSO" because of faster

convergence that is consistent with our requirement on low time complexity. The parameter
w is called inertia weight and during all iterations decreases linearly from wstart=0.8 to
wend=0. The symbols R1 and R2 represent the diagonal matrices with random diagonal
elements drawn from a uniform distribution between 0 and 1. The parameters 1ϕ and 2ϕ
are scalar constants that weight influence of particles' own experience and the social
knowledge. The parameters were set 221 == ϕϕ in compliance with literature
recommendation.
Next, the position update rule (13) is applied:

 (13)

If any component of)(tvi
G

 is less than maxV− or greater than maxV+ , the corresponding

value is replaced by maxV− or maxV+ , respectively. The maxV is maximum velocity
parameter. This parameter (as well as the velocity and position vectors) is related to the
spatial dimensions of the planning area. For the area with 4000080000 × pixels, some
preliminary tests showed that 3000max =V was suitable setting.

The update formulas (12) and (13) are applied during each iteration and the)(tpi
G

 and

)(tpg
G

 values are updated simultaneously. The algorithm stops if maximum number of

iterations is achieved.
There are some specific moments in our application. The swarm initialization is the most
important one. The particular components of the particle positions have the direct
interpretations. They are coordinates of 2-D points in the robot workspace. Therefore, it is
suitable to initialize the position vectors into a rectangle with one corner in the start position
and the opposite corner in the goal position. However, there can be some different
initialization strategies (e.g. initializing the spline connection points over the whole
workspace or on the line connecting the start and the goal position.
For our particular scenarios, we choose the initial position to be uniform random numbers
from <30000;40000>. The same initialization was used for genetic algorithm described
below.

5. Genetic Algorithm
The PSO has been compared to the most commonly used nature-inspired method - genetic
algorithm (GA). In all experiments, the same GA scheme with stochastic uniform selection,
scattered crossover and gaussian mutation was used (Vose, 1999). The particular settings
have been chosen experimentally.

Path Planning for Formations of Mobile Robots using PSO Technique

337

In the stochastic uniform selection a line is laid out in which each parent corresponds to a
section of the line of length proportional to its scaled value. The algorithm moves along the
line in equal sized steps and allocates a parent from the section it lands on. The "scattered"
crossover selects randomly the genes to be recombined. The Gaussian mutation adds a
random number drawn from Gaussian distribution with zero mean and variance linearly
decreasing from 05.0 r to 0125.0 r , where 0r is the the initial range (for our experiments,

1000030000400000 =−=r). Moreover, elitism has been used that copies two best
individuals from the previous generation into the new generation if a better individual was
not created in the new generation. This prevents the loss of best solution and accelerates the
convergence.

6. Implementation Details
Great number of evaluations is required by available optimization methods and therefore
computational complexity of the cost function is key factor for real time applications. The
most calculation-intensive part of the equation (6) is cedisf tan . It is done by big amount and
complexity of obstacles from which the distance needs to be computed. In the presented
method a distance grid map of the environment is pre-computed. Each cell in such matrix
denotes minimum distance of relevant place to the closest obstacle according to equation (8).
The regions outside the polygon denoting walls of the building or inside the obstacles could
be signed by infinite value, because they are infeasible for the formation movement.
Nevertheless due to the simple initialization used in this chapter all particles in the initial
swarm can be intersecting an obstacle and therefore evaluated by the same value

∞=cedisf tan .

Figure 4. Map of utilized workspace with denoted zoomed areas of the scenarios: Situation 1
and Situation 2

Particle Swarm Optimization

338

Figure 5. Distance map used for computing of the cost function. Black color denotes the
regions where 0tan =cedisf and white color denotes the region with maximum values of

cedisf tan

In such case even the smartest optimization method degrades to a random search. A
solution could be to artificially add a rising of cedisf tan outside the polygon from the walls
of building (similarly inside the circular obstacles the increase will be from the borders to
the center of obstacle) which enables the optimization method to reach the feasible space.
Big advantage of such grid-map approach is possibility to use obstacles with arbitrarily
complicated shape, that is usually done be autonomous mapping technique. An occupancy
grid that is obtained by a range finder can be used as well. An example of the robot
workspace with obstacles that was used for experiments is depicted on the Fig. 4 and the
appropriate distance map is drawn in the Fig. 5.

7. Experiments
This section summarizes various types of experiments in static environment for two scenarios
(Situation 1 and Situation 2) depicted in Fig. 4. First, the results obtained by PSO are discussed
and further, the PSO is compared to genetic algorithm. The presented tests have been realized
in the environment of computer science building in Wuerzburg (map is depicted in Fig. 4)
which is frequently used for hardware experiments of indoor mobile robots.

7.1 PSO Results
Parameters of the PSO method were adjusted in agreement with (Saska et al., 2006), where
the algorithm was used in similar application. As the test scenario were chosen situations
with several local extremes corresponding to feasible as well as unfeasible paths for the
leader. In Fig. 6 are presented two solutions of the Situation 1 designed by PSO method. The
path evaluated by cost f=13.02 is close to the global optimal solution and is feasible for the

Path Planning for Formations of Mobile Robots using PSO Technique

339

formation maintaining fixed shape. Contrariwise the second path (f=28.71) is close to one of
the local optimal solutions and it is feasible only for a single robot. For the formation driving
it means that the shape of the formation must be temporarily changed during the passage
around the obstacles as well as in the loop replacing sharp unfeasible curve next to the
corner of the room. We should note that the loop was created automatically by the path
planning method. Such manoeuvres could be useful e.g. in crossroads of narrow corridors
where straightforward movement is impossible due to the restriction of turning radius.

Figure 6. Two different solutions of Situation 1 obtained by PSO

Results of the second scenario, Situation 2, are shown in Fig. 7 where the solution with
f=13.82 is feasible for the complete formation whereas the second solution (f=18.31) requires
small changes of the positions of outer followers. The second path is shorter than the first
solution, which is close to the global minimum of the cost function (6). Therefore the second
solution could be preferred in the application where the shape of formation can be easily
modified.

Figure 7. Two different solutions of Situation 2 obtained by PSO

Particle Swarm Optimization

340

7.2 Comparison with GA
The two scenarios described above were used for the comparison of PSO and GA. For both
methods, the swarm (population) size was 30 and the number of iterations (generations)
was 300. Such an excessive number of cost function evaluations enables better evaluation of
results and the chance of the algorithm to converge into an optimum.

Table 1. The minimum, mean, standard deviation and maximum of the set of minimum cost
values found by particular runs for Situation 1. Set of results from 100 repeated runs was
used

Table 2. Situation 1 - absolute occurrences of different values of final minf in the set of 100
results of independent runs

Because of statistical purposes, 100 runs of each method (with different random
initialization) has been launched. The main quality criterion used is the minimum cost
function minf found at a particular moment. First, we took final values of the minimum
cost value found in particular runs. Basic statistical properties computed from the 100 runs
are depicted in Table 1. Although the mean best PSO solutions is lower than the mean best
GA solution, the difference is not statistically significant (two-sample t-test with significance
level 0.05 was used to investigate the significance of difference between the methods).
However, high standard deviation and high maximum (worst result) obtained for GA
results shows that in some runs, the genetic algorithm found extremely poor result that do
not belong to any of the two optima shown in Fig. 6. This is especially evident from the
Table 2, where the histogram of best solutions is depicted. The second column corresponds
to the global minimum of cost function that lies under the value f=14. The numbers are
absolute occurrences (of totally 100 runs) of the final minimum fitness values that are lower
than 14. The third column describes hits to the local optima (that lies somewhere around 28).
The other two columns correspond to quite poor (probably unusable) solutions. One can
observe that for the Situation 1 the GA finds these bad solutions in 4 of totally 100 cases. On
the other hand the PSO always finds at least the local minimum and is more susceptible to
getting stuck in the local optimum. This fact is probably a tax on the faster convergence. The
higher convergence rate of PSO can be observed from Fig. 8b, where the mean temporal
evolution of minf is depicted. One can see that the curve for PSO decreases and reaches
minimum much more rapidly than the curve measured for GA.
The results for Situation 2 are similar. This time, the mean result for GA is significantly
worse (Table 3). In histogram (Table 4 and Fig. 9a), one can observe that GA again was

Path Planning for Formations of Mobile Robots using PSO Technique

341

unable to find neither the global optimum (f<16) nor the local optimum ()19;16(∈f)in 5
of totally 100 cases. Moreover, it found the global optima fewer times than the PSO. Again,
the convergence of PSO is much faster for the Situation 2.

Figure 8. The results for Situation 1. The histogram of final minf values obtained from 100

runs (a) and the temporal evolution of minf values averaged over 100 runs (b)

Figure 9. The results for Situation 2. The histogram of final minf values obtained from 100

runs (a) and the temporal evolution of minf values averaged over 100 runs (b)

Table. 3 The minimum, mean, standard deviation and maximum of the set of minimum cost
values found by particular runs for Situation 2. Set of results from 100 repeated runs was
used

Particle Swarm Optimization

342

Table 4. Situation 2 - absolute occurrences of different values of final fmin in the set of 100
results of independent runs

The conclusion of this section is that the PSO finds the solution much faster than GA .
Moreover, the GA sometimes produces unusable poor solution. Both the PSO and GA
parameters were tuned experimentally in some preliminary testing.

7.3 Constriction and Dynamic Inertia Weight
It has been already mentioned above that an acceptable modification of the PSO method
must be very simple and should lead to improvement of algorithm's convergence rate. In
this section, two very simple modifications are compared to the basic PSO described in
Section 4. The first modification is the PSO with constriction coefficient (CCPSO) and the
second is PSO with adaptive dynamic inertia weight (AIWPSO) (Fan & Chang, 2007).
The constriction coefficient was derived from an eigenvalue analysis of swarm dynamics
(Clerk, 1999). The method is used to balance exploration and exploitation trade-off. The
velocity update Equation (12) is modified:

(14)

where χ is the constriction coefficient, which is computed from values of 1ϕ and 2ϕ . We

used 1.221 == ϕϕ and

(14)

where 21 ϕϕϕ += . The advantage is that the velocity clamping does not need to be used.
The second modification - PSO with adaptive dynamic inertia weight (AIWPSO) (Fan &
Chang, 2007) is based on dynamically changing inertia weight)(tww = . The principal
modification is the nonlinear modification of the inertia weight. The nonlinear function is
given by: w=(d)rwstart, where d is the decrease rate and has been set experimentally to

95.0=d and r changes through time according to the following rules: 1. 1+← rr if
the best cost function value (minimal value in the swarm) decreased (improved) and 2.

1−← rr if the best cost function value increased or remained the same. This mechanism
wishes to make particles fly more quickly toward the potential optimal solution, and then
through decreasing inertia weight to perform local refinement around the neighbourhood of
the optimal solution.
The comparison has been done using the Situation 2 described above. The results of 100
runs are depicted on Fig. 10. For all runs, only 15 particles and 100 iterations were used. The
results show that in average, better results are obtained by CCPSO, although the CCPSO has

Path Planning for Formations of Mobile Robots using PSO Technique

343

slower convergence than PSO. On the other hand, the difference of the final best solutions is
not significant. The PSO reached the global optimum area (f<20) in 73 runs and the final
minimum cost value averaged over 100 runs was 73.25. The CCPSO reached the global
optimum area in 71 runs and the final minimum cost value averaged over 100 runs was
117.62. One can also see that the AIWPSO did not perform well. It found the global
optimum area in 54 runs and the final minimum cost value averaged over 100 runs was
1159.00.

Figure 10. Comparison of three PSO modifcations. The temporal evolution of minf values
averaged over 100 runs

7.4 Simulation of Formation Driving

Figure 11. Simulation of formation movement

Particle Swarm Optimization

344

For demonstration of the formation movement was chosen the feasible solution designed by
PSO in situation 1. The path planning as well as the formation driving were adjusted for the
formation of three robots in the line that is perpendicular to the leader's path. In the Fig. 11
is zoomed part of the workspace with delineated positions of the robots during task
execution. Robots were controlled by an approach that was presented by our team in (Hess
et al. 2007).

8. Conclusion and Future Work
This chapter gave concrete recommendations about the use of PSO based spline-planner.
Namely, a suitable PSO method with recommended parameter values is resumed and its
main advantages and disadvantages are critically discussed. The original PSO with velocity
clamping and linearly decreasing inertia weight performed well and was able to find better
solution in shorter time than genetic algorithm. Because of strong limitations on time
consumption, we do not recommend any complex modification. Among the two tested
modification, the PSO with constriction coefficient could compete with the original PSO
version. Finally, it was shown, how problematic is the use of PSO for formation path
planning. In our cases, the only feasible paths corresponded to global optima of the cost
function. A promising future direction is the modified random initialization of the swarm
that can be adjusted in number of ways. The good initialization is simple instrument for
improving the speed of the planning process that is for real time planning and dynamical
environment response crucial.

9. Acknowledgments
The research was supported by the research program No. MSM6840770012
Transdisciplinary Research in the Area of Biomedical Engineering II of the CTU in Prague,
sponsored by the Ministry of Education, Youth and Sports of the Czech Republic.

10. References
Balch, T., & Arkin, R. C. (1998, December). Behaviour-based formation control for multi-

robot teams. IEEE Transactions on Robotics andAutomation, 14(6), 926–939.
Barfoot, T. D., & Clark, C. M. (2004, February). Motion planning for formations of mobile

robots. Robotics and Autonomous Systems, 46, 65–78.
Barfoot, T. D., Clark, C. M., Rock, S. M., & D’Eleuterio, G. M. T. (2002, october). Kinematic

path-planning for formations of mobile robots with a nonholonomic constraint.
Beard, R., Lawton, J., & Hadaegh, F. (2001, November). A coordination architecture for

spacecraft formation control. IEEE Transactions on Control Systems Technology, 9(6),
777 - 790.

Clerc, M. (1999). The swarm and the queen: Towards a deterministic and adaptive particle
swarm optimization. In Proceedings of the ieee congress on evolutionary computation
(Vol. 3, pp. 1951– 1957).

Daigle, M. J., Koutsoukos, X. D., & Biswas, G. (2007, April). Distributed diagnosis in
formations of mobile robots. IEEE Transactions on Robotics, 23(2), 353 - 369.

Path Planning for Formations of Mobile Robots using PSO Technique

345

Das, A., Fierro, R., Kumar, V., Ostrowski, J., Spletzer, J., & Taylor, C. (2003, October). A
vision-based formation control framework. IEEE Transactions on Robotics and
Automation, 18(5), 813825.

Derenick, J., & Spletzer, J. (2007, December). Convex optimization strategies for coordinating
large-scale robot formations. IEEE Transactions on Robotics, 23(6), 1252-1259.

Desai, J., Ostrowski, J., & Kumar, V. (2001, December). Modeling and control of formations
of nonholonomic mobile robots. IEEE Transactions on Robotics and Automation, 17(6),
905908.

Fahimi, F. (2007, June). Sliding-mode formation control for underactuated surface vessels.
IEEE Transactions on Robotics, 23(3), 617 - 622.

Fan, S.-K. S., & Chang, J.-M. (2007). A modified particle swarm optimizer using an adaptive
dynamic weight scheme. In Hcii (12) (p. 56-65). Springer.

Fredslund, J., & Mataric, M. (2002, October). A general algorithm for robot formations using
local sensing and minimal communication. IEEE Transactions on Robotics and
Automation, special issue on Advances in Multi-Robot Systems, 18(5), 837846.

Fua, C., Ge, S., Duc Do, K., & Lim, K.-W. (2007). Multirobot formations based on the queue-
formation scheme with limited communication. IEEE Transactions on Robotics, 23(6),
1160-1169.

Hess, M., Saska, M., & Schilling, K. (2007, September). Enhanced motion planning for dynamic
formations of nonholonomic mobile robots.

Kaminka, G., Schechter-Glick, R., & Sadov, V. (2008, April). Using sensor morphology for
multirobot formations. IEEE Transactions on Robotics, 24(2), 271 - 282.

Kang, W., Xi, N., & Sparks, A. (2000). Formation control of autonomous agents in 3d workspace.
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings international

conference on neural networks ieee (Vol. 4, pp. 1942–1948).
Kloder, S., & Hutchinson, S. (2006, August). Path planning for permutation-invariant

multirobot formations. IEEE Transactions on Robotics, 22(4), 650-665.
Kloetzer, M., & Belta, C. (2007, April). Temporal logic planning and control of robotic

swarms by hierarchical abstractions. IEEE Transactions on Robotics, 23(2), 320 - 330.
Lalish, E., Morgansen, K., & Tsukamaki, T. (2006). Formation tracking control using virtual

structures and deconfliction.
Langer, D., Rosenblatt, J., & Hebert, M. (1994, December). A behavior-based system for off-

road navigation. IEEE Transactions on Robotics and Automation, 10(6), 776–783.
Lawton, J., Beard, R., & Young, B. (2003, December). A decentralized approach to formation

maneuvers. IEEE Transactions on Robotics and Automation, 19(6), 933941.
Milutinovi, D., & Lima, P. (2006, December). Modeling and optimal centralized control of a

large-size robotic population. IEEE Transactions on Robotics, 22(6), 1280 - 1285.
Mourikis, A., & Roumeliotis, S. (2006a, october). Optimal sensor scheduling for resource-

constrained localization of mobile robot formations. IEEE Transactions on Robotics,
22(5), 917 - 931.

Mourikis, A., & Roumeliotis, S. (2006b, August). Performance analysis of multirobot
cooperative localization. IEEE Transactions on Robotics, 22(4), 666 - 681.

Pallottino, L., Scordio, V., Bicchi, A., & Frazzoli, E. (2007, December). Decentralized
cooperative policy for conflict resolution in multivehicle systems. IEEE Transactions
on Robotics, 23(6), 1170 - 1183.

Particle Swarm Optimization

346

Parker, L. (1998, April). Alliance: an architecture for fault tolerant multirobot cooperation.
IEEE Transactions on Robotics and Automation, 14(2), 220–240.

Peasgood, M., Clark, C., & McPhee, J. (2008, April). A complete and scalable strategy for
coordinating multiple robots within roadmaps. IEEE Transactions on Robotics, 24(2),
283 - 292.

Ren, W., & Beard, R. (2003, June). A decentralized scheme for spacecraft formation flying via the
virtual structure approach. Saska, M., Hess, M., & Schilling, K. (2007, December). Path
planning and motion coordination for compact vehicle-formations. Guimaraes, Portugal.

Saska, M., Hess, M., & Schilling, K. (2008, May). Efficient airport snow shoveling by applying
autonomous multi-vehicle formations. Pasadena, USA.

Saska, M., Macas, M., Preucil, L., & Lhotska, L. (2006). Robot path planning using partical
swarm optimization of Ferguson splines. Proc. IEEE/ETFA’06, 833-839.

Tanner, H., Loizou, S., & Kyriakopoulos, K. (2003). Nonholonomic navigation and control of
cooperating mobile manipulators. IEEE Transactions on Robotics and Automation.,
19(1), 53-64.

Vig, L., & Adams, J. (2006, August). Multi-robot coalition formation. IEEE Transactions on
Robotics, 22(4).

Vose, M. D. (1999). The simple genetic algorithm: Foundations and theory. MIT Press,
Cambridge.

Ye, J., & Qu, R. (1999). Fairing of parametric cubic splines. Elseviers.

21

Simultaneous Perturbation Particle Swarm
Optimization and Its FPGA Implementation

Yutaka Maeda and Naoto Matsushita
Kansai University

Japan

1. Introduction
The particle swarm optimization technique is one of the promising tools to find a proper
optimum for an unknown function optimization. Especially, global search capability of the
method is very powerful. The particle swarm optimization utilizes common knowledge of
the group and individual experiences effectively. That is, direction for the best estimator
that a particle has ever reached, direction for the best one that all particles have ever found
and momentum are successfully combined to determine the next direction. At the same
time, the method does not utilize gradient of the objective function. Only values of the
objective function are used. In many applications, it is difficult or impossible to obtain the
gradient of an objective function. Then, the particle swarm optimization can take advantage
of the merit.
However, this means that the method does not use local information of the function. Even if
a particle is close to a global optimal, the particle moves based on three factors described
above. In this case, it seems better to search neighbour area carefully. To do so, local
information such as gradient is necessary.
On the other hand, the simultaneous perturbation method is a kind of stochastic gradient
method. The scheme can obtain the local information of the gradient without direct
calculation of the gradient. The simultaneous perturbation estimates the gradient using a
kind of finite difference technique. However, even if dimension of the parameters are large,
the simultaneous perturbation requires only two values of the target function. Therefore, we
can apply this to high dimensional optimization problems in effect.
As mentioned now, since the simultaneous perturbation is a stochastic gradient method, we
cannot expect global search capability. That is, this method cannot give a global optimal but
a local one.
Combination of the particle swarm optimization and the simultaneous perturbation
optimization will yield interesting algorithms which have advantages of these two
approaches. There are some ways to combine the particle swarm optimization and the
simultaneous perturbation method. In this paper, we propose four new algorithms based on
combinations of the particle swarm optimization and the simultaneous perturbation. Some
results for test functions are also shown.
Moreover, hardware implementation of these kinds of algorithms is interesting research
target. Especially, the particle swarm optimization has plural search points which are

Particle Swarm Optimization

348

candidates of optimum. If we can evaluate these search points in parallel processing system,
we can realize intriguing optimization scheme as a hardware system. From this point of
view, we implemented the particle swarm optimization using the simultaneous
perturbation by using field programmable gate array (FPGA). This paper presents detailed
description on the implementation of the simultaneous perturbation particle swarm
optimization.

2. Particle swarm optimization and simultaneous perturbation
2.1 Particle swarm optimization
The particle swarm optimization is proposed by Eberhart and Kennedy (Kennedy &
Eberhart, 1995). This scheme realizes an intelligent interesting computational technique.
Intelligence come out swarm behaviour of creatures are successfully modelled as an
optimization scheme (Bonabeau et al., 1999)(Engelbrecht, 2006). Many applications of the
particle swarm optimization for some fields are reported (Juang, 2004)(Parsopoulos &
Vrahatis, 2004)(Bo et al., 2007)(Fernandez et al., 2007)(Nanbo, 2007)(del Valle et al., 2008).
Our problem is to find a minimum point of an objective function 1()f x ∈ℜ with an
adjustable n-dimensional parameter vector nx∈ℜ . The algorithm of the particle swarm
optimization is described as follows;

 (1)

 (2)

where, the parameter vector tx denote an estimator of the minimum point at the t-th
iteration. txΔ is called a velocity vector, that is, a modifying vector for the parameter vector.
This term becomes so-called momentum for the next iteration.

tp is the best estimator that this particle has ever reached, tn is the best one that all the
particles have ever found until the t-th iteration. The coefficients 1φ and 2φ are two positive
random numbers in a certain range to decide a balance between the individual best
estimator and the swarm best one. Uniform distribution with upper limitation is used in this
work. ω denotes a coefficient to adjust the effect of the inertia, χ is a gain coefficient for the
update.
As shown in Eq.(2), in the particle swarm optimization algorithm, each individual changes
their position based on the balance of three factors; velocity, the individual best estimator
and the group best estimator. All the particle change their position using Eq.(2).

2.2 Simultaneous perturbation
The simultaneous perturbation optimization method is very simple stochastic gradient
method which does not require the gradient of an objective function but only two values of
the function. The simultaneous perturbation was introduced by J.C.Spall in 1987 (Spall,
1987). Convergence of the algorithm was proved in the framework of the stochastic
approximation method (Spall, 1992). Y.Maeda also have independently proposed a learning
rule of neural networks based on the simultaneous perturbation method and reported a
comparison between the simultaneous perturbation type of learning rule of neural
networks, the simple finite difference type of learning rule and the ordinary back-

Simultaneous Perturbation Particle Swarm Optimization and Its FPGA Implementation

349

propagation method (Maeda et al.,1995). J.AIespector et al. and G.Cauwenberghs also
individually proposed a parallel gradient descent method and stochastic error descent
algorithm, respectively, which are identical to the simultaneous perturbation learning rule
(Cauwenberghs, 1993) (Alespector et al., 1993). Many applications of the simultaneous
perturbation are reported in the fields of neural networks (Maeda, 1997) and their hardware
implementation (Maeda, 2003) (Maeda, 2005). The simultaneous perturbation method is
described as follows;

 (3)

 (4)

Where, a is a positive constant, c and i
tc are a perturbation vector and its i-th element

which is determined randomly. i
tgΔ represents the i-th element of tgΔ . i

tc is independent
with different element and different iteration. For example, the segmented uniform
distribution or the Bernoulli distribution is applicable to generate the perturbation. tgΔ
becomes an estimator of the gradient of the function.
As is shown in Eq.(4), this method requires only two values of the target function despite of
dimension of the function. That is, even if the dimension n of the evaluation function is so
large, two value of the function gives the partial derivative of the function with respect to all
the parameters, although ordinary finite difference requires many values of the function.
Combination with the particle swarm optimization is very promising approach to improve
performance of the particle swarm optimization.

3. Combination of particle swarm optimization and simultaneous perturbation
We can obtain a global optimal using the particle swarm optimization. However,
unfortunately, since the particle swarm optimization itself does not have a capability
searching the neighbor of the position, and it may miss the optimal point near the present
position. As a result, efficiency of the particle swarm optimization may be limited in some
cases.
On the other hand, the simultaneous perturbation estimates gradient of the position. The
simultaneous perturbation method searches only local area based on the estimated gradient.
If we can add the local search capability of the simultaneous perturbation to global search
one of the particle swarm optimization, we will have a useful optimization method with
good global search capability and efficient local search ability at the same time. Therefore,
combination of the particle swarm optimization and the simultaneous perturbation is
promising and interesting approach.
Combined methods of the particle swarm optimization and the simultaneous perturbation is
proposed by Maeda (Maeda, 2006). In this work, the update algorithm which is a
combination of particle swarm optimization and the simultaneous perturbation is applied
for all the particles uniformly. In other words, the same update algorithm is used for all
particles.
In population, there are plural particles and we know the best one. The best individual is the
best candidate for a global optimal at that iteration. A possibility that the particle is close to

Particle Swarm Optimization

350

the global optimal is high. We change the movement rule depending on a situation of the
particles. Especially, the best particle has a specific meaning;
From this point of view, we propose some schemes which are combinations of the particle
swarm optimization and the simultaneous perturbation.

3.1 Scheme 1
We directly combine the idea of the particle swarm optimization and the simultaneous
perturbation. In this method, the momentum term of Eq.(2) is replaced by the simultaneous
perturbation term. The estimated gradient generated by Eq.(4) is used to change the
direction of modification. The main equation is shown as follows;

 (5)

Where the i-th element of tgΔ is defined by Eq.(4). a is a coefficient to adjust the effect of the
estimated gradient.
Since the information is estimated by the simultaneous perturbation method, the algorithm
does not use the gradient of the function directly but utilizes only two values of the objective
function. Therefore, this scheme contains twice observations or calculations for the objective
function. However, this number of the observations does not depend on the dimension n of
the function. Local information of the gradient of the function is added to the ordinary
particle swarm optimization effectively. Fig.l shows elements to generate modifying
quantity in the first algorithm.

Figure 1. Modifying vector of the algorithm 1

3.2 Scheme 2
In the algorithm 1, all individuals have the same characteristics. That is, Eq.(5) is applied for
all particles. However, if the best particle is close to the global minimum, and this is likely,
the best particle had better search neighbor of the present point carefully. Then,
modification based on the original particle swarm optimization is not suitable for this
particle. The gradient type of method is suitable.
Therefore, in this algorithm 2, the simultaneous perturbation method of Eqs.(3) and (4) are
applied only to the best particle. All the other individuals are updated by the ordinary
particle swarm optimization shown in Eqs.(l) and (2).

3.3 Scheme 3
In this algorithm 3, the particle swarm optimization and the simultaneous perturbation are
mixed. That is, in every iteration, half of individuals in the population are updated by the

Simultaneous Perturbation Particle Swarm Optimization and Its FPGA Implementation

351

particle swarm optimization, left half particles are modified only by the simultaneous
perturbation.
All the individuals select the particle swarm optimization or the simultaneous perturbation
randomly with probability of 0.5 in every iteration.
It is interesting what level of performance does such a simple mixture of the particle swarm
optimization and the simultaneous perturbation has. Changing ratio of the particle swarm
optimization and the simultaneous perturbation is another option.

3.4 Scheme 4
We have another option to construct new algorithm. Basically, we use the algorithm 3.
However, the best individual is updated only by the simultaneous perturbation. The reason
is as same as that of the algorithm 2. The best particle has a good chance to be a neighbor of
a global minimum. Therefore, we always use the simultaneous perturbation for the best
particle.

4. Comparison
In order to evaluate performance of these algorithms, we use the following test functions.
These functions have their inherent characteristics about local minimum or slope.
• Rastrigin function
• Rosenbrock function
• 2n-minima function
Comparisons are carried out for ten-dimensional case, that is, n=10 for all test functions.
Average of 50 trials is shown. 30 particles are included in the population. Change of average
means that an average of the best particle in 30 particles at the iteration for 50 trials are
shown. For the simultaneous perturbation term, the perturbation c is generated by uniform
distribution in the interval [0.01 0.5] for the scheme 1 to 4. These setting are common for the
following test functions.
1. Rastrigin function
The function is described as follows;

(6)

The shape of this function is shown in Fig.2 for two-dimensional case. The value of the
global minimum of the function is 0. Searched area is -5 up to +5 for the function. We found
the best setting of the particle swarm optimization for the function χ =1.0 and ω =0.9.
Upper limitation of 1φ and 2φ are 2.0 and 1.0, respectively. Using the setting (See Table 1),
we compare these four methods and the ordinary particle swarm optimization.
As shown in the figure, this function contains many local minimum points. It is generally
difficult to find a global minimum using the gradient type of the method. It is difficult also
for the particle swarm optimization to cope with the function. The past experiences will not
give any clue to find the global minimum. This is one of difficult functions to obtain the
global minimum.
Change of the best particle is also depicted in Fig.3. The horizontal axis is number of
observations for the function. The ordinary particle swarm optimization requires the same
number of observations with the number of particles in the population. Since the scheme 1

Particle Swarm Optimization

352

contains the simultaneous perturbation procedure, the scheme uses twice number of the
observations. However, this does not change, even if the dimension of the parameters
increases.

Figure 2. Rastrigin function

Figure 3. Change of the best particle for Rastrigin function

Table 1. Parameters setting for Rastrigin function

Simultaneous Perturbation Particle Swarm Optimization and Its FPGA Implementation

353

The scheme 2 has the number of the observations of the ordinary particle swarm
optimization plus one, because only the best particle uses the simultaneous perturbation.
The scheme 3 requires 1.5 times of number of the observation of the particle swarm
optimization, because half of the particles in the population utilize the simultaneous
perturbation. The scheme 4 basically uses the same number of the observations with the
scheme 3. In our work, we take these different situations into account. For this function,
scheme 1,3 and 4 have relatively good performance.
2. Rosenbrock function
Shape of the function is shown in Fig.4 for two-dimensional case. The value of the global
minimum of the function is 0. Searched area is -2 up to +2. Parameters are shown in Table 2.
Since the Rosenbrock has gradual descent, the gradient method with suitable gain
coefficient will easily find the global minimum. However, we do not know the suitable gain
coefficient so that the gradient method will be inefficient in many cases. On the other hand,
the particle swarm optimization is beneficial for this kind of shape, because the momentum
term accelerates moving speed and plural particles will be able to find the global minimum
efficiently.
Change of the best particle is depicted in Fig.5. From Fig.5, we can see that the scheme 2 and
the ordinary particle swarm optimization have relatively good performance for this
function. As we mentioned, the ordinary gradient method has not good performance, the
particle swarm optimization is suitable. If we add local search for the best particle, the
performance will increase. The results illustrate this. The scheme 1 does not have the
momentum term, it is replaced by the estimated gradient term by the simultaneous
perturbation. The momentum term accelerates convergence and the gradient term does not
work well for flat slope. It seems that this results in this slow convergence.

 (7)

Figure 4. Rosenbrock function

Particle Swarm Optimization

354

Figure 5. Change of the best particle for Rosenbrock function

Table 2. Parameters setting for Rosenbrock function
3. 2n-minima function
The 2n-minima function is

(8)

Shape of the function is shown in Fig.6. Searched area is -5 up to +5. Table 3 shows
parameters setting. The value of the global minimum of the function is -783.32.
The function has some local minimum points and relatively flat bottom. This deteriorates
search capability of the gradient method. Change of the best particle is also depicted in
Fig.7. The scheme 4 has relatively good performance for this case. The function has flat
bottom including a global minimum. In order to search the global minimum, it seems that
the swarm search is useful. Searching the global minimum using many particles is efficient.
Simultaneously, local search is necessary to find exact position of the global minimum. It
seems that the scheme 4 matched for the case.
As a result, we can say that the gradient search is important and combination with the
particle swarm optimization will give us a powerful tool.

Simultaneous Perturbation Particle Swarm Optimization and Its FPGA Implementation

355

Figure 6. 2n-minima function

Figure 7. Change of the best particle for 2n-minima function

Table 3. Parameters setting for 2n-minima function

Particle Swarm Optimization

356

5. FPGA implementation
Now, we implement the simultaneous perturbation particle swarm optimization using
FPGA. Then we can realize one feature of parallel operation of the particle swarm
optimization. This results in higher operation speed for optimization problems.
We adopted VHDL (VHSIC Hardware Description Language) in basic circuit design for
FPGA. The design result by VHDL is configured on MU200 - SX60 board with
EP1S60F1020C6 (Altera) (see Fig.8). This FPGA contains 57,120 LEs with 5,215,104 bit user
memory.

Figure 8. FPGA board MU200-SX60 (MMS)

Figure 9. Configuration of the SP particle swarm optimization system

Simultaneous Perturbation Particle Swarm Optimization and Its FPGA Implementation

357

Visual Elite (Summit) is used for the basic deign. Synplify Pro (Synplicity) carried out the
logical synthesis for the VHDL. QuartusII (Altera) is used for wiring.Overall system
configuration is shown in Fig.9. Basically, the system consists of three units; swarm unit,
detection unit and simultaneous perturbation unit.
In this system, we prepared three particles. These particles works parallel to obtain values of
a target function, and are updated their positions and velocity. Therefore, even if the system
has many particles, this does not effect on the overall operation speed. Number of the
particles in this system is restricted by the scale of target FPGA. We should economize the
design, if we would like to contain many particles.
The target function with two parameters x1 and x2 is defined as follow;

(9)

Based on Rastrigin function, we assume this test function with optimal value of 0 and 8th
order. We would like to find the optimal point (0.0 0.0) in the range [-5.5 5.5]. Then optimal
value of the function is 0. Fig. 10 shows shape of the function.

Figure 10. Shape of the target function

5.1 Swarm unit
Swarm unit includes some particles which are candidate of the optimum point. Candidate
values are memorized and updated in these particle parts.
Configuration of the particle part is shown in Fig. 11. This part holds its position value and
velocity. At the same time, modifying quantities for all particles are sent by the

Particle Swarm Optimization

358

simultaneous perturbation unit. The particle part updates its position and velocity based on
these modifying quantities.

Figure 11. Particle part

5.2 Detection unit
The detection unit finds and holds the best estimated value for each particle. We refer this
estimator as individual best. And based on the individual best values of the each particle,
the unit searches the best one that all the particles have ever found. We call it the group best.
The individual best values and the group best value are stored in RAM. For iteration, new
positions for all particles are compared with corresponding values stored in RAM. If new
position is better, it is stored, that is, the individual best value is updated. Moreover, these
are used to determine the group best value.
These individual best values and the group best value are used in the swarm unit to update
the velocity.

5.3 Simultaneous perturbation unit
The simultaneous perturbation unit realizes calculation of evaluation function for each
particle, estimation of the gradient of the function based on the simultaneous perturbation.
As a result, the unit produces estimated gradient for all the particles. The results are sent to
the swarm unit.

5.4 Implementation result
Single precision floating point expression IEEE 574 is adopted to express all values in the
system. Ordinary floating point operations are used to realize the simultaneous perturbation
particle swarm optimization algorithm.
We searched the area of [-5.5 5.5]. Initial positions of the particles were determined
randomly from (2.401, 2.551), (-4.238, 4.026) or (-3.506, 1.753). Initial velocity was all zero.
Then we defined value of χ is 1. Coefficients 1φ and 2φ in the algorithm were selected from
2i(=2), 2°(=1), 2-i(=0.5), 2-2(=0.25), 2-3(=0.125), 2-4(=0.0625), 2-5(=0.03125) or 2-6(=0.015625).
This simplifies multiplication of these coefficients. The multiplication can be carried out by
addition for exponent component.

Simultaneous Perturbation Particle Swarm Optimization and Its FPGA Implementation

359

Design result is depicted in Fig.12. 84% of LE is used for all this system design. We should
economize the scale of the design, if we would like to implement much more particles in the
system. Or, we can also adopt time-sharing usage of the single particle part. Then total
operation speed will deteriorate.

Figure 12. Design result

Figure 13. Simulation result

Particle Swarm Optimization

360

Fig.13 shows a simulation result by Visual Elite. Upper six signals xi_l_l upto xi_3_2 denote
values of parameters x1 and x2 of three particles, respectively. Lower three signals HI upto
Pi3 are individual best values of three particles at the present iteration. x1 and x2 values are
consecutively memorized. Between these, the best one becomes group best shown in Pg
signal. f_Pg is the corresponding function value. In Fig.13 between three particle, the second
particle of Pi2 became the group best value of Pg. We can find END flag of "LED" at 75th
iteration.

Figure 14. Operation result

Fig.14 shows a change of the evaluation function of the best of the swarm for iteration. The
system easily finds the optimum point with three particles. About 50 iteration, the best
particle is very close to global optimum. As mentioned before, after 75 iteration, the system
stoped with an end condition.

6. Conclusion
In this paper, we presented hardware implementation of the particle swarm optimization
algorithm which is combination of the ordinary particle swarm optimization and the
simultaneous perturbation method. FPGA is used to realize the system. This algorithm
utilizes local information of objective function effectively without lack of advantage of the
original particle swarm optimization. Moreover, the FPGA implementation gives higher
operation speed effectively using parallelism of the particle swarm optimization. We
confirmed viability of the system.

7. Acknowledgement
This work is financially supported by Grant-in-Aid for Scientific Research (No.19500198) of
the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, and
the Intelligence system technology and kansei information processing research group,

Simultaneous Perturbation Particle Swarm Optimization and Its FPGA Implementation

361

Organization for Research and Development of Innovative Science and Technology, Kansai
University, and "Academic Frontier" Project of MEXT of Japan for Kansai University.

8. References
Alespector, J.; Meir, R.; Yuhas, B.; Jayakumar, A. & Lippe,D. (1993). A Parallel Gradient

Descent Method for Learning in Analog VLSI Neural Networks, In: Advances in
neural information processing systems, Hanson, S., Cowan, J., Lee, C. (Eds.), 836-844,
Vol.5, Morgan Kaufmann Publisher, Cambridge, MA

Bo Y.; Yunping C. & Zunlian Z.(2007). Survey on Applications of Particle Swarm
Optimization in Electric Power Systems, IEEE International Conference on Control
and Automation, pp. 481-486

Bonabeau, E.; Dorigo, M. & Theraulaz, G. (1999). Swarm intelligence: from natural to
artificial systems, Oxford University Press, 0-19-513159-2, NY

Cauwenberghs, G. (1993). A Fast Stochastic Error-descent Algorithm for Supervised
Learning and Optimization,' In: Advances in neural information processing systems,
Hanson, S., Cowan, J., Lee, C. (Eds.), 244-251, Vol.5, Morgan Kaufmann Publisher,
Cambridge, MA

del Valle, Y.; Venayagamoorthy, G.K.; Mohagheghi, S.; Hernandez, J.-C. & Harley,
R.G.(2008). Particle Swarm Optimization: Basic Concepts, Variants and
Applications in Power Systems, IEEE transactions on evolutionary computation, Vol.
12, No. 2,171-195

Engelbrecht, A.P.(2006). Fundamentals of Computational Swarm Intelligence, John Wiley &
Sons Ltd., West Sussex, 0-470-09191-6

Fernandez, P. M.; Rubio, B. A.; Garcia, R. P.; Garcia, S.G. & Gomez, M. R.(2007). Particle-
Swarm Optimization in Antenna Design: Optimization of Log-Periodic Dipole
Arrays, IEEE Antennas and Propagation Magazine, Vol. 49, No. 4,34-47

Juang, C. (2004). A Hybrid of Genetic Algorithm and Particle Swarm Optimization for
Recurrent Network Design, IEEE Transaction on System, Man, and Cybernetics — Part
B: Cybernetics, Vol. 34, No.2,997-1006,

Kennedy, J. & Eberhart, R. (1995). Particle Swarm Optimization, Proceedings of the IEEE
Conference on Neural Networks, pp.1942-1948,

Maeda, Y., Hirano, H. & Kanata, Y. (1995). A Learning Rule of Neural Networks Via
Simultaneous Perturbation and Its Hardware Implementation, Neural Networks,
Vol.8, No.2,251-259,

Maeda, Y. & de Figueiredo, R. J. P. (1997). Learning Rules for Neuro-controller Via
Simultaneous Perturbation, IEEE Transaction on Neural Networks, Vol.8, No.5,1119-
1130, Maeda,

Y. & Tada, T. (2003). FPGA Implementation of a Pulse Density Neural Network with
Learning Ability Using Simultaneous Perturbation, IEEE Transaction on Neural
Networks, Vol.14, No.3, 688-695,

Maeda, Y. & Wakamura, M. (2005). Simultaneous Perturbation Learning Rule for Recurrent
Neural Networks and Its FPGA Implementation, IEEE Transaction on Neural
Networks, Vol. 16, No.6,1664-1672,

Maeda, Y. & Kuratani, T. (2006). Simultaneous Perturbation Particle Swarm Optimization,
2006 IEEE Congress on Evolutionary Computation, pp. 2687-2691,

Particle Swarm Optimization

362

Nanbo, J. & Rahmat-Samii, Y.(2007). Advances in Particle Swarm Optimization for Antenna
Designs: Real-Number, Binary, Single-Objective and Multiobjective
Implementations, IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3,
Part 1,556-567

Parsopoulos, K. E. & Vrahatis, M. N. (2004). On the Computation of All Global Minimizers
Through Particle Swarm Optimization, IEEE Transaction on Evolutionary
Computation, Vol. 8, No.3,211-224,

Spall, J. C. (1987). A Stochastic Approximation Technique for Generating Maximum
Likelihood Parameter Estimation, Proceedings of the 1987 American Control
Conference, pp.1161-1167, Spall, J. C. (1992). Multivariate Stochastic
Approximation Using a Simultaneous Perturbation Gradient Approximation, IEEE
Transaction on Automatic Control, Vol. 37, No.3,332-341,

22

Particle Swarm Optimization with
External Archives for Interactive Fuzzy
Multiobjective Nonlinear Programming

Takeshi Matsui, Masatoshi Sakawa, Kosuke Kato and Koichi Tamada
Hiroshima University

Japan

1. Introduction
In general nonlinear programming problems to find a solution which minimizes an
objective function under given constraints, one whose objective function and constraint
region are convex is called a convex programming problem. For such convex programming
problems, there have been proposed many efficient solution method as the successive
quadratic programming method and the general gradient method. Unfortunately, there
have not been proposed any decisive solution method for nonconvex programming
problems. As practical solution methods, meta-heuristic optimization methods as the
simulated annealing method and the genetic algorithm have been proposed.
In recent years, however, more speedy and more accurate optimization methods have been
desired because the size of actual problems has been increasing.
As a new optimization method, particle swarm optimization (PSO) was proposed (Kennedy
& Eberhart, 1995). PSO is a search method simulating the social behavior that each
individual in the population acts by using both the knowledge owned by it and that owned
by the population, and they search better points by constituting the population. The authors
proposed a revised PSO (rPSO) by incorporating the homomorphous mapping and the
multiple stretching technique in order to deal with shortcomings of the original PSO as the
concentration to local solution and the inapplicability of constrained problems (Matsui et al.,
2008).
In recent years, with the diversification of social requirements, the demand for the programs
with multiple objective functions, which may be conflicting with each other, rather than a
single-objective function, has been increasing (e.g. maximizing the total profit and
minimizing the amount of pollution in a production planning). Since there does not always
exist a complete optimal solution which optimizes all objectives simultaneously for
multiobjective programming problems, the Pareto optimal solution or non-inferior solution,
is defined, where a solution is Pareto optimal if any improvement of one objective function
can be achieved only at the expense of at least one of the other objective functions. For such
multiobjective optimization problems, fuzzy programming approaches (e.g. (Zimmermann,
1983), (Rommelfanger, 1996), considering the imprecise nature of the DM's judgments in
multiobjective optimization problems, seem to be very applicable and promising. In the
application of the fuzzy set theory into multiobjective linear programming problems started

Particle Swarm Optimization

364

(Zimmermann, 1978), it has been implicitly assumed that the fuzzy decision or the
minimum-operator of (Bellman & Zadeh ,1970) is the proper representation of the DM's
fuzzy preferences. Thereby, M. Sakawa et al. have proposed interactive fuzzy satisficing
methods to derive satisficing solutions for the decision maker along with checking the local
preference of the decision maker through interactions for various multiobjective
programming problems (Sakawa et al, 2002).
In this paper, focusing on multiobjective nonlinear programming problems, we attempt to
derive satisficing solutions through the interactive fuzzy satisficing method. Since problems
solved in the interactive fuzzy satificing method for multiobjective nonlinear programming
problems are nonlinear programming problems, we adopt rPSO (Matsui et al, 2008) as
solution methods to them. In particular, we consider measures to improve the performance
of rPSO in applying it to solving the augmented minimax problem.

2. Multiobjective nonlinear programming problems
In this paper, we consider multiobjective nonlinear programming problem as follows:

minimize fl(x), l=1, 2, …, k

subject to gi(x) ≤0, i=1, 2, …, m (1)

 lj ≤ xj ≤ uj, j=1, 2, …, n

 x = (x1, x2, …, xn)T ∈ Rn

where fl(⋅), gi(⋅) are linear or nonlinear functions, lj and uj are the lower limit and the upper
limit of each decision variable xj. In addition, we denote the feasible region of (1) by X.

3. An interactive fuzzy satisficing method
In order to consider the imprecise nature of the decision maker's judgments for each
objective function in (1), if we introduce the fuzzy goals such as ``fl(x) should be
substantially less than or equal to a certain value'', (1) can be rewritten as:

maximize
x∈X (μ1(f1(x)), …, μk(fk(x))) (2)

where μl(⋅) is the membership function to quantify the fuzzy goal for the l th objective
function in (1).
Since (2) is regarded as a fuzzy multiobjective decision making problem, there rarely exists a
complete optimal solution that simultaneously optimizes all objective functions. As a
reasonable solution concept for the fuzzy multiobjective decision making problem, M.
Sakawa defined M-Pareto optimality on the basis of membership function values by directly
extending the Pareto optimality in the ordinary multiobjective programming problem
(Sakawa, 1993). In the interactive fuzzy satisficing method, in order to generate a candidate
for the satisficing solution which is also M-Pareto optimal, the decision maker is asked to
specify the aspiration levels of achievement for all membership functions, called the
reference membership levels (Sakawa, 1993). For the decision maker's reference membership

levels
_

lμ , l=1, …, k, the corresponding M-Pareto optimal solution, which is nearest to the

Particle Swarm Optimization with External Archives for Interactive Fuzzy
Multiobjective Nonlinear Programming

365

requirements in the minimax sense or better than it if the reference membership levels are
attainable, is obtained by solving the following augmented minimax problem (3).

minimize max
x∈X l=1, …, k

⎭
⎬
⎫

⎩
⎨
⎧ −+− ∑

=

k

i
iiilll ff

1

__

)))((()))(((xx μμρμμ (3)

where ρ is a sufficiently small positive number.
We can now construct the interactive algorithm in order to derive the satisficing solution for
the decision maker from the M-Pareto optimal solution set. The procedure of an interactive
fuzzy satisficing method is summarized as follows.
Step 1:

Under a given constraint, minimal value and maximum one of each objective function
are calculated by solving following problems.

minimize
x∈X fl(x), l=1, 2, …, k (4)

maximize
x∈X fl(x), l=1, 2, …, k (5)

Step 2:
In consideration of individual minimal value and maximum one of each objective
function, the decision maker subjectively specifies membership functions μl(fl(x)), l=1,
…, k to quantify fuzzy goals for objective functions. Next, the decision maker sets initial

reference membership function values
_

lμ , l=1, …, k.
Step 3:

We solve the following augmented minimax problem corresponding to current
reference membership function values (3).

Step 4:
If the decision maker is satisfied with the solution obtained in Step 3, the interactive
procedure is finished. Otherwise, the decision maker updates reference membership

function values
_

lμ , l=1, 2, …, k based on current membership function values and
objective function values, and return to Step 3.

4. Particle swarm optimization
Particle swarm optimization (Kennedy & Eberhart, 1995) is based on the social behavior that
a population of individuals adapts to its environment by returning to promising regions that
were previously discovered (Kennedy & Spears, 1998). This adaptation to the environment
is a stochastic process that depends on both the memory of each individual, called particle,
and the knowledge gained by the population, called swarm. In the numerical
implementation of this simplified social model, each particle has four attributes: the position
vector in the search space, the velocity vector and the best position in its track and the best
position of the swarm. The process can be outlined as follows.
Step 1:

Generate the initial swarm involving N particles at random.

Particle Swarm Optimization

366

Step 2:
Calculate the new velocity vector of each particle, based on its attributes.

Step 3:
Calculate the new position of each particle from the current positon and its new
velocity vector.

Step 4:
If the termination condition is satisfied, stop. Otherwise, go to Step 2.

To be more specific, the new velocity vector of the i-th particle at time t, 1+t
iv is calculated

by the following scheme introduced by (Shi & Eberhart, 1998).

)()(: 2211
1 t

i
t
g

tt
i

t
i

tt
i

tt
i RcRc xpxpvv −+−+=+ ω (6)

In (6), tR1 and tR2 are random numbers between 0 and 1, t
ip is the best position of the i-th

particle in its track and t
gp is the best position of the swarm. There are three problem

dependent parameters, the inertia of the particle ωt, and two trust parameters c1, c2. Then,

the new position of the i-th particle at time t, 1+t
ix , is calculated from (7).

 11 : ++ += t
i

t
i

t
i vxx (7)

where t
ix is the current position of the i-th particle at time t. The i-th particle calculates the

next search direction vector 1+t
iv by (6) in consideration of the current search direction

vector t
iv , the direction vector going from the current search position t

ix to the best

position in its track t
ip and the direction vector going from the current search position t

ix

to the best position of the swarm t
gp , moves from the current position t

ix to the next search

position 1+t
ix calculated by (7). The parameter ω t controls the amount of the move to search

globally in early stage and to search localy by decreasing ω t gradually.
The searching procedure of PSO is shown in Fig. 1.

Comparing the evaluation value of a particle after movement,)(1+t
if x , with that of the

best position in its track,)(t
ipf , if)(1+t

if x is better than)(t
ipf , then the best position

in its track is updated as t
ip := 1+t

ix . Futhermore, if)(1+t
ipf is better than)(t

gpf , then

the best position in the swarm is updated as 1+t
gp := 1+t

ip .

Particle Swarm Optimization with External Archives for Interactive Fuzzy
Multiobjective Nonlinear Programming

367

Figure 1. Movement of a particle in PSO

In the original PSO method, however, there are drawbacks that it is not directly applicable
to constrained problems and it is liable to stopping around local optimal solutions.
To deal with these drawbacks of the original PSO method, we incorporate the bisection
method and a homomorphous mapping to carry out the search considering constraints.
In addition, we proposed the multiple stretching technique and modified move schemes of
particles to restrain the stopping around local optimal solutions (Matsui et al., 2008).
Thus, we applied rPSO for interactive fuzzy multiobjective nonlinear programming
problems and proposed multiobjective revised PSO (MOrPSO) method incorporating move
scheme to the nondominated particle in order to search effectively for the augmented
minimax problmes (Matsui et al., 2007). In the application of large-scale augmented
minimax problem, MOrPSO method is superior than rPSO method on efficiency. On the
other hand, MOrPSO method is inferior on accuracy.

5. Improvement of MOrPSO
We show the results of the applicaltion of the original rPSO (Matsui et al., 2008) and
MOrPSO (Matsui et al., 2007) to the augmented minimax problem for multiobjective
nonlinear programming problem with l = 2, n = 55 and m = 100 in Table 1. In these
experiments we set the swarm size N = 70, the maximal search generation number Tmax =

5000. In addition, we use the following membership functions:
_

1μ = 1.0,
_

2μ = 1.0.

objective function value (minimize)
method

best average worst

computational
time (sec)

rPSO 0.3464 0.4471 0.5632 144.45

MOrPSO 0.3614 0.4095 0.4526 129.17

Table 1. Results of the application to the augmented minimax problem

From Table 1, MOrPSO method is superior than rPSO method on efficiency in the average
value, the worst one and computational time. However, the best value of MOrPSO method
is worse than that of rPSO method, MOrPSO method is inferior on accuracy. We consider

Particle Swarm Optimization

368

the case that the search accuracy turns worse incorporating the direction to nondominated
particle (approximate M-Pareto optimal solution) in MOrPSO method.
In this paper, we improve the search accuracy incorporating external archives to record
nondominated particles in the swarm. Here, as recorded nondominated particle increases in
archives, computational time increases in order to judge whether a particle is
nondominated.
Therefore, there is many computational time that we record all the nondominated particles
to archives. Thus we divide membership function space with hypercube shown in Fig. 2 and
record a number of nondominated particle included in each hypercube.

New Solution

New

Solution

delete

Figure 2. reduction of archives with grid (l=2)

When a number of nondominated particle recorded in archives is greater than a fixed
number, we delete one particle from hypercube with many numbers of nondominated
particle and record new solution (particle). We consider that can reduce computational time
and express approximate M-Pareto optimal front by a few particles incorporating reduction
of archives. We show the results of the application of MOrPSO method incorporating
reduction of archives (MOrPSO-1) to the above same problem in Table 2.

objective function value (minimize)

method
best average worst

computational
time (sec)

MOrPSO-1 0.4379 0.4708 0.5030 166.78

Table 2. Results of the application to the augmented minimax problem

From Table 2, it is clear that all of the best, average, worst value and computational time
obtained by MOrPSO-1 are worse than those obtained by MOrPSO. We consider that a
particle moves using nondominated particle which is not useful since all nondominated
particles in archives are used in search. Thus, in the membership function space, we
consider that information of a particle exsiting far from the reference membership value is
hard to contribute to search and introduce threshold value for selection of nondominated
particle as shown in Fig. 3.

Particle Swarm Optimization with External Archives for Interactive Fuzzy
Multiobjective Nonlinear Programming

369

local

optimal

solution

feasible region

Pareto front

reference membership

function value

nondominated particle in archives

Threshold

value

nondominated particle

not used in search

swarm

Figure 3. Limit of nondominated particle by threshold value (l=2)

We show the results of the application of MOrPSO method incorporating limitation by
threshold value (MOrPSO-2) to the above same problem in Table 3.

objective function value (minimize)
method

best average worst
computational

time (sec)

MOrPSO-2 0.2993 0.3430 0.3777 165.71

Table 3. Results of the application to the augmented minimax problem

From Table 3, in the application of MOrPSO method incorporating limitation by threshold
value (MOrPSO-2), we can get better solutions in the sense of best, average and worst than
those obtained by rPSO and MOrPSO.
In order to show the efficiency of the proposed PSO, we consider the multiobjective
nonlinear programming problem with l = 2 and n = 100. In these experiments, we set the
swarm size N = 100, the maximal search generation number Tmax = 5000. In addition, we use

the following reference membership function values:
_

1μ = 1.0,
_

2μ = 1.0.

objective function value (minimize)
method

best average worst
computational

time (sec)

rPSO [6] 0.2547 0.2783 0.3251 26.91

MOrPSO [7] 0.1950 0.2033 0.2208 32.58

MOrPSO-2 0.2018 0.2320 0.2711 28.11

Table 4. Results of the application to the augmented minimax problem

From Table 4, it is clear that all of the best, average, worst value and computational time
obtained by MOrPSO-2 are worse than those obtained by MOrPSO. We consider that it

Particle Swarm Optimization

370

occurs to make no use of the information of nondominiated particle in search since there is a
few nondominiated particle information stored in archives of MOrPSO-2 and only the best
value of each objective function and the best value limb of the augmented minimax problem
are saved. Therefore, we propose MOrPSO with external archives (MOrPSO-EA) using
nondominated particle in the swarm same as MOrPSO in order to store various
nondominated particle as possible in normal search. And the results of the application are
shown in Table 5.

objective function value (minimize)
method

best average worst
computational

time (sec)

MOrPSO 0.1950 0.2033 0.2208 32.58

MOrPSO-EA 0.1746 0.1787 0.1842 29.01

Table 5. Results of the application to the augmented minimax problem

From Table 5, in the application of MOrPSO-EA, we can get better solutions in the sense of
best, average and worst than those obtained by MOrPSO.

6. Numerical examples

In MOrPSO, it searches globaly in the early generation and localy decreasing tω . However,
we consider that necessity to search globaly in the early generation is low after the second
time since the information of nondominated particle to current generation is stored in
archives in proposed MOrPSO. Therefore, we consider that the proposed MOrPSO can
search localy in the early generation.
In order to show the efficiency of the proposed MOrPSO, we consider the multiobjective
nonlinear programming problem with l = 2 and n = 100 and m = 55. In these experiments,
we set the maximal search generation number of MOrPSO and the proposed MOrPSO
(MOrPSO-EA) in the 1st interactive Tmax = 5000 and in the 2nd and 3rd interactive Tmax =
3000. We show the results of the application are shown in Table 6 and 7.

interactive 1st 2nd 3rd

_

1μ 1.0 1.0 0.85

_

2μ 1.0 0.7 0.7

μ1(x) 0.6157 0.8003 0.7575

μ2(x) 0.6157 0.5003 0.6075

minimax value 0.3844 0.1997 0.0925

time (sec) 127.20 128.89 131.25

Table 6. Interactive fuzzy programming through MOrPSO

Particle Swarm Optimization with External Archives for Interactive Fuzzy
Multiobjective Nonlinear Programming

371

interactive 1st 2nd 3rd
_

1μ 1.0 1.0 0.85

_

2μ 1.0 0.7 0.7

μ1(x) 0.7183 0.8458 0.8042

μ2(x) 0.7183 0.5458 0.6542

minimax value 0.2817 0.1542 0.0458

time (sec) 157.37 98.58 101.16

Table 7. Interactive fuzzy programming through MOrPSO-EA (proposed)

From Table 6 and 7, MOrPSO-EA is superior than MOrPSO on accuracy. In addition, we can
decrease total computational time by reducing the maximal search generation number.

6. Conclusion
In this research, we focused on multiobjective nonlinear programming problems and
proposed a new MOrPSO technique which is accuracy for in applying the interactive fuzzy
satisficing method. In particular, considering the features of augmented minimax problems
solved in the interactive fuzzy satisficing method, we incorporated use of external archives,
reduction of archives and the limitation of threshold value. Finally, we showed the
efficiency of the proposed MOrPSO by applying it to numerical examples.

7. References
R.E. Bellman & L.A. Zadeh. (1970). Decision making in a fuzzy environment, Management

Science, Vol. 17, pp. 141-164
C.A.C Coello, G.T. Pulido, M.S. Lechuga. (2004). Handling multiple objectives with particle

swarm optimization, IEEE Transactions on Evolutionary Computation, Vol. 8, No. 3,
pp. 256-279

V.L. Huang, A.K. Qin, K. Deb, E. Zitzler, P.N. Suganthan, J.J. Liang, M. Preuss, S. Huband.
(2007). Problem definitions for performance assessment on multi-objective
optimization algorithms, http://www.ntu.edu. sg/home/EPNSugan/index-files/CEC-07/C
EC-07-TR-13-Feb.pdf

J. Kennedy & R.C. Eberhart. (1995). Particle Swarm Optimization, Proceedings of IEEE
International Conference on Neural Networks, pp. 1942-1948

T. Matsui, K. Kato, M. Sakawa, T. Uno, K. Morihara. (2008). Nonlinear Programming Based
on Particle Swarm Optimization, In: Advances in Industrial Engineering and
Operations Research, Alan H. S. Chan, Sio-Iong Ao (Ed.), pp. 173-183, Springer, New
York, 2008.

T. Matsui, M. Sakawa, K. Kato, T. Uno, K. Tamada. (2007). An interactive fuzzy satisficing
method through particle swarm optimization for multiobjective nonlinear
programming problems, Proceedings of the 2007 IEEE Symposium Series on
Computational Intelligence, pp. 71-76

Particle Swarm Optimization

372

H. Rommelfanger. (1996). Fuzzy linear programming and applications, European Journal of
Operational Research, vol. 92, pp. 512-528

M. Sakawa. (1993). Fuzzy Sets and Interactive Multiobjective Optimization, Plenum Press, New
York

M. Sakawa, K. Kato, T. Suzuki. (2002). An interactvie fuzzy satisficing method for
multiobjective non-convex programming problems through genetic algorithms,
Proceedings of 8th Japan Society for Fuzzy Theory and Systems Chugoku / Shikoku Branch
Office Meeting, pp. 33-36

Y.H. Shi & R.C. Eberhart. (1998). A modified particle swarm optimizer, Proceedings of IEEE
International Conference on Evolutionary Computation, pp. 69-73

H.-J. Zimmermann. (1978). Fuzzy programming and linear programming with several
objective functions, Fuzzy Sets and Systems, Vol. 1 pp. 45-55

H.-J. Zimmermann. (1983). Fuzzy mathematical programming, Computers & Operations
Research, Vol. 10, pp. 291-298

23

Using Opposition-based Learning with Particle
Swarm Optimization and Barebones Differential

Evolution
Mahamed G.H. Omran

Gulf University for Science and Technology
Kuwait

1. Introduction
Particle swarm optimization (PSO) (Kennedy & Eberhart, 1995) and differential evolution
(DE) (Storn & Price, 1995) are two stochastic, population-based optimization methods,
which have been applied successfully to a wide range of problems as summarized in
Engelbrecht (2005) and Price et al. (2005).
A number of variations of both PSO and DE have been developed in the past decade to
improve the performance of these algorithms (Engelbrecht, 2005; Price et al. 2005). One class of
variations includes hybrids between PSO and DE, where the advantages of the two
approaches are combined. The barebones DE (BBDE) is a PSO-DE hybrid algorithm proposed
by Omran et al. (2007) which combines concepts from the barebones PSO (Kennedy 2003) and
the recombination operator of DE. The resulting algorithm eliminates the control parameters
of PSO and replaces the static DE control parameters with dynamically changing parameters
to produce an almost parameter-free, self-adaptive, optimization algorithm.
Recently, opposition-based learning (OBL) was proposed by Tizhoosh (2005) and was
successfully applied to several problems (Rahnamayan et al., 2008). The basic concept of
OBL is the consideration of an estimate and its corresponding opposite estimate
simultaneously to approximate the current candidate solution. Opposite numbers were used
by Rahnamayan et al. (2008) to enhance the performance of Differential Evolution. In
addition, Han and He (2007) and Wang et al. (2007) used OBL to improve the performance
of PSO. However, in both cases, several parameters were added to the PSO that are difficult
to tune. Wang et al. (2007) used OBL during swarm initialization and in each iteration with a
user-specified probability. In addition, Cauchy mutation is applied to the best particle to
avoid being trapping in local optima. Similarly, Han and He (2007) used OBL in the
initialization phase and also during each iteration. However, a constriction factor is used to
enhance the convergence speed.
In this chapter, OBL is used to improve the performance of PSO and BBDE without adding
any extra parameter. The performance of the proposed methods is investigated when
applied to several benchmark functions. The experiments conducted show that OBL
improves the performance of both PSO and BBDE.
The remainder of the chapter is organized as follows: PSO is summarized in Section 2. DE is
presented in Section 3. Section 4 provides an overview of BBDE. OBL is briefly reviewed in

Particle Swarm Optimization

374

Section 5. The proposed methods are presented in Section 6. Section 7 presents and
discusses the results of the experiments. Finally, Section 8 concludes the chaper.

2. Particle Swarm Optimization
Particle swarm optimization (PSO) is a stochastic, population-based optimization algorithm
modeled after the simulation of social behavior of bird flocks. In a PSO system, a swarm of
individuals (called particles) fly through the search space. Each particle represents a candidate
solution to the optimization problem. The position of a particle is influenced by the best position
visited by itself (i.e. its own experience) and the position of the best particle in its neighborhood
(i.e. the experience of neighboring particles). Particle position, xi, are adjusted using

)1()()1(++=+ ttt iii vxx (1)

where the velocity component, vi, represents the step size. For the basic PSO,

 vi, j(t +1) = wvi, j(t) +c1r1, j(t)(yi, j(t)− xi, j(t))+c2r2, j(t)(ˆ y j(t)− xi, j(t)) (2)

where w is the inertia weight (Shi & Eberhart, 1998), c1 and c2 are the acceleration
coefficients,

jr1,
, (0,1)~2, Ur j

, yi is the personal best position of particle i, and iŷ is the

neighborhood best position of particle i.
The neighborhood best position iŷ , of particle i depends on the neighborhood topology
used (Kennedy, 1999; Kenedy & Mendes, 2002). If a fully-connected topology is used, then

iŷ refers to the best position found by the entire swarm. That is,

 }{ { }0 1 0 1 sˆ (), (),..., () (()), (()),..., (())i sy (t) y t y t y t min f y t f y t f y t∈ = (3)

where s is the swarm size.
The resulting algorithm is referred to as the global best (gbest) PSO. A pseudo-code for PSO
is shown in Alg. 1.

for each particle i ∈ 1,...,s do
 Randomly initialize xi
 Set vi to zero
 Set yi = xi
endfor
Repeat
 for each particle i ∈ 1,...,s do
 Evaluate the fitness of particle i, f(xi)
 Update yi
 Update ŷ using equation (3)
 for each dimension j ∈ 1,...,Nd do
 Apply velocity update using equation (2)
 endloop
 Apply position update using equation (1)
 endloop
Until some convergence criteria is satisfied

Algorithm 1. General pseudo-code for PSO

Using Opposition-based Learning with Particle Swarm Optimization
and Barebones Differential Evolution

375

Van den Bergh and Engelbrecht (2006) and Clerc and Kennedy (2002) proved that each
particle converges to a weighted average of its personal best and neighborhood best
position, that is,

21

ji,2ji,1
ji,t cc

ŷcyc
tx

+
+

=
+∞→

)(lim

This theoretically derived behavior provides support for the barebones PSO developed by
Kennedy (2003). It replaces Eqs. 1 and 2 with

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=+)(-)(

2
)()(

)1(tŷty,
tŷty

Ntx jji,
jji,

ji,

Particle positions are therefore randomly selected from a Gaussian distribution with the
mean given as the weighted average of the personal best and global best positions, i.e. the
swarm attractor. Note that exploration is facilitated via the deviation, yi, j (t)- ŷ j (t) , which

approaches zero as t increases. In the limit, all particles will converge on the attractor point.
Kennedy (2003) also proposed an alternative version of the barebones PSO where Eqs. 1 and
2 are replaced with

⎪
⎩

⎪
⎨

⎧
>⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
=+

otherwise)(

0.5 (0,1) if)(-)(
2

)()(
)1(

ty

Utŷty,
tŷty

Ntx
ji,

jji,
jji,

ji,

Based on the above equation, there is a 50% chance that the j-th dimension of the particle
dimension changes to the corresponding personal best position. This version of PSO biases
towards exploiting personal best positions.

3. Differential Evolution
Differential evolution (DE) is an evolutionary algorithm proposed by Storn and Price (1995).
While DE shares similarities with other evolutionary algorithms (EA), it differs significantly
in the sense that distance and direction information from the current population is used to
guide the search process. DE uses the differences between randomly selected vectors
(individuals) as the source of random variations for a third vector (individual), referred to as
the target vector. Trial solutions are generated by adding weighted difference vectors to the
target vector. This process is referred to as the mutation operator where the target vector is
mutated. A recombination, or crossover step is then applied to produce an offspring which
is only accepted if it improves on the fitness of the parent individual.
The basic DE algorithm is described in more detail below with reference to the three
evolution operators: mutation, crossover, and selection.
Mutation: For each parent,)(tix , of generation t, a trial vector,)(tiv , is created by mutating
a target vector. The target vector,)(

3
tix , is randomly selected, with i ≠ i3. Then, two

Particle Swarm Optimization

376

individuals)(
1

tix , and)(
2

tix are randomly selected with i1 ≠ i2 ≠ i3 ≠ i, and the difference

vector,
1i

x -
2i

x , is calculated. The trial vector is then calculated as

))(-)(()()(
213

ttFtt iiii xxxv += (4)

where the last term represents the mutation step size. In the above, F is a scale factor used to
control the amplification of the differential variation. Note that F ∈ (0, ∞).
Crossover: DE follows a discrete recombination approach where elements from the parent
vector,)(tix , are combined with elements from the trial vector,)(tiv , to produce the

offspring,)(tiμ . Using the binomial crossover,

μij (t) =
vij (t) if U (0,1) <P or j = rr

xij (t) otherwise
⎧
⎨
⎩

where j = 1, ..., Nd refers to a specific dimension, Nd is the number of genes (parameters) of a
single chromosome, and r ~ U(1,…, Nd). In the above, pr is the probability of reproduction
(with pr ∈ [0, 1]).
Thus, each offspring is a stochastic linear combination of three randomly chosen individuals
when U(0, 1) < pr; otherwise the offspring inherits directly from the parent. Even when pr =
0, at least one of the parameters of the offspring will differ from the parent (forced by the
condition j = r).
Selection: DE evolution implements a very simple selection procedure. The generated
offspring,)(tiμ , replaces the parent,)(tix , only if the fitness of the offspring is better than
that of the parent.

4. Barebones Differential Evolution
Both PSO and DE have their strengths and weaknesses. PSO has the advantage that formal
proofs exist to show that particles will converge to a single attractor. The barebones PSO
utilizes this information by sampling candidate solutions, normally distributed around the
formally derived attractor point. Additionally, the barebones PSO has no parameters to be
tuned. On the other hand, DE has the advantage of not being biased towards any prior
defined distribution for sampling mutational step sizes and its selection operator follows a
hill-climbing process. Mutational step sizes are determined as differences between
individuals in the current population. One of the problems which both PSO and DE share is
that control parameters need to be optimized for each new problem.

The barebones DE combines the strengths of both the barebones PSO and DE to form a
new, efficient hybrid optimization algorithm. For the barebones DE, position updates are
done as follows:

⎩
⎨
⎧ >×+

=
otherwise)(

 1) (0, if))(-)(()(
)(212

ty
pUtxtxrtp

tx
j,i

rj,ij,ij,ji,
ji,

3

 (5)

Using Opposition-based Learning with Particle Swarm Optimization
and Barebones Differential Evolution

377

where

)())(1()()()(11 tŷtrtytrtp ji,j,ji,j,ji, −+= (6)

with i1, i2, i3~ U(1,…,s), i1 ≠ i2 ≠ i, jr1, , (0,1)~2, Ur j and pr is the probability of

recombination.
Referring to Eq. 6, pi (t) represents the particle attractor as a stochastic weighted average of
personal best and global best positions, borrowing from the barebones PSO (Kennedy 2003).
Referring to Eq. 5, the mutation operator of DE is used to explore around the current
attractor, pi (t) , by adding a difference vector to the attractor. Crossover is done with a
randomly selected personal best,

3i
y , as these personal bests represent a memory of best

solutions found by individuals since the start of the search process. Also note that the scale
factor is a random variable. Using the position update in Eq. 6, for a proportion of (1- pr) of
the updates, information from a randomly selected personal best,

3i
y , is used (facilitating

exploitation), while for a proportion of pr of the updates step sizes are mutations of the
attractor point, pi (facilitating exploration). Mutation step sizes are based on the difference

vector between randomly selected particles,
1i

x and
2i

x . Using the above, the BBDE

achieves a good balance between exploration and exploitation. It should also be noted that
the exploitation of personal best positions does not focus on a specific position. The personal
best position,

3i
y , is randomly selected for each application of the position update.

5. Opposition-based Learning
Opposition-based learning (OBL) was first proposed by Tizhoosh (2005) and was
successfully applied to several problems (Rahnamayan et al., 2008). Opposite numbers are
defined as follows:
Let x ∈[a,b], then the opposite number x’ is defined as

x' = a + b − x

The above definition can be extended to higher dimensions as follows:
Let ()1 2 n, , ,P x x x" be an n-dimensional vector, where xi ∈[ai,bi] and i=1, 2, …, n. The

opposite vector of P is defined by ()1 2, , , nP x x x′ ′ ′ ′" where

xi
' = ai + bi − xi

6. Proposed Methods
In this chapter, OBL is used to enhance the performance of PSO and BBDE without adding
any extra parameter. Two variants are proposed as follows:

Particle Swarm Optimization

378

6.1 Improved PSO (iPSO)
An improved version of PSO is proposed such that in each iteration the particle with the
lowest fitness, xb, is replaced by its opposite (the anti-particle) as follows,

xb,j = LBj + UBj – xb,j

where xb,j∈[LBj, UBj], j=1,2,…,Nd and Nd is the dimension of the problem.
The velocity and personal experience of the anti-particle are reset. The global best solution is
also updated. A pseudo-code for iPSO is shown in Alg. 2.
The rationale behind this approach is the basic idea of opposition-based learning: if we
begin with a random guess, which is very far away from the existing solution, let say in
worst case it is in the opposite location, then we should look in the opposite direction. In our
case, the guess that is “very far away from the existing solution” is the particle with the
lowest fitness.
The main difference between iPSO on one side and the approaches proposed by Han and
He (2007) and Wang et al. (2007) on the other side, is that we did not introduce any extra
parameter to the original PSO. In addition, iPSO uses only OBL to enhance the performance
of PSO while (Han & He, 2007; Wang et al. 2007) use OBL combined with other techniques
(e.g. Cauchy mutation).

for each particle i ∈ 1,...,s do
 for each dimension j ∈ 1,...,Nd do
 xi,j = LBj + rj× (UBj – LBj)
 endloop
endfor
for each particle i ∈ 1,...,s do
 Set vi to zero
 Set yi = xi
endfor
Repeat
 for each particle i ∈ 1,...,s do
 Evaluate the fitness of particle i, f(xi)
 Update yi
 Update ŷ using equation (3)

 for each dimension j ∈ 1,...,Nd do
 Apply velocity update using Eq. (2)
 endloop

 Apply position update using equation (1)
 endloop
Let xb be the particle with the lowest fitness
for each dimension j ∈ 1,...,Nd do
 xb,j = LBj + UBj – xb,j

endloop
vb = 0
yb = xb
if f(xb) < f(ŷ)

 ŷ = xb

endif
Until some convergence criteria is satisfied

Algorithm 2. General pseudo-code for iPSO

Using Opposition-based Learning with Particle Swarm Optimization
and Barebones Differential Evolution

379

6.2 Improved BBDE (iBBDE)
Similar to iPSO, BBDE is modified such that in each iteration the particle with the lowest
fitness, xb, is replaced by its opposite. The personal experience of the anti-particle is also
reset. The global best solution is updated.

7. Experimental Results
This section compares the performance of the proposed methods with that of gbest PSO and
BBDE discussed in Section 2 and 4, respectively. For the PSO algorithms, w = 0.72 and c1 = c2
= 1.49. These values have been shown to provide very good results (van den Berg, 2002). In
addition s = 50 for all methods. All functions were implemented in 30 dimensions.
The following functions have been used to compare the performance of the different
approaches. These benchmark functions provide a balance of unimodal, multimodal,
separable and non-separable functions.
For each of these functions, the goal is to find the global minimizer, formally defined as

Given f: dNℜ ℜ

find dNℜ∈∗x such that dNff ℜ∈∀≤∗ x xx),()(

The following functions were used:
A. Sphere function, defined as

∑
=

=
dN

i
ixf

1

2)(x

where 0=∗x and 0)(=∗xf for 100100 ≤≤− ix .
B. Rosenbrock function, defined as

f (x) = 100 xi − xi−1
2()2

+ xi−1 − 1()2()
i=1

N d −1

∑

where)111(,,, …=∗x and 0)(=∗xf for −2 ≤ xi ≤ 2 .
C. Rotated hyper-ellipsoid function, defined as

∑ ∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

dN

i

i

j
jxf

1

2

1
)(x

where 0=∗x and 0)(=∗xf for 100100 ≤≤− ix .
D. Rastrigin function, defined as

Particle Swarm Optimization

380

()∑
=

+−=
dN

i
ii xxf

1

2 10)π2cos(10)(x

where 0=∗x and 0)(=∗xf for 125125 .x. i ≤≤− .
E. Ackley's function, defined as

f (x) = −20exp -0.2
1
30

xi
2

i=1

Nd

∑
⎛

⎝
⎜

⎞

⎠
⎟

−exp
1
30

cos(2πxi)
i=1

Nd

∑
⎛
⎝ ⎜

⎞
⎠ ⎟

+ 20 + e

where 0=∗x and 0)(=∗xf for 3232 ≤≤− ix .
F. Griewank function, defined as

1cos
4000

1)(
1 1

2 +⎟
⎠
⎞

⎜
⎝
⎛−= ∑ ∏

= =

d dN

i

N

i

i
i i

xxf x

where 0=∗x and 0)(=∗xf for 600600 ≤≤− ix .
G. Salomon function, defined as

f (x) = −cos 2π xi
2

i=1

Nd

∑
⎛
⎝ ⎜

⎞
⎠ ⎟

+ 0.1 xi
2

i=1

Nd

∑ +1

where 0=∗x and 0)(=∗xf for 100100 ≤≤− ix .
Sphere, Rosenbrock and Rotated hyper-ellipsoid are unimodal, while Rastrigin, Ackley,
Griewank and Salomon are difficult multimodal functions where the number of local
optima increases exponentially with the problem dimension.
The results reported in this section are averages and standard deviations over 30
simulations. In order to have a fair comparison, each simulation was allowed to run for
50,000 evaluations of the objective function.
Table 1 summarizes the results obtained by applying the two PSO approaches to the
benchmark functions. In general, the results show that iPSO performed better than (or equal
to) gbest PSO. Figure 1 illustrates results for selected functions. The figure shows that iPSO
generally reached good solutions faster than PSO. Similarly, Table 2 shows that iBBDE
generally outperformed BBDE. Figure 2 illustrates results for selected functions. Thus,
Tables 1 and 2 suggest that using the simple idea of replacing the worst particle is the main
reason for improving the performance of PSO and BBDE. In additon, we can conclude that

Using Opposition-based Learning with Particle Swarm Optimization
and Barebones Differential Evolution

381

opposition-based learning improved the performance of both PSO and BBDE without
requiring any extra parameter.

 PSO iPSO

Sphere 0(0) 0(0)

Rosenbrock 22.191441
(1.741527)

20.645323
(0.426212)

Rotated hyper-
ellipsoid

2.021006
(1.675313)

0.355572
(0.890755)

Rastrigin 48.487584
(14.599249)

27.460845
(11.966896)

Ackley 1.096863
(0.953266) 0(0)

Griewank 0.015806
(0.022757)

0.006163
(0.009966)

Salomon 0.446540
(0.122428)

0.113207
(0.034575)

Table 1. Mean and standard deviation (±SD) of the function optimization results

 BBDE iBBDE

Sphere 0(0) 0(0)

Rosenbrock 25.826400
(0.216660)

25.942146
(0.209437)

Rotated hyper-
ellipsoid

15.409460
(20.873456)

0.905987
(1.199178)

Rastrigin 34.761833
(28.598884) 0(0)

Ackley 0(0) 0(0)

Griewank 0.000329
(0.001800) 0(0)

Salomon 0.166540
(0.047946)

0.149917
(0.050826)

Table 2. Mean and standard deviation (±SD) of the function optimization results

Particle Swarm Optimization

382

Figure 1. Performance Comparison of PSO and iPSO when applied to selected functions

7. Conclusion
Opposition-based learning was used in this chapter to improve the performance of PSO and
BBDE. Two opposition-based variants were proposed (namely, iPSO and iBBDE). The iPSO
and iBBDE algorithms replace the least-fit particle with its anti-particle. The results show
that, in general, iPSO and iBBDE outperformed PSO and BBDE, respectively. In addition,
the results show that using OBL enhances the performance of PSO and BBDE without
requiring additional parameters. The ideas introduced in this chapter could also be used
with any PSO/BBDE variant.
Future research will investigate the effect of noise on the performance of the proposed
approaches. Furthermore, a scalability study will be conducted. Finally, applying the
proposed approaches to real-world problem will be investigated.

Using Opposition-based Learning with Particle Swarm Optimization
and Barebones Differential Evolution

383

Figure 2. Performance Comparison of BBDE and iBBDE when applied to selected functions

8. References
Clerc, M. & Kennedy, J. (2002). The Particle Swarm-Explosion, Stability, and Convergence in

a Multidimensional Complex Space. IEEE Transactions on Evolutionary Computation,
Vol. 6, No. 1, pp. 58-73.

Engelbrecht, A. (2005). Fundamentals of Computational Swarm Intelligence, Wiley & Sons.
Han, L. & He, X. (2007). A novel Opposition-based Particle Swarm Optimization for Noisy

Problems. Proceedings of the Third International Conference on Natural Computation,
IEEE Press, Vol. 3, pp. 624 – 629.

Particle Swarm Optimization

384

Kennedy, J. (1999). Small Worlds and Mega-Minds: Effects of Neighborhood Topology on
Particle Swarm Performance. Proceedings of the IEEE Congress on Evolutionary
Computation, Vol. 3, pp. 1931-1938.

Kennedy, J. (2003). Bare Bones Particle Swarms. Proceedings of the IEEE Swarm Intelligence
Symposium, pp. 80-87.

Kennedy, J. & Eberhart, R. (1995). Particle Swarm Optimization. Proceedings of the IEEE
International Joint Conference on Neural Networks, pp. 1942-1948.

Kennedy, J. & Mendes, R. (2002). Population Structure and Particle Performance. Proceedings
of the IEEE Congress on Evolutionary Computation, pp. 1671-1676, IEEE Press.

Omran, M., Engelbrecht, A. & Salman, A. (2007). Differential evolution based on particle
swarm optimization. Proceedings of the IEEE Swarm Intelligence Symposium, pp. 112-
119.

Price, K.; Storn, R. & Lampinen, J. (2005). Differential Evolution: A Practical Approach to Global
Optimization, Springer.

Rahnamayan, S.; Tizhoosh, H. & Salama, M. (2008). Opposite-based Differential Evolution.
IEEE Trans. On Evolutionary Computation, Vol. 12, No. 1, pp. 107-125.

Shi, Y. & Eberhart, R. (1998). A Modified Particle Swarm Optimizer. Proceedings of the IEEE
Congress on Evolutionary Computation, pp. 69-73.

Storn, R. & Price, K. (1995). Differential evolution - A Simple and efficient adaptive scheme
for global optimization over continuous spaces. Technical Report TR-95-012,
International Computer Science Institute.

Tizhoosh, H. (2005). Opposition-based Learning: A New Scheme for Machine Intelligence.
Proceedings Int. Conf. Comput. Intell. Modeling Control and Autom, Vol. I, pp. 695-701.

van den Bergh, F. (2002). An Analysis of Particle Swarm Optimizers. PhD thesis, Department
of Computer Science, University of Pretoria, Pretoria, South Africa, 2002.

van den Bergh, F. & Engelbrecht, A. (2006). A Study of Particle Swarm Optimization Particle
Trajectories. Information Sciences, Vol. 176, No. 8, pp. 937-971.

Wang, H.; Liu, Y.; Zeng, S.; Li, H. & Li, C. (2007). Opposition-based Particle Swarm
Algorithm with Cauchy Mutation. Proceedings of the IEEE Congress on Evolutionary
Computation, pp. 4750-4756.

24

Particle Swarm Optimization: Dynamical
Analysis through Fractional Calculus

E. J. Solteiro Pires1, J. A. Tenreiro Machado2 and P. B. de Moura Oliveira1
1Universidade de Trás-os-Montes e Alto Douro,

2Instituto Superior de Engenharia do Porto
Portugal

1. Introduction
This chapter considers the particle swarm optimization algorithm as a system, whose
dynamics is studied from the point of view of fractional calculus. In this study some initial
swarm particles are randomly changed, for the system stimulation, and its response is
compared with a non-perturbed reference response. The perturbation effect in the PSO
evolution is observed in the perspective of the fitness time behaviour of the best particle.
The dynamics is represented through the median of a sample of experiments, while
adopting the Fourier analysis for describing the phenomena. The influence upon the global
dynamics is also analyzed. Two main issues are reported: the PSO dynamics when the
system is subjected to random perturbations, and its modelling with fractional order
transfer functions.

2. Particle Swarm Optimization Basics
Evolutionary algorithms have been successfully applied to solve complex optimization
engineering problems. Together with genetic algorithms, the particle swarm optimization
(PSO) algorithm, proposed by (Kennedy & Eberhart, 1995), has achieved considerable
success in solving optimization problems. While PSO algorithms and related variants have
been extensively studied (Clerk & Kennedy, 2002), the influence of perturbations signals
over the operation conditions is not yet well known.
The PSO algorithm was proposed originally by Kennedy and Eberhart (1995). This
optimization technique is inspired in the way swarms behave and its elements move in a
synchronized way, both as a defensive tactic and for searching food. An analogy is
established between a particle and a swarm element. The particle movement is characterized
by two vectors, representing its current position x and velocity v. Since 1995, many
techniques were proposed to refine and/or complement the original canonical PSO
algorithm, namely regarding it’s tuning parameters (Shi and Eberhat, 1999) and by
considering hybridization with other evolutionary techniques (Lovbjerg et al., 2001).
In this study a standard elementary PSO algorithm is considered (see Fig. 1). The basic
algorithm begins by initializing the swarm randomly in the search space. As it can be seen in
Fig. 1, where t and t + 1 represent two consecutive iterations, the position x of each particle
is changed during the iterations by adding a new velocity v. This velocity is evaluated by

Particle Swarm Optimization

386

summing an increment to the previous velocity value. The increment is a function of two
components representing the cognitive and the social knowledge.
The cognitive knowledge of each particle is included by evaluating the difference between
the current position x and its best position so far b. The social knowledge of each particle is
incorporated through the difference between its current position x and the best swarm
global position achieved so far g. The cognitive and social knowledge factors are multiplied
by randomly uniformly generated terms ϕ1 and ϕ2, respectively. The particles velocity is
restricted, in order to keep velocities from exploding, through the inertia term I (Clerk and
Kennedy, 2002).

Initialize Swarm
 forAll particles
 calculate fitness f
 endfor
Repeat
 forAll particles
 vt+1=Ivt+ϕ1(b-xt)+ ϕ2(g-xt)
 xt+1=xt+vt+1
 endfor
 forAll particles
 calculate fitness f
 endfor
until Stopping criteria

Figure 1. Particle swarm optimization algorithm

3. Fractional Calculus
Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus.
Nevertheless, the application of FC just emerged in the last two decades, due to the progress
in the area of chaos that revealed subtle relationships with the FC concepts. In the field of
dynamical systems theory some work has been carried out but the proposed models and
algorithms are still in a preliminary stage of establishment.
The fundamentals aspects of FC theory are addressed in (Gement, 1938; Méhauté, 1991;
Oustaloup, 1991; Podlubny, 1999). Concerning FC applications research efforts can be
mentioned in the area of viscoelasticity, chaos, fractals, biology, electronics, signal
processing, diffusion, wave propagation, percolation, modelling, control and irreversibility
(Ross, 1974; Tenreiro Machado, 2001; Torvik, 1984; Vinagre, 2002; Westerlund, 2002).
The FC is a generalization of the classical differential calculus to a non-integer order α ∈ C.
Since its foundation has been the subject of distinct approaches. Due to this reason there are
several alternative definitions of fractional derivatives. For example, the Laplace definition
of a derivative of order α ∈ C of the signal x(t), Dα[x(t)], is a ‘direct’ generalization of the
classic integer-order scheme yielding equation (1):

 [])(})({ sXstxDL αα = (1)

for zero initial conditions, where s represents the Laplace operator. This means that
frequency-based analysis methods have a straightforward adaptation.

Particle Swarm Optimization: Dynamical Analysis through Fractional Calculus

387

An alternative approach, based on the concept of fractional differential, is the Grünwald-
Letnikov definition given by equation (2) where h represents the time increment.

 [] ⎥
⎦

⎤
⎢
⎣

⎡
+−+Γ
−+Γ−= ∑

+∞

=→ 00)1)(1(
)()1()1(1lim)(

k

k

h kk
khtx

h
txD

α
α

α
α (2)

An important property revealed by equation (2) is that while an integer-order derivative
implies just a finite series, the fractional-order derivative requires an infinite number of
terms. This means that integer derivatives are ‘local’ operators in opposition with fractional
derivatives which have, implicitly, a ‘memory’ of all past events.
The characteristics revealed by fractional-order models make this mathematical tool well
suited to describe phenomena such as irreversibility and chaos, because of its inherent
memory property. In this line of thought, the propagation of perturbations and the
appearance of long-term dynamic phenomena in a population of individuals subjected to an
evolutionary process seems to be a case where FC tools fit adequately, as shown in (Solteiro
Pires et al.; 2003, Solteiro Pires et al., 2006) for genetic algorithms.

4. PSO Swarm Optimization Dynamic analysis
4.1 Problem statement
This section introduces the problem formulation adopted in the study of the PSO dynamic
systems. Moreover, the dynamical phenomena involved in the signal propagation within
the PSO population is analyzed. For a statistical sample of n independent cases, a particle is
randomly initialized, in every experiment, and replaces the corresponding particle of the
initial reference population. The experiments reveal a fractional dynamics of the
perturbation propagation during the evolution which can be described by system theory
tools.
The PSO algorithm, called in this report the ‘system’, is applied in the optimization of: a
quadratic function, the Eason function and the Bohachevsky function.

Figure 2. Perturbation of the PSO system

In the first test function case, the objective function consists in minimizing the quadratic
function (3) which is adopted as a case study due to it’s simplicity.

 2)f(xx = (3)

This function has only one parameter and its global optimum value is located at f(x)|opt = 0.
The variable interval is x ∈ [-100,100] and the algorithm uses an encoding scheme with real
numbers to codify the particles. A PSO is executed during a period of Tm = 10000 iterations
with {ϕ1, ϕ2} ~ U[0, 1.5].

Particle Swarm Optimization

388

The influence of several factors can be analyzed in order to study the dynamics of the PSO
system, particularly the inertia factor I or the ϕi factors, i = {1, 2}. This effect can vary
according to the population size, fitness function and iteration number used. As mentioned
previously, one particle of the initial population is changed randomly. The inertia parameter
influence is studied to analyze the effect of the perturbation for the values of
I = {0.50, 0.55,..., 0.80} versus the swarm population size pop = {6, 8,..., 12}. The variation of
the best global particle fitness evolution is taken as the system output signal as illustrated in
Fig. 2.

4.2 The PSO dynamics
Initially, the PSO system is executed without any initial perturbation signal, during
Tm = 10000 iterations, for a predefined inertia weight value I and swarm population size.
The data regarding this test is stored, namely the global particle fitness and the stochastic
parameters. This experiment will serve as a reference test. The optimization system
perturbation consists in replacing the first initial particle of the stored reference swarm
population, in every algorithm execution, by another particle randomly generated. Indeed,
this stimulus to the system, results in a swarm fitness modification δf which is evaluated.
This perturbation test is repeated for n = 10000 cases. It is important to state that the
remaining test conditions, namely the stochastic reference stored values, remain unchanged
along the n experiments. Therefore, the variation of the resulting PSO swarm fitness
perturbation, during the evolution, can be viewed as the output signal which varies during
the successive iterations.
The output signal consists in the difference between the population fitness with and without
the initial perturbation, that is, δf(T) = fpert(T) − f(T). Figure 3a) shows the output signal
δ f(T), for one particle replacement, in the iteration domain. In each experiment the Fourier
transform of the signal perturbation, F[δ f(T)] (see Fig. 3b)) is evaluated in order to analyze
the dynamics.

10
0

10
1

10
2

10
3

-5

0

5

10

15

20

25

30

35

40

T

δ
f

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

ℜ{H(jw)}

ℑ
{H

(jw
)}

a) Iteration domain b) Polar diagram

Figure 3. Output signal for an initial perturbation. Experiment with I = 0.7 and a swarm
population size of pop = 12 elements.

With the output signal Fourier description it is possible to evaluate the corresponding
normalized transfer function (4):

Particle Swarm Optimization: Dynamical Analysis through Fractional Calculus

389

)0)}(f({

))}(jf({)H(j
=

=
ωδ

ωδω
TF

TF (4)

where w represents the frequency, T the discrete time evolution (number of iterations used)
and 1j −= . The transfer function H(jw) for this experiment is depicted in Figure 3b).
Finally it is obtained a ‘representative’ transfer function, by using the median of the
statistical sample (Tenreiro Machado & Galhano, 1998) of n experiments (see Figure 4).
Figure 5 shows the archieved results for inertial values of I = {0.50, 0.55,..., 0.80}. The medians
of the transfer functions calculated previously (i.e., for the real and the imaginary parts for each
frequency) are taken as the final result of the numerical transfer function H(jw).

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

ℜ{H(jw)}

ℑ
{H

(jw
)}

Figure 4. Median transfer function H(jw) of n = 10000 experiments for an inertial term I = 0.7
and pop = 12 elements.

-0.2 0 0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

0

0.2

ℜ{H(jw)}

ℑ
{H

(jw
)}

I=0.50
I=0.55
I=0.60
I=0.65
I=0.70
I=0.75
I=0.80

Figure 5. Median transfer function H(jw), of the n experiments for I = {0.50, 0.55,…, 0.80} for
a population swarm of pop = 12 elements.

Particle Swarm Optimization

390

Varying the swarm population number of elements in the interval pop ∈ [6, 12] results in a
family of transfer functions. For a swarm size greater than 12 elements there is no difference
between the reference test and the perturbation tests. It can be concluded that with large
swarms an element has a negligible impact upon the search and, consequently, the
performance of the algorithm is independent of the initial swarm. On the other hand, in
small swarms, an element has a large impact on the evolution; therefore, it is necessary a
large number of perturbation tests to lead to a convergence towards the statistical sample
median. From the tests it can be observed that for I = 0.8 the median is very irregular
because the system is close to the instability region (den Bergh and Engelbrecht, 2006).

4.3 Dynamical analysis
In this section the median of the numerical transfer functions is approximated by analytical
expressions with gain k = 1 and one pole a ∈ R+ of fractional order α ∈ R+, given by equation
(5):

αω

ω
⎟
⎠
⎞

⎜
⎝
⎛ +

=
1j

)G(j

a

k (5)

Since the normalized Fourier transform (H) is used, it yields k = 1. In order to estimate the
transfer function parameters {a, α} another PSO algorithm is used, which is named the
identification PSO. The identification PSO is executed during Tide = 200 iterations with a 100
particle swarm size. The PSO parameters are: {ϕ1, ϕ2}~U[0, 1.5], I = 0.6, and the transfer
function parameters intervals are a ∈ [4 × 10-3, 50] and α ∈ [0, 100].
To guide the PSO search, the fitness function fide is used to measure the distance between the
numerical median H(jwk) and the analytical expression G(jwk):

 ∑
=

−=
nf

k
kk

1
ide)G(j)H(j)(jf ωωω (6)

where nf is the total number of sampling points and wk, k = {1,...,nf}, is the corresponding
vector of frequencies.
As explained previously, the optimization PSO has stochastic dynamics. Therefore, every
time the PSO system is executed with a different initial particle replacement, it leads to a
slightly different transfer function. Consequently, in order to obtain numerical convergence
(Tenreiro Machado & Galhano, 1998) n = 10000 perturbation experiments are performed
with different replacement particles, while all the other particles remain unchanged. The
optimization PSO dynamics transfer function is evaluated by computing the normalized
signals Fourier transform (FT) (equation 4). The transfer functions medians determined
previously (i.e., for the real and the imaginary parts, and for each frequency) are taken as the
final result of the numerical transfer function H(jw).
Figure 6 and 7 show, superimposed, the normalized median transfer function H(jw) and the
corresponding identified transfer function G(jw), both as polar and amplitude diagrams,
respectively. As it can be observed from these figures the fractional order transfer function,

Particle Swarm Optimization: Dynamical Analysis through Fractional Calculus

391

identified by the PSO, captures the optimization PSO dynamics quite well, apart from the
high frequency range (not represented).

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

ℜ{H(jw,G(jw))}

ℑ
{H

(jw
),G

(jw
)}

H(jw)
G(jw)

Figure 6. Polar Diagram of H(jw) and G(jw) for I = 0.70 and a swarm size of pop = 12
elements

10
-3

10
-2

10
-1

10
0

10
1

-2.5

-2

-1.5

-1

-0.5

0

0.5

w

20
lo

g 10
||G

(jw
)||

,2
0l

og
10

||G
(jw

)||

H(jw)
G(jw)

Figure 7. Amplitude Diagram of H(jw) and G(jw) for I = 0.7 and pop = 12 elements

For evaluating the influence of the inertia parameter I and the swarm size, several
simulations are performed ranging from I = 0.50 up to I = 0.80 and the number of swarm
elements from pop = 6 up to pop = 12, respectively. The estimated parameters for {a, α} are
depicted in Figure 8 and 9, respectively.

Particle Swarm Optimization

392

0.5 0.55 0.6 0.65 0.7 0.75 0.8
6

8

10

12

I

pop
4-5
3-4
2-3
1-2
0-1

Figure 8. Parameter a versus {I, pop}

0.5 0.55 0.6 0.65 0.7 0.75 0.8
6

8

10

12

I

pop

6-7
5-6
4-5
3-4
2-3
1-2
0-1

Figure 9. Parameter α versus {I, pop}

The results reveal that the transfer function parameters {a, α} have some dependence with
the inertia coefficient I and the swarm size pop. It can be observed that the transfer function
parameters have maximum values at I = 0.65 and for pop = 10 elements. Moreover, it can be
seen that there is a correlation between parameters a and α.
In what concerns the transfer function, by enabling the zero/pole order to vary freely we get
non-integer values for α. The alternative adoption of integer-order transfer functions would
lead to a larger number of zero and poles to get the same quality in the fitting of curves.

5. Other illustrative examples
In this section additional experiments are presented, in which the PSO system is deployed to
optimize: the Easom function (7) and the Bohachevsky function (8).

2

2
2

1)()(
2121 e)cos()cos(),f(ππ −−−−−= xxxxxx (7)

Particle Swarm Optimization: Dynamical Analysis through Fractional Calculus

393

 7.0)4cos(4.0)3cos(3.0),f(11
2
2

2
121 +−−+= xxxxxx ππ (8)

These functions (7,8) are more complex than the quadratic function used in previous section.
In these cases, a swarm of pop = 20 elements was used in the experimental tests while
varying the inertial parameter in the set I = {0.5, 0.6,…, 0.8}. The polar diagrams illustrated
by Figures 10 and 11 were obtained for the Easom and the Bohachevsky fitness functions,
respectively.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

ℜ{H(jw)}

ℑ
{H

(jw
)}

I=0.5
I=0.6
I=0.7
I=0.8

Figure 10. Median transfer function H(jw) of the n experiments for the Easom function and
pop = 20 elements

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

ℜ{H(jw)}

ℑ
{H

(jw
)}

I=0.5
I=0.6
I=0.7
I=0.8

Figure 11. Median transfer function H(jw), of the n experiments for the Bohachevsky
function and pop = 20 elements

Particle Swarm Optimization

394

The approximations are carried out by the same identification PSO described previously.
However, in these experiments, the medians of the numerical transfer functions are
approximated by analytical expressions incorporating a time delay Td (9).

α

ω

ω
ω

⎟
⎠
⎞

⎜
⎝
⎛ +

=
−

1j
e)G(j

dj

a

T
 (9)

The polar diagrams confirm the existence of a time delay Td, which represents the
perturbation propagation in the swarm evolution. Moreover, in these experiments the
dynamics follows the behavior of a low-pass filter too. The parameters obtained by the
identification PSO can be observed in Figure 12. The results reveal that the transfer function
parameters {a, α, Td} have some dependence with the inertia coefficient I.

0.5 0.55 0.6 0.65 0.7 0.75 0.8

10
0

I

C
oe

ffi
ci

en
t A

m
pl

itu
de

a
α
Td

a) Easom function

0.5 0.55 0.6 0.65 0.7 0.75 0.8
10

-2

10
-1

10
0

10
1

10
2

I

C
oe

ffi
ci

en
t A

m
pl

itu
de

a
α
Td

b) Bohachevsky function

Figure 12. Parameters {a, α, Td} of G(jw)

Particle Swarm Optimization: Dynamical Analysis through Fractional Calculus

395

6. Conclusion
This work analyzed the signal propagation and the phenomena involved in the discrete time
evolution of a particle swarm optimization algorithm. The particle swarm algorithm was
deployed as an optimization tool using three different functions as tests cases. The
optimization PSO system was subjected to a statistical sample of tests. In each test a particle
of a reference swarm was replaced by a randomly generated particle and the global
population fitness perturbation effect measured. A second PSO algorithm was used to
identify the parameters of a fractional order transfer function. The results indicate that the
fractional calculus provides a good understanding of the effects corresponding to the
propagation of the perturbations signals over the operating conditions.

7. Acknowledgment
The authors would like to acknowledge the GECAD Unit.

8. References
Clerc, M.; Kennedy, J. (2002). The particle swarm - explosion, stability, and convergence in a

multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6,
1, (2002) 58-73.

den Bergh, F. V.; Engelbrecht, A (2006). P., A study of particle swarm optimization particle
trajectories, Inf. Sci., 176, 8, (2006) 937-971.

Gement, A. (1938). On fractional differentials. Proc. Philosophical Magazine, 25, (2008) 540-549.
Kennedy, J.; Eberhart, R. (1995). Particle swarm optimization, Proceedings of the 1995 IEEE

International Conference on Neural Networks, pp. 1942-1948, Perth, Australia, IEEE
Service Center, Piscataway, NJ, 1995.

Lovbjerg, M.; Rasmussen, T. K.; Krink, T. (2001). Hybrid particle swarm optimiser with
breeding and subpopulations, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), pp. 469-476, San Francisco, California, USA, July
2001, Morgan Kaufmann.

Méhauté, A. L. (1991). Fractal Geometries: Theory and Applications, Penton Press.
Oustaloup, A. (1991). La Commande CRONE: Commande Robuste d'Ordre Non Intier, Hermes.
Podlubny, I. (1999) Fractional Diferential Equations, Academic Press, San Diego.
Ross, B. (1974), Fractional Calculus and its applications, Lecture Notes in Mathematics, 457,

Springer Berlin, (1974).
Shi, Y.; Eberhart, R. C. (1999). Empirical study of particle swarm optimization, Proceedings of

the Congress of Evolutionary Computation, pp. 1945-1950, Mayflower Hotel,
Washington D.C., USA, July 1999, IEEE Press, 1999.

Solteiro Pires, E. J.; Tenreiro Machado, J. A.; de Moura Oliveira, P. B. (2003). Fractional order
dynamics in a GA planner. Signal Processing, 83, 11, (2003) 2377-2386.

Solteiro Pires, E. J.; Tenreiro Machado, J. A.; de Moura Oliveira, P. B. (2006). Dynamical
modelling of a genetic algorithm. Signal Processing, 86, 10, (2006) 2760-2770.

Tenreiro Machado, J. A. (1997). Analysis and design of fractional-order digital control
systems. Journal System Analysis-Modelling-Simulation, 27, (1997) 107-122.

Tenreiro Machado, J. A. (2001) System modelling and control through fractional-order
algorithms. FCAA – Jornal of Fractional Calculus and Ap. Analysis, 4, (2001) 47-66.

Particle Swarm Optimization

396

Tenreiro Machado, J. A.; Galhano, A. M. S. F. (1998). A statistical perspective to the fourier
analysis of mechanical manipulators. Journal Systems Analysis-Modelling-Simulation,
33 (1998), 373-384.

Torvik, P. J.; L. Bagley, R. (1984). On the appearance of the fractional derivative in the
behaviour of real materials. ASME Journal of Applied Mechanics, 51 (june 1984), 294-
298.

Vinagre, B. M.; Petras, I.; Podlubny, I.; Chen, Y. Q. (2002). Using fractional order adjustment
rules and fractional order reference models in model-reference adaptive control,
Nonlinear Dynamics, 29 (July 2002), 269-279.

Westerlund, S. (2002). Dead Matter Has Memory! Causal Consulting. Kalmar, Sweden.

25

Discrete Particle Swarm Optimization Algorithm
for Flowshop Scheduling

S.G. Ponnambalam1, N. Jawahar2 and S. Chandrasekaran3
1Monash University, 2Thiagarajar College of Engineering

3S R M V Polytechnic College
1Malaysia, 2,3India

1. Introduction
 In the context of manufacturing systems, scheduling refers to allocation of resources over
time to perform a set of operations. Manufacturing systems scheduling has many
applications ranging from manufacturing, computer processing, transportation,
communication, health care, space exploration, education, distribution networks, etc.
Scheduling is a process by which limited resources are allocated over time among parallel or
sequential activities. Solving such a problem amounts to making discrete choices such that
an optimal solution is found among a finite or a countably infinite number of alternatives.
Such problems are called combinatorial optimization problems. Typically, the task is
complex, limiting the practical utility of combinatorial, mathematical programming and
other analytical methods in solving scheduling problems effectively. Manufacturing system
entails the acquisition and allocation of limited resources to production activities so as to
reduce the manufacturing cycle time and in-process inventory and to satisfy customer
demand in specified time. Successful achievement of these objectives lies in efficient
scheduling of the system. Scheduling plays an important role in shop floor planning. A
schedule shows the planned time when processing of a specific job will start on a machine.
It also indicates when a job will get completed on a machine. Scheduling is a decision-
making process of sequencing a set of operations on different machines in a manufacturing
unit. The objective of scheduling is generally to improve the utilization of resources and
profitability of production lines. Scheduling problem is characterized by three components
namely:
1. Number of machines, number of jobs and the processing time for each job using

appropriate machine
2. A set of constraints such as operation precedence constraint for a given job and

operation non-overlapping constraint for a given machine
3. A target function called objective function consisting of single or multiple criteria that

must be optimized.
Traditionally, scheduling researchers has shown interest in optimizing a single-objective or
performance measure while scheduling, which is not a reality. Practical scheduling
problems acquire consideration of several objectives as desired by the scheduler. When
multiple criteria are considered, scheduler may wish to generate a schedule which performs

Particle Swarm Optimization

398

better with respect to all the measures under study, such solution does not exist. This
chapter presents the application of Discrete Particle Swarm Optimisation Algorithm for
solving flowshop scheduling problem (FSP) under single and multiple objective criteria.

2. Flowshop Scheduling
2.1 Description of FSP
In discrete parts manufacturing industries, jobs with multiple operations use machines in
the same order. In such case, machines are installed in series. Raw materials initially enter
the first machine and when a job has finished its processing on the first machine, it goes to
the next machine. When the next machine is not immediately available, job has to wait till
the machine becomes available for processing. Such a manufacturing system is called a
flowshop, where the machines are arranged in the order in which operations are to be
performed on jobs. A flowshop is a conventional manufacturing system where machines are
arranged in the order of performing operations on jobs. The technological order, in which
the jobs are processed on different machines, is unidirectional. In a flowshop, a job i with a
set of m operations m3,21 i...,,ii,i is to be completed in a predetermined sequence. In short,
each operation except the first has exactly one direct predecessor and each operation except
the last one has exactly one direct successor as shown in Figure 1. Thus each job requires a
specific immutable sequence of operations to be carried out for it to be complete. This type
of structure is sometimes referred as linear precedence structure (Baker, 1974). Further, once
started, an operation on a machine cannot be interrupted.

Figure 1. Work Flow in Flowshop

2.2 Characteristics of FSP
Flowshop consists of m machines and there are n different jobs to be optimally sequenced
through these machines. The common assumptions used in modelling the flowshop
problems are as follows:
• All n jobs are available for processing at time zero and each job follows identical routing

through the machines.
• Unlimited storage exists between the machines. Each job requires m operations and

each operation requires a different machine.
• Every machine processes only one job at a time and every job is processed by one

machine at a time.
• Setup-times for the operations are sequence-independent and are included in

processing times.
• The machines are continuously available.
• Individual operations cannot be pre-empted.
Further it is assumed that:
• Each job must be processed to completion.
• In-process inventory is allowed when necessary.

i1 i2 im

Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling

399

• There is only one machine of each type in the shop.
• Machines are available throughout the scheduling period.
• There is no randomness and the scheduling problem under study is a deterministic

scheduling problem. In particular
• The number of jobs is known and fixed.
• The number of machines is known and fixed.
• The processing times are known and fixed, and
• All other quantities needed to define a particular problem are known and fixed.

The general structure of typical n job m machine FSP is shown in Figure 2.

 Job Processing order
M1 M2 M3 ………Mm

J1 Pt1 Pt2 Pt3 ………Ptm

J2 Pt1 Pt2 Pt3 ………Ptm

J3 Pt1 Pt2 Pt3 ………Ptm

..

..
Jn Pt1 Pt2 Pt3 ………Ptm

where Pt - processing time of job J in machine M

Figure 2. General Structure of Flowshop

2.3 Solution approaches for FSP
Computational complexity of a problem is the maximum number of computational steps
needed to obtain an optimal solution. For example if there are n jobs and m available
machines, the available number of schedule to be evaluated to get an optimal solution is
(n!)m. In a permutation flow based manufacturing system, the number of available schedules
is n!. Based on the complexity of the problem, all problems can be classified into two classes,
called P and NP in the literature. Class P consists of problems for which the execution
time of the solution algorithms grows polynomially with the size of the problem. Thus, a
problem of size m would be solvable in time proportional to km , when k is an exponent.
The time taken to solve a problem belonging to the NP class grows exponentially, thus this
time would grow in proportion to mt , where t is some constant. In practice, algorithms for
which the execution time grows polynomially are preferred. However, a widely held
conjecture of modern mathematics is that there are problems in NP class for which
algorithms with polynomial time complexity will never be found (French, 1982). These
problems are classified as hardNP − problems. Unfortunately, most of the practical
scheduling problems belong to the hardNP − class (Rinnooy Kan, 1976). Many scheduling
problems are polynomially solvable, or NP-hard in that it is impossible to find an optimal
solution here without the use of an essentially enumerative algorithm. FSP is a widely
researched combinatorial optimization problem, for which the computational effort
increases exponentially with problem size (Jiyin Liu & Colin Reeves, 2001; Brucker, 1998;
Sridhar & Rajendran, 1996; French, 1982). In FSP, the computational complexity increases
with increase in problem size due to increase in number of jobs and/or number of machines.

Particle Swarm Optimization

400

To find exact solution for such combinatorial problems, a branch and bound or dynamic
programming algorithm is often used when the problem size is small. Exact solution
methods are impractical for solving FSP with large number of jobs and/or machines. For the
large-sized problems, application of heuristic procedures provides simple and quick method
of finding best solutions for the FSP instead of finding optimal solutions. A heuristic is a
technique which seeks (and hopefully finds) good solutions at a reasonable computational
cost. A heuristic is approximate in the sense that it provides a good solution for relatively
little effort, but it does not guarantee optimally. A heuristic can be a rule of thumb that is
used to guide one’s action. Heuristics for the FSP can be a constructive heuristics or
improvement heuristics. Various constructive heuristics methods have been proposed by
Johnson, 1954; Palmer, 1965; Campbell et al., 1970; Dannenbring 1977 and Nawaz et al. 1983.
Literature shows that constructive heuristic methods give very good results for NP-hard
combinatorial optimization problems. This builds a feasible schedule from scratch and the
improvement heuristics try to improve a previously generated schedule by applying some
form of specific improvement methods. An application of heuristics provides simple and
quick method of finding best solutions for the FSPs instead of finding optimal solutions
(Ruiz & Maroto, 2005; Dudek et al. 1992). Johnson’s algorithm (1954) is the earliest known
heuristic for the FSP, which provides an optimal solution for two-machine problem to
minimize makespan. Palmer (1965) developed a very simple heuristic in which for every job a
‘‘slope index’’ is calculated and then the jobs are scheduled by non-increasing order of this
index. Ignall & Schrage (1965) applied the branch and bound technique to the flowshop sequencing
problem. Campbell et al. (1970) developed a heuristic algorithm known as CDS algorithm
and it builds 1m − schedules by clustering the m original machines into two virtual
machines and solving the generated two machine problem by repeatedly using Johnson’s
rule. Dannenbring’s (1977) Rapid Access heuristic is a mixture of the previous ideas of
Johnson’s algorithm and Palmer’s slope index. Nawaz et al.’s (1983) NEH heuristic is based
on the idea that jobs with high processing times on all the machines should be scheduled as
early in the sequence as possible. NEH heuristics seems to be the performing better
compared to others. Heuristic algorithms are conspicuously preferable in practical
applications. Among the most studied heuristics are those based on applying some sort of
greediness or applying priority based procedures including, e.g., insertion and dispatching
rules. The main drawback of these approaches, their inability to continue the search upon
becoming trapped in a local optimum, leads to consideration of techniques for guiding
known heuristics to overcome local optimality (Jose Framinan et al. 2003). And also the
heuristics has the problems like

1. Lack of comprehensiveness
2. Little robustness of conclusions
3. Weak/partial experimental design

For these reasons, one can investigate the application of metaheuristic search methods for
solving optimization problems. It is a set of algorithmic concepts that can be used to define
heuristic methods applicable to wide set of varied problems. The use of metaheuristics has
significantly produced good quality solutions to hard combinatorial problems in a
reasonable time. It is defined as an iterative generation process which guides a subordinate
heuristic by combining intelligently different concepts for exploring and exploiting the
search space, learning strategies are used to structure information in order to find efficiently

Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling

401

near-optimal solutions (Osman & Laporte, 1996). The fundamental properties which
characterize metaheuristics are as follows (Christian Blum & Andrea Roli, 2003):
• The goal is to efficiently explore the search space in order to find (near-) optimal

solutions.
• Techniques which constitute metaheuristic algorithms range from simple local search

procedures to complex learning processes.
• Metaheuristic algorithms are approximate and usually non-deterministic.
• They may incorporate mechanisms to avoid getting trapped in confined areas of the

search space.
• The basic concepts of metaheuristics permit an abstract level description.
• Metaheuristics are not problem-specific.
• Metaheuristics may make use of domain-specific knowledge in the form of heuristics

that are controlled by the upper level strategy.
• Today’s more advanced metaheuristics use search experience (embodied in some form

of memory) to guide the search.
Metaheuristics or Improvement heuristics are extensively employed by researchers to solve
scheduling problems (Chandrasekaran et al. 2006; Suresh & Mohanasundaram, 2004; Hisao
Ishibuchi et al. 2003; Lixin Tang & Jiyin Liu, 2002; Eberhart & Kennedy, 1995). Improvement
methods such as Genetic Algorithm (Chan et al. 2005; Ruiz et al. 2004; Sridhar & Rajendran,
1996), Simulated Annealing algorithm (Ogbu & Smith, 1990), Tabu Search algorithm
(Moccellin & Nagamo, 1998) and Particle Swarm Optimization algorithm (Rameshkumar et
al. 2005; Prabhaharan et al. 2005; Faith Tasgetiren et al. 2004) have been widely used by
researchers to solve FSPs. Metaheuristic algorithms such as Simulated Annealing (SA) and
Tabu Search (TS) methods are single point local search procedures where, a single solution
is improved continuously by an improvement procedure. Algorithms such as Genetic
Algorithm (GA), Ant Colony Optimization (ACO) algorithm and Particle Swarm
Optimization (PSO) algorithm belongs to population based search algorithms. These are
designed to maintain a set of solution transiting from a generation to the next. The family of
metaheuristics includes, but is not limited to, GA, SA, ACO, TS, PSO, evolutionary methods,
and their hybrids.

2.4 Performance measures considered
Measures of schedule performance are usually functions of the set of completion times in a
schedule. Performance measures can be classified as regular and non-regular. A regular
measure is one in which the penalty function is non-decreasing in terms of job completion
times. Some examples of regular performance measures are makespan, mean flowtime, total
flowtime, and number of tardy jobs. Performance measures, which are not regular, are
termed non-regular. That is, such measures are not an increasing function with respect to
job completion times. Some examples of non-regular measures are earliness, tardiness, and
completion time variance. In this chapter, the performance measures namely minimization
of makespan, total flowtime and completion time variance is considered for solving
flowshop scheduling problems. Makespan)C(max has been considered by many scheduling
researchers (Ignall & Scharge, 1965; Campbell et al. 1970; Nawaz et al.1983; Framinan et al.
2002; Ruiz & Maroto, 2005). Makespan is defined as the time required for processing all the
jobs or the maximum time required for completing a given set of jobs. Minimization of

Particle Swarm Optimization

402

makespan ensures better utilization of the machines and leads to a high throughput
(Framinan et al. 2002; Ruiz & Maroto, 2005). Makespan is computed using equation (1).

 =maxC { }n,........,2,1i,Cmax i = (1)

The time spend by a job in the system has been defined as its flow time. Total flowtime is
defined as the sum of completion time of every job or total time taken by all the jobs. Total
flowtime)F(∑ of the schedule is computed using equation (2). Minimizing total flowtime
results in minimum work-in-process inventory (Chandrasekharan Rajendran & Hans
Ziegler, 2005).

 ∑
=

∑ =
n

1i
iCF (2)

Completion time variance is defined as the variance about the mean flowtime and is
computed using equation (3). Minimizing completion time variance)(TV serves to
minimize variations in resource consumption and utilization (Gowrishankar et al. 2001;
Gajpal & Rajendran, 2006; Viswanath Kumar Ganesan et al. 2006).

 ∑
=

−=
n

1i

2
iT)FC(

n
1V (3)

where
n
FF T= is the mean flowtime.

3. Particle Swarm Optimization Algorithm
3.1 Features of PSO
Particle Swarm Optimization (PSO) algorithm is an evolutionary computation technique
developed by Eberhart & Kennedy in 1995 inspired by social behavior of bird flocking or
fish schooling. PSO is a stochastic, population-based approach for solving problems
(Kennedy & Eberhart, 1995). It is a kind of swarm intelligence that is based on social-
psychological principles and provides insights into social behavior, as well as contributing
to engineering applications. PSO algorithm has been successfully used to solve many
difficult combinatorial optimization problems. PSO algorithm is problem-independent,
which means little specific knowledge relevant to a given problem is required. All we have
to know is the fitness evaluation of each solution. This advantage makes PSO more robust
than many search algorithms. In the last couple of years the particle swarm optimization
algorithm has reached the level of maturity necessary to be interesting from an engineering
point of view. It is a potent alternative optimizer for complex problems and possesses many
attractive features such as:
• Ease of implementation: The PSO is implemented with just a few lines of code, using

only basic mathematical operations.
• Flexibility: Often no major adjustments have to be made when adapting the PSO to a

new problem.
• Robustness: The solutions of the PSO are almost independent of the initialization of the

swarm. Additionally, very few parameters have to be tuned to obtain quality solutions.

Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling

403

• Possibility to combine discrete and continuous variables. Although some authors
present this as a special feature of the PSO (Sensarma et al., 2002), others point out that
there are potential dangers associated with the relaxation process necessary for
handling the discrete variables (Abido, 2002). Simple round-off calculations may lead to
significant errors.

• Possibility to easily tune the balance between local and global exploration.
• Parallelism: The PSO is inherently well suited for parallel computing. The swarm

population can be divided between many processors to reduce computation time.

3.2 Applications of PSO
In recent years, PSO has been successfully applied in many areas. Currently, PSO has been
implemented in a wide range of research areas such as functional optimization, pattern
recognition, neural network training, fuzzy system control etc. and obtained significant
success. PSO is widely applied and focused by researchers due to its profound intelligence
background and simple algorithm structure. Many proposals indicate that PSO is relatively
more capable for global exploration and converges more quickly than many other heuristic
algorithms. It solves a variety of optimization problems in a faster and cheaper way than the
evolutionary algorithms in the early iterations. One of the reasons that PSO is attractive is
that there are very few parameters to adjust. One version, with very slight variation (or none
at all) works well in a wide variety of applications. PSO has been used for approaches that
can be used across a wide rage of applications, as well as for specific applications focused on
a specific requirement. PSO has been applied to the analysis of human tremor. The diagnosis
of human tremor, including Parkinson’s disease and essential tremor, is a very challenging
area. PSO has been used to evolve a neural network that distinguishes between normal
subjects and those with tremor. Inputs to the network are normalized movement amplitudes
obtained from an actigraph system. The method is fast and accurate (Eberhart & Hu, 1999).
While development of computer numerically controlled machine tools has significantly
improved productivity, there operation is far from optimized. None of the methods
previously developed is sufficiently general to be applied in numerous situations with high
accuracy. A new and successful approach involves using artificial neural networks for
process simulation and PSO for multi-dimensional optimization. The application was
implanted using computer-aided design and computer-aided manufacturing (CAD/CAM)
and other standard engineering development tools as the platform (Tandon, 2000). Another
application is the use of particle swarm optimization for reactive power and voltage control
by a Japanese electric utility (Yoshida et al., 1999). PSO has also been used in conjunction
with a back propagation algorithm to train a neural network as a state-of-charge estimator
for a battery pack for electric vehicle use. Determination of the battery pack state of charge is
an important issue in the development of electric and hybrid / electric vehicle technology.
The state of charge is basically the fuel gauge of an electric vehicle. A strategy was
developed to train the neural network based on a combination of particle swarm
optimization and the back propagation algorithm. Finally, one of the most exciting
applications of PSO is that by a major American corporation to ingredient mix optimization.
In this work, “ingredient mix” refers to the mixture of ingredients that are used to grow
production strains of microorganisms that naturally secrete of manufacture something of
interest. Here, PSO was used in parallel with traditional industrial optimization methods.
PSO provided an optimized ingredient mix that provided over twice the fitness as the mix

Particle Swarm Optimization

404

found using traditional methods, at a very different location in ingredient space. PSO was
shown to be robust: the occurrence of an ingredient becoming contaminated hampered the
search for a few iterations but in the end did not result in poor final results. PSO, by its
nature, searched a much larger portion of the problem space than the traditional method.
Generally speaking, particle swarm optimization, like the other evolutionary computation
algorithms, can be applied to solve most optimization problems and problems that can be
converted to optimization problems. Among the application areas with the most potential
are system design, multi-objective optimization, classification, pattern recognition,
biological system modelling, scheduling (planning), signal processing, games, robotic
applications, decision making, simulation and identification. Examples include fuzzy
controller design, job shop scheduling, real time robot path planning, image segmentation,
EEG signal simulation, speaker verification, time-frequency analysis, modelling of the
spread of antibiotic resistance, burn diagnosing, gesture recognition and automatic target
detection, to name a few (Eberhart & Shi, 2001).

3.3 Working of PSO
PSO is initialized with a swarm of random feasible solutions and searches for optima by
updating velocities and positions. PSO algorithm is initialized with a set of several random
particles called a swarm. A set of moving particles (the swarm) is initially thrown inside the
multi-dimensional search space. Each particle is a potential solution, which has the ability to
remember its previous best position and current position, and it survives from generation to
generation. Each particle has the following features:
• It has a position and a velocity
• It knows its neighbours, best previous position and objective function value.
• It remembers its best previous position.
At each time step, the behavior of a given particle is a compromise between three possible
choices
• To follow its own way
• To go towards its best previous position
• To go towards the best neighbour’s best previous position, or forwards the best

neighbour.
The swarm is typically modelled by particles in multi-dimensional space that have a
position and a velocity. These particles fly through hyperspace and have two essential
reasoning capabilities: their memory of their own best position and knowledge of their
neighborhood's best, "best" simply meaning the position with the smallest objective value.
Members of a swarm communicate good positions to each other and adjust their own
position and velocity based on these good positions. PSO shares many similarities with
evolutionary computation techniques such as GA, SA, TS and ACO algorithms. The PSO
system is initialized with a swarm of random solutions and searches for optima by updating
generations. The advantages of PSO are that PSO is easy to implement and there are few
parameters to adjust. PSO has been successfully applied in many areas: function
optimization, artificial neural network training, fuzzy system control, and other areas where
GA can be applied. Most of evolutionary techniques have the following procedure:
1. Random generation of an initial population
2. Reckoning of a fitness value for each subject. It will directly depend on the distance to

the optimum.

Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling

405

3. Reproduction of the population based on fitness values.
4. If requirements are met, then stop. Otherwise go back to step 2.
Evolutionary Algorithms use a population of potential solutions (points) of the search space.
These solutions (initially randomly generated) are evolved using different specific operators
which are inspired from biology. Through cooperation and competition among the potential
solutions, these techniques often can find near-optimal solutions quickly when applied to
complex optimization problems. There are some similarities between PSO and Evolutionary
Algorithms:
1. Both techniques use a population (which is called swarm in the PSO case) of solutions

from the search space which are initially random generated;
2. Solutions belonging to the same population interact with each other during the search

process;
3. Solutions are evolved using techniques inspired from the real world.
PSO shares many common points with GA. Both algorithms start with a group of a randomly
generated population; both have fitness values to evaluate the population. Both update the
population and search for the optimum with random techniques. Both systems do not
guarantee success. However, PSO does not have genetic operators like crossover and
mutation. Particles update themselves with the internal velocity. The information sharing
mechanism in PSO is significantly different. In GA, chromosomes share information with
each other. So the whole population moves like one group towards an optimal area. In PSO,
only global or local best particle gives out the information to others. It is a one-way
information sharing mechanism. Compared with GA, all the particles tend to converge to the
best solution quickly even in the local version in most cases/ PSO optimization algorithm
uses a set of particles called a swarm, similar to chromosomes in a binary-coded Genetic
Algorithm (GA). PSO and ACO are optimization algorithms based on the behavior of swarms
(birds, fishes) and ants respectfully. However, the particles are multidimensional points in
real space during the optimization. The PSO optimization run starts with a user-specified
swarm size and objective function used to evaluate objection function values, called fitness in
GA terminology. The particles are initialized randomly within the variable bounds and they
search for the optimum (maximum or minimum) in the search space with some
communication between particles. For a maximization (or minimization) problem, the
particles will move towards the particle with the highest (or least) objective function value
using a position update equation, that is stochastic. This is how randomness in introduced to
PSO algorithm. This position update method is similar to the use of crossover and mutation
operations used to generate new individuals in a new generation in the GA. However, the
PSO differs in that, updates of particle position usually involve the best particles (global or in
the neighborhood) of each particle. The position updating tends to always exploit the best
solution found so far. While this may lead to premature convergence, when all particles
positions become equal to that of the best particle (i.e., no diversity), there are schemes
designed to prevent such premature convergence. In the PSO literature, several
neighborhood schemes have been developed for the particle updating (Merkle and
Middendorf, 2000). This chapter aims to develop a metaheuristic algorithm called PSO
algorithm which is suitable for solving FSPs with the objective of minimising three
performance measures namely makespan, total flowtime and completion time variance.
Firstly, a single objective PSO is proposed and the above performance measures are
considered individually. Performance of the proposed single objective PSO is tested by

Particle Swarm Optimization

406

solving a large set of benchmark FSPs available in the literature having number of jobs
varying from 5 to 500 and number of machines from 5 to 20.

3.4 Structure of PSO Algorithm
The pseudo-code of the simple PSO algorithm and its general framework are given in
Figures 3 and 4 respectively.
The basic elements of PSO algorithm are summarized below:
Particle: t

iX denotes the ith particle in the swarm at iteration t and is represented by n

number of dimensions as []t
in

t
2i

t
1i

t
i x,..,x,xX = , where t

ijx is the position value of the ith
particle with respect to the jth dimension (n,...,2,1j =).

Population: tpop is the set of NP particles in the swarm at iteration t, i.e.,

[]t
NP

t
2

t
1

t X,...,X,Xpop = .

Sequence: We introduce a new variable t
iπ , which is a permutation of jobs implied by the

particle t
iX . It can be described as []t

in
t
2i

t
1i

t
i ,..,, ππππ = , where t

ijπ is the assignment of job j of
the particle i in the permutation at iteration t.

Figure 3. Pseudocode of the PSO Algorithm

Particle velocity: t
iV is the velocity of particle i at iteration t. It can be defined as

[]t
in

t
2i

t
1i

t
i v,...,v,vV = , where t

ijv is the velocity of particle i at iteration t with respect to the jth
dimension.
Local best: t

iP represents the best position of the particle i with the best fitness until
iteration t, so the best position associated with the best fitness value of the particle i obtained
so far is called the local best. For each particle in the swarm, t

iP can be determined and

updated at each iteration t. In a minimization problem with the objective function ()t
if π

where t
iπ is the corresponding sequence of particle t

iX , the local best t
iP of the ith particle is

obtained such that () ()1t
i

t
i ff −≤ ππ where t

iπ is the corresponding permutation of local best t
iP

Initialize swarm
Initialize velocity
Initialize position
Initialize parameters

Evaluate particles
Find the local best
Find the global best

Do
{
 Update velocity
 Update position
 Evaluate
 Update local best

Update global best
} (until termination)

Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling

407

and 1t
i

−π is the corresponding sequence of local best 1t
iP − . To simplify, we denote the fitness

function of the local best as ()t
i

pb
i ff π= . For each particle, the local best is defined as

[]t
in

t
2i

t
1i

t
i p,...,p,pP = where t

ijp is the position value of the ith local best with respect to the jth
dimension (n,...,2,1j =).

`

Figure 4. The Framework of PSO Algorithm

4. Discrete PSO Algorithm for Single-Objective FSP
4.1 Pseudocode of the proposed discrete PSO algorithm
Particle Swarm Optimization algorithm starts with a population of randomly generated initial
solutions called particles (swarm). It is to be noted that the particle structure is taken as a
string, which consists of job numbers in certain order. The order of jobs in the string represents
a sequence. After the swarm is initialized, each potential solution is assigned a velocity
randomly. The length of the velocity of each particle v is generated randomly between 0 and
n (Rameshkumar et al. 2005; Chandrasekaran et al. 2006) and the corresponding lists of
transpositions () kqq v,1q;j,i = are generated randomly for each particle. The above
formulation permits exchange of jobs)j,i(......)j,i(),j,i(vv2211 in the given order. Each

particle keeps track of its improvement and the best objective function value achieved by the
individual particles so far is stored as local best solution ()t

k
e P , and the overall best objective

function achieved by all the particles together so far is stored as the global best solution).G(t
b

The particle velocity and position are updated continuously in all iterations. The iterative
improvement process is continued afterwards to further improve the solution quality. The
Pseudocode of the proposed discrete PSO algorithm is shown in Figure 5.

Output the Results

Generate N particles at Random

Evaluate the sequences

Apply Velocity and Move the particle

Update particle Index (PCurrent, PBest, GBest)

Is the Stopping
Criteria Satisfied?

No

Yes

Particle Swarm Optimization

408

Figure 5. Pseudocode of the Proposed Discrete PSO Algorithm
The particle velocity and position are continuously updated using equation (4) and (5).

)PG()(randUC)PP()(randUCvUCv 1t
kk33

1t
k

1t
k

e
22

t
k11

1t
k

++++ −+−+= (4)

 1t
k

t
k

1t
k vPP ++ += (5)

where 321 CandC,C is called acceleration constants. The acceleration constants

321 CandC,C in equation (4) guide every particle toward local best and the global best
solution during the search process. Low acceleration value results in walking far from the
target, namely local best and the global best. High value results in premature convergence of
the search process.

4.2 Procedural steps of the Discrete PSO Algorithm
The step by step procedure for implementing the proposed discrete PSO algorithm is as
follows.
Step1: Initialize a swarm iP with random positions and velocities in the problem space .X
Step2: For each particle, evaluate the desired optimization fitness function
Step3: Compare the fitness function with its previous best. If current value is better than

previous best, then set previous best equal to current value and iP equal to the
current location iX .

Step4: Identify the particle in the neighborhood with the best success so far, and assign its
index to the variable G .

Step5: Apply local search algorithm to all the particles at the end of each iteration and
evaluate for the objective function.

Step6: Change the velocity and position of the particle according to equation (4) and
equation (5).

Step7: Loop to step (2) until a criterion is met (usually number of iterations).

Initialize swarm P ;0t =
Initialize velocity t

kv and position t
kP

 Initialize parameters
Evaluate particles
Find the local best t

k
e P and global best t

bG
Do

{
 ()N,1k for =
 Update Velocity 1t

kv + ;
 Update Position 1t

kP + ;
 Evaluate all particles;
 Update 1t

k
e P + and 1tG + , ()N,1k = ;

 1tt +→ ;
 } ()maxttwhile <

Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling

409

4.3 Numerical Illustrations
An example illustrating the process of updating the velocity and the position of a sequence
is explained as follows:
Velocity update: The procedure for updating the velocity of all the particles in each iteration
is as follows: For example, let us assume
The sequence t

kP = { }1,4,3,2 ; ,2C,1C 21 == 2C3 = ; 3.0U,4.0U,2.0U 321 === ; 2Vk = ,
)3,2(),4,1(v = ; t

k
e P = (1,4,3,2) and t

bG = (3,1,4,2) .
Velocity of the particle k at time step 1t + namely 1t

kV + is obtained using equation (4)
1t

kV + = 1x 0.2 [(1,4),(2,3)] ⊕ 2 x 0.4 [(1,4,3,2) - (2,3,4,1)] ⊕ 2 x 0.3 [(3,1,4,2) - (2,3,4,1)]
where [(1,4,3,2) - (2,3,4,1)] represents a velocity such that applying the resulting
velocity to the current particle (2,3,4,1) yields a position (1,4,3,2).
Thus, 1t

kV + = 0.2 [(1,4), (2,3)] ⊕ 0.8 [(2,3), (1,4)] ⊕ 0.6 [(1,2), (1, 4)]
 = ((1, 4),(2, 3),(1, 2))
Position update: Position of the particle k at time step 1t + namely 1t

kP + is obtained using
equation (5) by applying 1t

kV + over t
kP as follows.

1t
kP + =(2,3,4,1) + ((1,4), (2,3),(1,2));

= (1,3,4,2) + ((2,3),(1,2)); =(1,4,3,2) + (1,2);
= (4,1,3,2)

4.4 Performance Comparison
An extensive performance analysis using proposed discrete PSO algorithm is carried out by
means of evaluating the performance measures by solving the benchmark FSPs of Taillard
(1993). Extensive experiments are conducted to fix the parameters like number of particles,
number of iterations, selection of learning coefficients and initial swarm generation. The
evaluation of proposed discrete PSO algorithm is coded in Linux C and run on an Intel
Pentium III 900MHz PC with 128 MB memory.
Number of iterations: Number of iterations or termination criterion is a condition that the
search process will be terminated. It might be a maximum number of iteration or maximum
CPU times are normally to terminate the search process (Liu & Reeves, 2001; Gowrishankar
et al. 2001). In this chapter, for the single-objective optimization problems, an evaluation of
1000 x n x m number of sequences or particles is taken as the termination criterion.
Number of particles: Experiments have been conducted to identify the optimal swarm size
by solving a set of 30 different instances of Taillard (1993) for makespan objective with 20
jobs and machines varying from 5, 10 and 20 using discrete PSO algorithm. In
experimentation, the performance of the algorithm is better with swarm size 80 and the
same has been used throughout our evaluation.
Learning coefficients: The roll of learning coefficients or acceleration constants, namely

21 C,C and 3C guide every particle towards the local best and the global best solutions
during the search process. Low acceleration value results in walking far from the target,
namely local best and the global best. High value results in premature convergence of the
search process. Experiments have been conducted using different combinations of learning
coefficients. To determine the best combinations of 21 C,C and 3C values by solving a set of
30 FSPs for makespan objective with 20 jobs and machines varying from 5, 10 and 20 using

Particle Swarm Optimization

410

the proposed PSO algorithm. The values 2C,1C 21 == and 2C3 = shows better
performance and the same, has been used throughout our study.
Velocity coefficients: The velocity update is carried out after every iteration to improve the
search process. The velocity coefficients, namely 321 UandU,U guides the search to find
the optimal solution quickly. As per the experiments, the values for 321 UandU,U are
generated randomly between 0 and 1.
Initial Swarm Generation: For the generation of initial swarm one particle is generated from
the results obtained by certain algorithms for the desired optimization fitness function and
remaining particles of the swarm is constructed in a way that a permutation is produced
randomly. The particle generated from certain algorithms is added with randomly generated
particles at the beginning of the search. This insertion of the particle in initial swarm is to find
better sequences in each iteration of the search. And also it improves the performance of
discrete PSO algorithm in terms of finding near-optimal solutions. The algorithms selected for
generating the particle for different objective functions are listed below. For makespan
objective, one particle is generated using NEH heuristic of Nawaz et al. (1983) and is added to
the swarm. For total flowtime objective, one particle is generated based on the heuristic
developed by Rajendran. (1993) and is added to the swarm. For completion time variance
objective, a particle is generated based on the algorithm developed by Gajpal & Rajendran
(2006), and is added to the swarm. These algorithms have better start with the respective
objectives. Performance of the proposed discrete PSO with respect to makespan objective is
carried out in comparison with the benchmark solutions given by Taillard (1993) and with the
results published in the literature. The quality measure namely, “Average Relative Percent
Deviation”)RPD(is considered for the evaluation. During comparison, the corresponding
better values reported in the literature are taken. The RPD is computed using equation (6).

 100]C/CG[RPD ** ×−= (6)

where, G represents the global best solution obtained by the proposed algorithm for a given
problem and *C represents the upper bound value reported in the literature for the
corresponding objective function. Some sample results of problems ta001-ta010 of Taillard
(1993) is presented in Table 1.

Instances Problem Results
Reported

Results
Obtained RPD

ta001 1278 1278 0.0000
ta002 1359 1360 0.0736
ta003 1081 1088 0.6475
ta004 1293 1293 0.0000
ta005 1235 1235 0.0000
ta006 1195 1195 0.0000
ta007 1239 1239 0.0000
ta008 1206 1206 0.0000
ta009 1230 1237 0.5691
ta010 1108 1108 0.0000

20 x 5

RPD 0.1290

Table 1. Sample Results for Makespan

Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling

411

In order to evaluate the performance of the proposed discrete PSO with respect to the total
flowtime objective, the results are compared with the results of the popular performing
heuristics developed by Liu & Reeves (2001), M-MMAS Algorithm and PACO Algorithm
(Rajendran & Ziegler, 2004). Some sample results of problems ta001-ta010 for total flowtime
criteria is presented in Table 2.

Instances Problem Results
Reported

Results
Obtained RPD

ta001 14056 3 14033 -0.1636
ta002 15151 2 15151 0.0000
ta003 13403 3 13313 -0.6715
ta004 15486 2 15459 -0.1744
ta005 13529 3 13529 0.0000
ta006 13123 3 13123 0.0000
ta007 13559 2 13548 -0.0811
ta008 13968 1 13948 -0.1432
ta009 14317 2 14315 -0.0140
ta010 12968 2 12943 -0.1928

20 x 5

RPD -0.1441
Note: Superscript (1) refers to Heuristic Algorithm (Liu & Reeves, 2001) (2) M-MMAS Algorithm
(Rajendran & Ziegler, 2004) (3) PACO Algorithm (Rajendran & Ziegler, 2004)

Table 2. Sample Results for Total Flowtime

Instances Problem Results
Reported

Results
Obtained RPD

ta001 73040.55 3 72060.23 -1.3422
ta002 90885.27 2 89238.17 -1.8123
ta003 53894.49 2 53851.95 -0.0789
ta004 89822.05 4 87104.42 -3.0256
ta005 72350.55 2 72020.43 -0.4563
ta006 71665.73 2 70817.64 -1.1834
ta007 69088.45 2 68367.69 -1.0432
ta008 70214.31 2 69793.85 -0.5988
ta009 73329.22 2 72284.98 -1.4240
ta010 52580.03 1 52015.34 -1.0740

20 x 5

RPD -1.2039
Note: Superscript (1) refers to PACO Algorithm (Rajendran & Ziegler, 2004) (2) MMAS Ant Colony
Algorithm (Stuetzle, 1998) (3) NACO Algorithm with position-job insertion local search (Gajpal &
Rajendran, 2006) (4) NACO Algorithm with job-index based local search (Gajpal & Rajendran, 2006)

Table 3. Sample Results for Completion Time Variance
The performance of the proposed discrete PSO algorithm with respect to completion time
variance criterion, the results are compared with the results of ant colony algorithm with
random-job insertion local search by Gajpal & Rajendran (2006), M-MMAS Ant Colony
Algorithm by Stuetzle(1998), PACO Algorithm by Rajendran & Ziegler(2004), and three

Particle Swarm Optimization

412

NACO Algorithm with position-job insertion and job-index based local searches by Rajendran
& Ziegler (2004). To our knowledge, the results of completion time variance objective using
PSO algorithm are not available in literature, the performance of the proposed algorithm is
compared with other metaheuristic results. Some sample results of problems ta001-ta010 of
Taillard (1993) for completion time variance objective are presented in Table 3.
The results show that the proposed single-objective discrete PSO algorithm performs better.
The negative sign in RPD values shows that the proposed discrete PSO algorithm generates
better results than the results reported in the literature considered. The summary of RPD
values obtained for all the FSP instances of Taillard (1993) are presented in Table 4.

 Instances Number of
problems Makespan Total Flowtime Completion Time

Variance
20 x 5 10 0.1290238 -0.1440537 -1.2038674
20 x10 10 0.5334462 -0.0164544 -1.7613968
20 x 20 10 0.5329960 -0.0260092 -0.8586390
50 x 5 10 0.0890855 -0.2925054 -0.9330275
50 x 10 10 1.7541958 -0.0108922 -0.2059756
50 x 20 10 2.9814187 0.2434647 1.7126618
100 x 5 10 0.1713382 -0.7238382 1.2988817
100 x 10 10 0.6882989 -0.1191928 0.9198400
100 x 20 10 2.8784086 0.1476830 3.4646301
200 x 10 10 0.5498368 1.8246721 0.0000000
200 x 20 10 2.7011408 1.4120018 0.0000000
500 x 20 10 1.8172343 1.4205378 0.0000000

Table 4. RPD Values Obtained for the Various FSP Instances

The proposed discrete PSO algorithm generates good results with reasonable CPU time.
CPU time taken by the proposed discrete PSO algorithm for various FSPs are presented in
Table 5.

Instances Number of
Problems Makespan Total

Flowtime
Completion

Time Variance
20x5 10 0m25.164s 0m5.201s 0m6.642s

20x10 10 1m36.844s 0m12.113s 0m33.619s
20x20 10 6m22.854s 0m35.139s 2m16.764s
50x5 10 13m44.973s 0m39.888s 1m10.433s

50x10 10 55m38.305s 1m45.854s 6m19.487s
50x20 10 110m32.087s 10m33.215s 32m41.970s
100x5 10 19m42.310s 4m17.995s 10m39.676s
100x10 10 26m3.295s 9m22.616s 45m1.041s
100x20 10 62m14.918s 33m57.255s 84m4.257s
200x10 10 143m25.161s 41m33.599s 50m27.703s
200x20 10 166m27.657s 79m22.342s 129m58.384s
500x20 10 543m32.695s 792m17.371s 410m50.485s

Table 5. CPU time taken for Various FSP Instances

Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling

413

5. Discrete PSO Algorithm for Multi-Objective FSP
 5.1 Concept and terminology
The real-world scheduling problems are multi-objective in nature. In such cases, several
objectives must be simultaneously considered when evaluating the quality of the proposed
solution. In multi objective decision problems one desires to simultaneously optimize more
than one performance objectives such as makespan, tardiness, mean flowtime of jobs, etc.
multi-objective optimization usually results in a set of non-dominated solutions instead of a
single solution. The goal of multi-objective scheduling is to find a set of compromising
schedules satisfying different objectives under consideration. For a given finite set of
schedules generated by using a suitable algorithm for a multi-objective scheduling problem,
various objective functions })x(f,....),x(f),x(f{)x(f k21= can be evaluated. These schedules
are to be compared and a set of schedules called non-dominated solutions are to be identified.
For those solutions, no improvement in any objective function is possible without scarifying
at least one of the other objective functions. Some researchers have developed multi-
objective metaheuristics for solving flowshop scheduling problems (Pasupathy et al. 2006;
Prabhaharan et al. 2005; Loukil et al. 2005; Suresh & Mohanasundaram, 2004; Hisao
Ishibuchi et al. 2003; Ishibuchi & Murata, 1998; Sridhar & Rajendran, 1996). A survey of
multi-objective scheduling problems is given by T’kindt & Billaut (2001). A multi-objective
PSO algorithm has been proposed for minimizing weighted sum of makespan and
maximum earliness (Prabhaharan et al. 2005). A Pareto archived simulated annealing
algorithm for multi-objective scheduling has been proposed (Suresh & Mohanasundaram,
2004). Hisao Ishibuchi et al. (2003) proposed a modified multi-objective genetic local search
algorithm (MMOGLS) for multi-objective FSP. They showed that the performance of the
evolutionary multi-objective optimization algorithm can be improved by hybridization with
local search. They apply multi-objective GA for PFSP and the results are compared with
results published in the literature. Pasupathy et al. (2005) proposed a pareto-ranking based
multi-objective GA called Pareto genetic algorithm with local search (PGA-ACS) algorithm
for multi-objective FSP with an objective of minimizing the makespan and total flowtime.
Loukil et al. (2005) proposed multi-objective simulated annealing algorithm to tackle the
multi-objective production scheduling problems.
Pareto dominance: Among a set of schedules P , a schedule Px1 ∈ is said to dominate the

other schedule Px2 ∈ , denoted as ()21 xx φ , if both the following conditions are true.

(i) The schedule Px1 ∈ is no worse than Px2 ∈ in all objectives.

(ii) The schedule Px1 ∈ is strictly better than Px2 ∈ in at least one objective.

When both the conditions are satisfied, 2x is called as a dominated schedule and 1x a non-
dominated schedule. If any of the above condition is violated, the schedule 1x does not
dominate the schedule 2x . Among a set of schedules P , the non-dominated set 'P are those
that are not dominated by any member of the set (Deb, 2003).
Non-dominated front: The set of all non-dominated schedules.
Pareto optimal set: When the set P is the entire search space X , the resulting non-
dominated set is called the Pareto optimal set.
The primary objective is to find a set of non-dominated fronts for the FSPs with the
consideration of performance measures.

Particle Swarm Optimization

414

5.2 Proposed Multi-objective Discrete PSO Algorithm
The discrete PSO algorithm proposed for single objective FSP has been suitably modified to
generate non-dominated solution set considering three performance measures
simultaneously. Before presenting the proposed algorithm, the non-dominated sorting
procedure, Pareto search procedure and the parameters considered are discussed below.
Non- Domination Sorting: Non-domination measures are used to find non-dominated set of
solutions. The following procedure is used to generate non-dominated particle or solution
set from the population of particles. Consider a swarm consisting of N solutions (particles).
Step 0: Begin with 1ij;1i +== , and repeat steps 1 and 2.
Step 1: Compare solutions ix and jx for domination using the two conditions mentioned.
Step 2: If jx is dominated by ix , mark jx as ‘dominated,’ increment j , and go to step 1.
Otherwise mark ix as dominated, increment i , set 1ij += and go to step 1.
All solutions that are not marked ‘dominated’ forms a non-dominated solution set and these
are stored separately in a memory called archive.

Figure 6. Iterative search loop of the multi-objective discrete PSO algorithm

Pareto Search: In case of a single objective scheduling optimization, an optimal solution forms
the Global best)G(t

b . Under multi-objective scheduling, with multiple objectives, t
bG consist

of a set of non-dominated solutions. Once the swarm is initialized,)ot(Gb = is obtained after
non-dominated sorting of the particles. During the subsequent iterations, position and velocity
update of the particles are carried out using local best and global best. It is to be noted that one
solution is randomly chosen from the archive as Global best set. During every iteration, non-
dominated solution set is updated. This non-dominated solution set is added with the Archive
and the combined set is sorted for non-dominance. Dominated solutions within the combined
set are removed and the remaining non-dominated solutions forms)1t(Gb = . This procedure
is repeated to guide the non-dominated search process towards the Pareto region. Initially, a
set of particles are generated randomly and evaluated. Then the non-dominated sorting of
particles is done. Within the swarm, the non-dominated solution set i.e. t

bG is identified and
they are stored in an archive. Then the positions and velocities of the particles are updated
iteratively. These current sets of non-dominated solutions are combined with the archive

Initialize the parameters
Generate the swarm and velocity
t = 0: // iteration counter
Evaluate all the particles
Perform non-dominated sorting to identify t

bG
Open Archive to store t

bG

Do {

Update position;
1tt +=

Evaluate
Do non-dominated sorting to identify t

bG
Archive update
Update velocity

} while)tt(max< : ;100tmax =
Output t

bG

Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling

415

solutions. Non-dominated sorting of archive is done to identify the archive survival members.
This process is called Archive update. During this, all dominated members of the combined set
are removed. This procedure is repeated to guide the non-dominated search process towards
generating a solution front close to the Pareto region. After the termination criterion is met, the
solution set stored in the archive forms the result. The iterative improvement process of multi-
objective PSO algorithm is presented in Figure 6.

5.3 Performance of Multi-objective Discrete PSO Algorithm
In this section, the performance measures namely minimization of makespan, total flowtime
and completion time variance are considered simultaneously. It is to be noted that PSO
algorithm has been very rarely studied by researchers for solving FSPs with multi-objective
requirements.
Parameter Selection: Using the proposed algorithm, experiments are conducted to redesign
the algorithm with appropriate parameter settings. Parameters were identified by trial and
error approach for the better performance. The swarm size is taken as 80. The values of
acceleration constants are fixed by trial and error as 2C;1C 21 == and 2C3 = . The values of
velocity coefficients 21 U,U and 3U are generated randomly between 0 and 1. Termination
criterion is taken as 100 iterations. The benchmark instances of Taillard (1993) form a set of 120
problems of various sizes, having 20, 50, 100, 200 and 500 jobs and 5, 10 or 20 machines have
been taken and solved. When the iterative search process is continued beyond 100 iterations,
solution quality is expected to improve further and the non-dominated front will converge
towards the Pareto front. Some samples of non-dominated solution sets obtained during 1st,
50th and 100th iterations of selected benchmark FSPs are presented in Table 6. to Table 10.

1st Iteration 50th Iteration 100th Iteration
maxC ∑F TV maxC ∑F TV maxC ∑F TV

2372 37335 143185.03 2418 37282 163238.72 2380 37749 121770.54
2385 37379 134831.95 2450 37645 139131.23 2395 37465 130522.04
2410 36900 148013.59 2451 38181 137003.64 2458 37187 210477.03
2412 37674 129799.71 2495 36838 186985.58 2465 37341 187537.33
2412 36970 138733.95 2518 39668 127576.64 2488 36988 148466.05
2414 36786 157977.52 2544 36566 258462.42 2493 36787 244247.03
2425 36842 155318.20 2550 36352 180610.66 2518 36639 213526.66
2432 36071 225477.25 2633 37206 175815.11 2545 36177 189031.61
2437 36855 150071.23
2448 37604 125025.85
2451 36764 158552.28
2451 36600 172676.80
2464 37521 134748.27
2468 37875 124452.44
2480 39012 119837.64
2491 36170 154730.75
2523 38802 123177.59

Table 6. Non-dominated fronts obtained for 20 x 20 FSP (Problem ta025 of Taillard,1993)

Particle Swarm Optimization

416

1st Iteration 50th Iteration 100th Iteration
maxC ∑F TV maxC ∑F TV maxC ∑F TV

3840 127915 674615.63 4168 138549 801359.25 4192 143728 688058.06
3923 132364 655699.19 4170 139913 794893.25 4218 142073 835741.13
3979 130656 669600.50 4181 140250 769993.81 4226 136757 870648.81
3979 132435 633633.38 4188 138913 756248.50 4241 140962 788543.19
3982 132026 666358.94 4243 137007 882535.81 4245 138443 845496.63
4018 136354 604771.06 4254 141017 750998.31 4266 137938 828836.88
4023 132426 646723.94 4284 136183 929310.25 4298 137356 866164.31
4034 135781 631409.19 4290 137714 833303.44 4324 143038 776172.63
4058 131370 652795.69 4295 135927 845500.88 4329 143586 760850.94
4081 137607 586079.44 4319 142649 731565.19 4334 141675 780154.75
4084 136148 601373.06 4320 140119 747898.00 4343 136398 868004.75

Table 7. Non-dominated fronts obtained for 50 x 20 FSP (Problem ta055 of Taillard,1993)

1st Iteration 50th Iteration 100th Iteration
maxC ∑F TV maxC ∑F TV maxC ∑F TV

6719 414626 2332780.00 7079 442243 2714971.00 6977 429237 2643600.00
6736 407661 2339133.25 7122 431015 2619110.50 7187 429079 2992237.75
6754 407217 2426269.50 7125 430238 2888681.25 7222 423655 3181877.50
6759 414920 2322475.00 7279 427670 3036344.25 7266 427705 3032460.25
6772 421227 2319961.50 7307 426737 3014873.00 7287 426588 3061585.25
6776 420444 2215965.00
6780 406735 2308902.00
6785 417764 2299484.50
6804 417373 2165440.25
6934 402802 2477583.00

Table 8. Non-dominated fronts obtained for 100 x 20 FSP (Problem ta085 of Taillard,1993)

1st Iteration 50th Iteration 100th Iteration
maxC ∑F TV maxC ∑F TV maxC ∑F TV

11883 1341992 8681969.00 12169 1370395 8968974.00 12213 1382492 9226709.00
11922 1378165 8301979.00 12246 1418388 8839896.00
11935 1361242 8654574.00 12304 1390924 9191086.00
11938 1365058 8581394.00 12361 1380781 9530417.00
11964 1363602 8492216.00 12445 1379004 9589141.00
11995 1355612 8551758.00
12020 1371423 8237680.50
12051 1369441 8470111.00
12115 1354810 8405068.00

Table 9. Non-dominated fronts obtained for 200 x 20 FSP (Problem ta105 of Taillard,1993)

Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling

417

1st Iteration 50th Iteration 100th Iteration
maxC ∑F TV maxC ∑F TV maxC ∑F TV

27361 7380460 53524660.00 27802 7498389 54440864.00 27612 7421436 53180528.00
27417 7405289 51892856.00 27811 7402468 53268448.00 27765 7458248 53042776.00
27448 7419382 51504108.00 27999 7543786 53059836.00 27870 7440681 53140668.00
27465 7394286 52016468.00 28091 7529455 52754652.00 27891 7374759 53306856.00
27534 7392887 51930096.00
27593 7458730 51066888.00
27603 7373445 51681608.00
27638 7439401 51390116.00
27680 7445450 51262332.00
27700 7418177 51122680.00
27729 7492150 51039416.00

Table 10. Non-dominated fronts obtained for 500 x 20 FSP (Problem ta115 of Taillard,1993)
Normalized values of the performance measures are plotted for better visualization. Some
samples of non-dominated front obtained during 1st, 50th and 100th iterations of selected
benchmark FSPs are presented in Fig. 7. to Fig. 11.

6. Conclusion
Literature survey indicates that very few authors have studied the applications of multi-
objective scheduling in flowshop scheduling using particle swarm optimization algorithm is
scarce. This Chapter presents a discrete PSO algorithm to solve FSPs. This work has been
conducted in two phases. In the first phase, a discrete PSO is proposed to solve the single-
objective FSPs. In the second phase, a multi-objective discrete PSO algorithm is proposed to
solve the FSPs with three objectives. The performance of the proposed single-objective
discrete PSO is tested by solving a large set of benchmark FSPs. The quality measure namely
“Average Relative Percent Deviation” (RPD) is used to compare the solution quality
obtained with the results available in the literature. It shows that the proposed discrete PSO
algorithm performs better in terms of quality of results. Using the proposed algorithm,
experiments are conducted to redesign the algorithm with appropriate parameter settings.
The RPD for each set of instances are also shown in an efficient way. The parameters
selected for solving the problems are holds good. The proposed multi-objective discrete PSO
algorithm performs better in terms of yielding more number of non-dominated solutions
close to Pareto front during the search. It is seen that, when the number of iterations is more,
the non-dominated solution set generated is close to the Pareto front.

Particle Swarm Optimization

418

2300
2400

2500
2600

2700

2400

2500

2600

2700
2000

3000

4000

5000

6000

MakespanTotal flow time

C
om

pl
et

io
n

tim
e

va
ria

nc
e

First Iteration
50 Iterations
100 Iterations

Figure 7. Non-dominated solution set obtained for 20 x 20 FSP (Problem ta025 of
Taillard,1993)

3800
4000

4200
4400

4600

3800

4000

4200
4400

4600
3000

4000

5000

6000

7000

8000

MakespanTotal flow time

C
om

pl
et

io
n

tim
e

va
ria

nc
e

First Iteration
50 Iterations
100 Iterations

Figure 8. Non-dominated solution set obtained for 50 x 20 FSP (Problem ta055 of
Taillard,1993)

6600
6800

7000
7200

7400

6600

6800

7000
7200

7400
6000

7000

8000

9000

10000

MakespanTotal flow time

C
om

pl
et

io
n

tim
e

va
ria

nc
e

First Iteration
50 Iterations
100 Iterations

Figure 9. Non-dominated solution set obtained for 100x20 FSP (Problem ta085 of
Taillard,1993)

Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling

419

1.18
1.2

1.22
1.24

1.26

x 104

1.18

1.2

1.22
1.24

1.26

x 104

1.15

1.2

1.25

1.3

1.35

1.4

x 104

MakespanTotal flow time

C
om

pl
et

io
n

tim
e

va
ria

nc
e

First Iteration
50 Iterations
100 Iterations

Figure 10.Non-dominated solution set obtained for 200x20 FSP (Problem ta105 of
Taillard,1993)

2.7

2.75

2.8

2.85

x 104

2.74

2.76

2.78
2.8

2.82

x 104

2.7

2.75

2.8

2.85

2.9

2.95

x 104

MakespanTotal flow time

C
om

pl
et

io
n

tim
e

va
ria

nc
e

First Iteration
50 Iterations
100 Iterations

Figure 11.Non-dominated solution set obtained for 500x20 FSP (Problem ta115 of
Taillard,1993)

7. References
Abido, M.A. (2002). Optimal power flow using particle swarm optimization. Electrical Power

and Energy Systems, Vol.24, 563-571
Bagchi, T.P. (1999). Multi-objective scheduling by Genetic Algorithms, Kluwer Academic

Publishers, Boston, Massachusetts
Baker, K.R. (1974). Introduction to Sequencing and Scheduling, John Wiley & Sons, New York
Brucker, P. (1998). Scheduling Algorithms, Springer-Verlag, Berlin
Campbell, H.G.; Dudek, R.A. & Smith, M.L. (1970). A heuristic algorithm for the n job, m

machine sequencing problem, Management Science, Vol.16, No: 10, B630-B637
Chan, F.T.S.; Wong, T.C. & Chan, L.Y. (2005). A genetic algorithm based approach to

machine assignment problem, International Journal of Production Research, Vol.43,
No: 12, 2451-2472

Particle Swarm Optimization

420

Chandrasekaran, S.; Ponnambalam, S.G.; Suresh, R.K. & Vijayakumar N. (2006). An
Application of Particle Swarm Optimization Algorithm to Permutation Flowshop
Scheduling Problems to Minimize Makespan, Total Flowtime and Completion
Time Variance, Proceedings of the IEEE International Conference on Automation Science
and Engineering, 2006 (CASE '06.), pp-513-518, ISBN: 1-4244-0311-1, Shanghai,
China,

Chandrasekharan Rajendran. & Hans Ziegler. (2005). Two Ant-colony algorithms for
minimizing total flowtime in permutation flowshops, Computers & Industrial
engineering, Vol.48, 789-797

Christian Blum. & Andrea Roli. (2003). Metaheuristics in Combinatorial Optimization:
Overview and Conceptual Comparison. ACM Computing Surveys, Vol. 35, No. 3,
268-309

Dannenbring, D.G. (1977). An evaluation of flowshop sequencing heuristics, Management
Science, Vol.23, No: 11, 1174-1182

Dudek, R.A.; Panwalkar, S.S. & Smith, M.L. (1992). The lessons of flowshop scheduling
research, Operations Research, Vol.40, No: 1, 7-13

Eberhart, R.C. & Hu, X. (1999). Human tremor analysis using particle swarm optimization.
Proceedings of the Congress on Evolutionary Computation, pp-1927-1930, IEEE Service
Center, Washington, DC, Piscataway, NJ

Eberhart, R.C. & Kennedy J. (1995). A New Optimizer Using Particles Swarm Theory,
Proceedings of the Sixth International Symposium on Micro Machine and Human Science,
pp-39-43, IEEE Service Center, Nagoya, Japan

Eberhart, R.C. & Shi, Y. (2001). Particle swarm optimization: developments, applications and
resources, Proceedings of IEEE Congress on Evolutionary Computation 2001, Seoul,
Korea

Faith Tasgetiren, S.; Mehmet Sevkli.; Yen-Chia Liang. & Gunes Gencyilmaz. (2004). Particle
swarm optimization algorithm for single machine total weighted tardiness
problem, IEEE Transaction on Power and Energy Systems, 1412-1419

Framinan, J.M. & Leisten, R. (2003). An efficient constructive heuristic for flowtime
minimization in permutation flowshops, Omega, Vol.31, 311-317

French, S. (1982) Sequencing and Scheduling: An introduction to the mathematics of the jobshop,
Ellis Horword Limited, Chichester, England

Gowrishankar, K.; Rajendran, C. & Srinivasan, G. (2001). Flowshop scheduling algorithms
for minimizing the completion time variance and the sum of squares of completion
time deviation from the common due date, European Journal of Operational Research,
vol.132, No: 31, 643-665

Ignall, E. & Scharge, L. (1965). Application of the branch and bound technique to some
flowshop-scheduling problems, Operations Research, Vol.13, 400-412

Ishibuchi, H.; Yoshida, T. & Murata, T. (2003). Balance between genetic search and local
search in memetic algorithms for multi-objective permutation flowshop scheduling,
IEEE Transaction on Evolutionary Computation, Vol.7 No.2, 204-223

Johnson, S.M. (1954). Optimal two-stage and three-stage production schedules with setup
times included, Naval Research Logistics Quarterly, Vol.1 61-68

Kalyanmoy Deb. (2003). Multi-objective Optimization Using Evolutionary Algorithms, John
Wiley & Sons, First Edition.

Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling

421

Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization, Proceedings of IEEE
International Conference on Neural Networks-IV, pp-1942-1948, Piscataway, NJ: IEEE
service center, Perth, Australia

Kennedy, J.; Eberhart, R. & Shi, Y. (2001). Swarm Intelligence, Morgan Kaufmann, San
Mateo,CA,USA

Liu, J. & Reeves, C.R. (2001). Constructive and composite heuristic solutions to the
∑ iC//P scheduling problem, European Journal of Operational Research., Vol.132,

439-452
Lixin Tang. & Jiyin Liu. (2002). A modified genetic algorithm for the flowshop sequencing

problem to minimize mean flowtime, Journal of Intelligent Manufacturing, Vol.13, 61-
67

Loukil, T.; Teghem, J. & Tuyttens, D. (2005). Solving multi-objective production scheduling
problems using metaheuristics, European Jour. of Operational Research, Vol.161, 42-61

Merkle, D. & Middendorf, M. (2000). An ant algorithm with new pheromone evaluation rule
for total tardiness problems, Proceedings of the Evolutionary Workshops 2000, pp-287-
296, vol.1803, Lecture Notes in Computer Science, Springer

Moccellin, J.V. & Nagano, M.S. (1998). Evaluating the performance of tabu search
procedures for flowshop sequencing, Journal of the Operational Research Society,
Vol.49, 1296-1302

Nawaz, M.; Enscore Jr, E.E. & Ham, I. (1983). A Heuristic algorithm for the m-machine, n-job
scquencing problem, Omega, Vol.11, 91-98

Ogbu, F.A. & Smith, D.K. (1990). The application of the simulated annealing algorithm to the
solution of the maxC/m/n flowshop problem, Computers and Operations Research,
Vol.17, No: 3, 243-253

Osman, I.H. & Laporte, G. (1996). Metaheuristics: A bibliography. Operations Research,
Vol.63, 513–623

Palmer, D. (1965). Sequencing jobs through a multi-stage process in the minimum total time-
a quick method of obtaining a near optimum, Opn. Research, Vol.16, No: 1, 101-107

Pasupathy, T.; Chandrasekharan Rajendran. & Suresh, R.K. (2006). A multi-objective genetic
algorithm for scheduling in flowshops to minimize makespan and total flowtime,
International Journal of Advanced Manufacturing Technology, Springer-Verlag London
Ltd, Vol.27, 804-815

Pinedo, M. (2002). Scheduling: Theory, Algorithms and Systems, Second edition,. Prentice-Hall,
Englewood Cliffs, New Jersey

Prabhaharan, G.; Shahul Hamid Khan, B.; Asokan, P. & Thiyagu M. (2005). A Particle swarm
optimization algorithm for permutation flowshop scheduling with regular and
non-regular measures, International Journal of Applied Management and Technology,
Vol.3, No: 1, 171-182

Rajendran, C., (1993). Heuristic algorithm for scheduling in a flowshop to minimize total
flowtime, International Journal of Production Economics, Vol.29, 65-73

Rameshkumar, K.; Suresh, R.K. & Mohanasundaram, K.M. (2005). Discrete particle swarm
optimization (DPSO) algorithm for permutation flowshop scheduling to minimize
makespan, Lecture Notes in Comp. Science, Springer Verlag-GMBH.0302-9743.
Vol.3612

Rinnooy Kan, A.H.G. (1976). Machine Scheduling Problems: Classification, Complexity and
Computations, Nijhoff, The Hague

Particle Swarm Optimization

422

Ruben Ruiz. & Concepcion Maroto. (2005). A comprehensive review and evaluation of
permutation flowshop heuristics, European Journal of operational Research, Vol.165,
479-494

Ruben Ruiz.; Concepcion Maroto. & Javier Alcaraz. (2004). Two new robust genetic
algorithms for the flowshop scheduling problem, OMEGA, 2-16

Sensarma, P. S. ; Rahmani, M. & Carvalho, A. (2002). A comprehensive method for optimal
expansion planning using particle swarm optimization, IEEE Power Engineering
Society Winter Meeting, Vol. 2, .1317-1322

Sridhar, J. & Rajendran, C. (1996). Scheduling in flowshop and cellular manufacturing
system with multiple objectives - A genetic algorithmic approach, Production
Planning and Control, Vol.74, 374-382

Stuetzle, T. (1998). An ant approach for the flowshop problem, Proceedings of the 6th European
Congress on Intelligent Techniques and Soft Computing (EUFIT ’98), pp-1560-1564,
Vol.3, Verlag Mainz, Aachen, Germany

Suresh, R.K, & Mohanasundaram, K.M, (2004). Pareto archived simulated annealing for
permutation flowshop scheduling with multiple objectives, Proceedings of the IEEE
Conference on Cybermatics and Intelligent Systems, pp-1-3, Singapore

Taillard, E. (1993). Benchmarks for basic scheduling problem, European Journal of Operational
Research, Vol.64, 278-285

Tandon, V. (2000). Closing the gap between CAD/CAM and optimized CNC end milling.
Master’s thesis, Purdue School of Engineering and Technology, Indiana University
,Purdue University, Indianapolis.

Yoshida, H.; Kawata, K.; Fukuyama, Y. & Nakanishi, Y. (1999). A particle swarm
optimization for reactive power and voltage control considering voltage stability.
Proceedings of the International Conference on Intelligent System Application to Power
Systems, pp-117-121, Rio de Janeiro, Brazil

Yuhui Shi. (2004). Particle Swarm Optimization, IEEE Neural Networks Society, 8-13
Yuvraj Gajpal. & Chandrasekharan Rajendran. (2006). An ant-colony optimization algorithm

for minimizing the completion time variance of jobs in flowshops, International
Journal of Production Economics, Vol. 101, No: 2, 259-272

26

A Radial Basis Function Neural Network with
Adaptive Structure via Particle Swarm

Optimization
Tsung-Ying Sun, Chan-Cheng Liu, Chun-Ling Lin, Sheng-Ta Hsieh and

Cheng-Sen Huang
National Dong Hwa University

Taiwan, R.O.C.

1. Introduction
Radial Basis Function neural network (RBFNN) is a combination of learning vector
quantizer LVQ-I and gradient descent. RBFNN is first proposed by (Broomhead & Lowe,
1988), and their interpolation and generalization properties are thoroughly investigated in
(Lowe, 1989), (Freeman & Saad, 1995). Since the mid-1980s, RBFNN has been used to apply
on many applications, such as pattern classification, system identification, nonlinear
function approximation, adaptive control, speech recognition, and time-series prediction,
and so on. In contrast to the well-known Multilayer Perceptron (MLP) Networks, the RBF
network utilizes a radial construction mechanism. MLP were trained by the error Back
Propagation (BP) algorithm, since the RBFNN has a faster training procedure substantially
and adopts typical two-stage training scheme, it can avoid solution to fall into local optima.
A key point of RBFNN is to decide a proper number of hidden nodes. If the hidden node
number of RBFNN is too small, the generated output vectors may be in low accuracy. On
the contrary, it with too large number of hidden nodes may cause over-fitting for the input
data, and influences global generalization performance. In conventional RBF training
approach, the number of hidden node is usually decided according to the statistic properties
of input data, then determine the centers and spread width for each hidden nodes by means
of k-means clustering algorithm (Moddy & Darken, 1989). The drawback of this approach is
that the network performance is depended on the pre-selected number of hidden nodes. If
an unsuitable number is chosen, RBFNN may present a poor global generalization
capability, as slow training speed, and requirement for large memory space. To solve this
problem, the self-growing RBF techniques were proposed in (Karayiannis & Mi, 1997),
(Zheng et al, 1999). However, the predefined parameters and local searching on solution
space cause the inaccuracy of approximation from a sub-solution.
Evolutionary computation is a globally optimization technique, where the aim is to improve
the ability of individual to survive. Among that, Genetic Algorithm (GA) is a parallel
searching technique that mimics natural genetics and the evolutionary process. In (Back et
al, 1997), they employed GA to determine the RBFNN structure so the optimal number and
distribution of RBF hidden nodes can be obtained automatically. A common approach is
applied GA to search for the optimal network structure among several candidates

Particle Swarm Optimization

424

constructed initially by the unsupervised clustering method (Chen et al, 1999). However, its
results depend on the pre-selected RBFNN structures which may not be appropriate.
Another method is to fix the number of RBF nodes and adopted GA to search optimal
network parameters, for example, centers and spread widths for RBF hidden nodes, and the
weights connected to the output layer (Aiguo & Jiren, 1998). This method requires heavy
computational cost while the number of RBF hidden nodes is too large, the dimension of
each chromosome has to extend to corresponding length. It will spend too much time for
training. GA based self-growing RBF network training method was proposed by (Yunfei &
Zhang, 2002) to overcome the mentioned drawbacks. It searches single parameter, the
cluster distance factor, which can avoid organizing a large dimension in a chromosome. It
performs a fast training speed and well convergences while the GA operators (reproduction,
recombination, and mutation, etc.) and fitness evaluation is properly applied. However, GA-
based approaches are poorer in several aspects, as premature convergence and falling into
local optima, than new evolutionary computation techniques.
The particle swarm optimization (PSO) is a novel and popular search algorithm based on
the simulation of the social behavior of birds within a flock in evolutionary computation. As
opposed to (Yunfei & Zhang, 2002), this paper proposes a PSO based RBFNN self-structure
algorithm to overcome the drawbacks that mentioned above. PSO is a swarm intelligence
method that roughly models the social behavior of swarms and has been proved to be
efficient on many optimization problems in science and engineering. The social behavior of
PSO allows particles to stochastically return toward previously successful regions in the
search space. We propose a PSO-based approach for searching the optimal cluster distance
factor to provide a suitable criterion on self-structure RBFNN training. The results of
simulation experiments exhibit the rapid convergence and more better optimal solutions
than other related approaches. Furthermore, it yields efficient training for constructing
RBFNN.
The paper is organized as follows. Section II describes structure and the training of the RBF
network. Section III describes the principle and procedures of the self-structure RBF
algorithm. Section IV presents the application of a PSO to search the cluster distance factor.
Section V evaluates our method for modeling nonlinear function and predicting time series
by RBF Network and comparing the results with the GA-RBF Network and K-means
methods. Section VI is the conclusion.

2. Radial Basis Function Neural Network
Generally, a RBFNN consists of three layers: the input layer, the RBF layer (hidden layer)
and the output layer. The inputs of hidden layer are the linear combinitions of scalar
weights and the input vector []T

nxxx ,,, 21 L=x , where the scalar weights are usually
assigned unity values. Thus the whole input vector appears to each neuron in the hidden
layer. The incoming vectors are mapping by the radial basis functions in each hidden node.
The output layer yields a vector []myyy ,,, 21 L=y for m outputs by linear combination of
the outputs of the hidden nodes to produce the final output. Fig. 1 presents the structure of a
single output RBF network; the network output can be obtained by

 ∑
=

==
k

i
iiwf

1
)()(xxy φ (1)

A Radial Basis Function Neural Network with Adaptive Structure
via Particle Swarm Optimization

425

where f(x) is the final output, ()⋅iφ denotes the radial basis function of the i-th hidden node,

iw denotes the hidden-to-output weight corresponding to the i-th hidden node, and k is the
total number of hidden nodes.

Figure 1. The structure of a RBFNN

A radial basis function is a multidimensional function that describes the distance between a
given input vector and a pre-defined center vector. There are different types of radial basis
function. A normalized Gaussian function usually used as the radial basis function, that is

 ()
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−= 2

2

2
exp

i

i
i σ

μ
φ

x
x (2)

where
iμ and iσ denote the center and spread width of the i-th node, respectively.

Generally, the RBFNN training can be divided into two stages:
1. Determine the parameters of radial basis functions, i.e., Gaussian center and spread

width. In general, k-means clustering method was commonly used here.
2. Determine the output weight w by supervised learning method. Usually Least-Mean-

Square (LMS) or Recursive Least-Square (RLS) was used.
The first stage is very crucial, since the number and location of centers in the hidden layer
will influence the performance of the RBFNN directly. In the next section, the principle and
procedure of self-structure RBF algorithm will be described.

3. Self-structure RBFNN
The hidden layer of an RBFNN acts as a receptive field operating on the input data space.
The number of hidden node based on the distribution of the training data set. The proposed
approach performs this task by defining a cluster distance factor, ε , which is the maximum
distance between an input sample and a specific RBF node center and allowing the number
of basis function to increase iteratively according to this factor.
The rationale of this learning is described as follows: the hidden layer starts with no hidden
node and ε is pre-determined by PSO to control the clusters production. The first RBF node
center 1μ is set by choosing one data, x1, randomly from NT input data sample. The value of
Euclidean 2-norm distance between 1μ and the next input sample, x2, is compared with ε .

Particle Swarm Optimization

426

If it is greater, a new cluster whose center location is x2 is created as 2μ ; otherwise, the

elements of 1μ are updated as

 () () () Nix iiii ,,2,1 ,oldoldnew 1211 L=−+= μαμμ (3)

where i1μ and x2i are the i-th component of vectors 1μ and x2, respectively, ⋅ denotes the

Euclidean distance and 10 << α is the updating ratio. Thus, this procedure is carried out on
the remaining training samples. The number of clusters grows or RBF nodes center self-
adjust continuously until all of the samples are processed. The proposed self-structure
RBFNN algorithm can be summarized as follows:
1. Assuming that there are p clusters with their centers,

pμμ ,,1 L , are generated from

previous iterations. Taking a new input sample xn to calculate the distances with the
each clusters inx μ− , where pi ,,1L= .

2. The cluster whose center qμ is ()pix in
i

,...,1 where,minarg =− μ
μ

 will be focused.

3. Comparing qnx μ− with the distance criterion parameter, ε . If it is greater than ε ,

then a new cluster center, 1+pμ , is created at the position of the sample point, xn.

Otherwise the elements of pμ are updated by (3).

4. Repeating the above steps until all of the samples are processed.
For L clusters, a global spread width σ can be derived by the average of Euclidean distance
between each cluster center and its nearest neighbor as

 ji μμ −=σ (4)

where ⋅ denotes the expression for the average value for Li ≤≤1 , Lj ≤≤1 and ji ≠ .
In (Yunfei & Zhang, 2002), the cluster distance factor,),0(∞∈ε , is obviously a critical
factor to determine input space partitioning and obtains the hidden node number and
locations in RBFNN. An unduly large value of ε does not reflect an enough number of
cluster so it may cause a poor-generalized precision solution. On the contrary, an unduly
small value of ε will create redundant clusters; therefore, it may cause overlap between
RBF neurons; moreover, it may lead to poor accuracy and slow convergence either. This
paper proposes a PSO-based searching approach to determine the proper value of ε ;
further, the optimal structure of RBF network can be obtained. And, an objective function to
evaluate the effectiveness of applying PSO is proposed. Following section will describe how
to employ PSO technique to search a potential optimal value ε .

4. PSO-based Self-structure RBFNN
The PSO is a population based optimization technique that was proposed by Kennedy and
Eberhart in 1995 (Eberhart & Kennedy, 1995), which the population is referred to as a swarm.
The particles express the ability of fast convergence to local and/or global optimal
position(s) over a small number of generations.

A Radial Basis Function Neural Network with Adaptive Structure
via Particle Swarm Optimization

427

4.1 Evolution of PSO
A swarm of PSO consists of a number of particles. Each particle represents a potential
solution of the optimization task. All of the particles iteratively discover the probable
solution. Each particle generates a position according to the new velocity and the previous
positions of the particle, and it is compared with the best position which is generated by
previous particles according to the cost function. The best solution is then kept; i.e., each
particle accelerates in the directions of not only the local best solution but also the global
best position. If a particle discovers a new probable solution, other particles will move closer
to it so as to explore the region more completely in the process (Gudise &
Venayagamoorthy, 2003).
Let N denotes the swarm numbers. In general, there are three attributes, current position aij,
current velocity vij and past best position Pbij, for particles in the search space to present
their features. Each particle in the swarm is iteratively updated according to the
aforementioned attributes assuming that the objective function f is to be minimized so that
the dimension consists of n particles and the new velocity of every particle is updated by (5).

)]()()[(

)]()()[()()1(

,22

,11

tatGbtrc

tatPbtrctwvtv

ijii

ijijiijij

−+

−+=+
 (5)

where vij is the velocity of the j-th particle of the i-th swarm for all Ni ...1∈ , w is the inertia
weight of velocity, c1 and c2 denote the acceleration coefficients, r1 and r2 are two uniform
random values falling in the range between (0, 1), and t is the number of generations. The
new position of the i-th particle is calculated as follows:

)1()()1(++=+ tvtata ijijij (6)

The past best solution of each particle is updated by:

 () () ()() ()()
()⎩

⎨
⎧

+
≥+

=+
otherwise,1

1 if,
1

ta
tPbftaftPb

tPb
i

ii
i

i (7)

The global best solution Gb will be found from all of particles during previous three steps
are defined as:

 nitPbftGb iP ib
≤≤+=+ 1)),1((min arg)1((8)

4.2 Disturbance
Since initial particles are generated by randomly, they may not uniform enough to distribute
over the solution space. Therefore, it may trap particles into local optimal solution
inevitably. To avoid solution falling into the local minimal and jumping it out to find the
global minimal, this paper added a mutation-like disturbance strategy into the PSO process
(Sun et al, 2005). The disturbance mechanism randomly activates under a disturbance
probability. While the disturbance mechanism is active, the selected particle will be
randomly placed at a new position (ε value in this paper), then this particle will keep
following the PSO process to search a better solution. The other non-selected particle will
keep following the PSO iteration as usual and trying to find a new solution.

Particle Swarm Optimization

428

4.3 Objective function
For searching a suitable ε value for RBFNN training, a function of root mean squared error
(RMSE) which evaluates discrepancies between the sampling data output yn and the
predictive output ∗

ny is applied. Thus, the objective function for NT sample is defined as

 () ()
() ()()

T

N

k
nn

n N

kyky
yyf

T

∑
=

−
== 1

*

* RMSE ,ε (9)

where ()kyn
∗

 is the predictive output of the k-th sample data which is obtained by ε value
during training.
In the section II, the relationship between self-structure RBF network training and cluster
distance factor ε was discussed. If (9) can be reduced to a sufficiently small value, a suitable
value of ε could be obtained to train the structure of RBFNN. Thus, the predictive RBFNN
output would be closed to the sampling data output.

4.4 RBFNN structure determination by PSO
In this paper, our goal is to minimize the value of ()∗

nyf ,ε . The objective function minimized
by PSO and found potential optimal solution finally. Since we only search one parameter by
PSO (i.e., the cluster distance factor ε), the swarm number i=1, and defined the particle
number as mj ≤≤1 . In the initial state of PSO, all the particles’ positions aj (i.e., initial
cluster distance factor ε) were set as 0.02, vj were set as 0, and the Pbj and Gbj were
initialized by a random number generator in the range of [0, 1]. After particles moved by (6),
each particle will find a potential solution, the new past best position would be updated by
(7), and the global best position would be updated by (8). The particle would keep moving
to find a better solution until it reaches the goal or meets the termination condition (Lin et al,
2005). The pseudo code of our PSO-based cluster distance factor searching approach
presented in Fig. 2.

Figure 2. The pseudo code of PSO-based cluster distance factor searching

Create and initiate an N-dimension PSO: P
Repeat:

Execute PSO to update P by (5) and (6)
for each particle] ...1[mi ∈

 if *),(*),(nijnij yPbfyf <ε

then
ijijPb ε=

 if *),(*),(ninij yGbfyPbf <

then
iji PbGb =

endfor
Until Termination condition is met

A Radial Basis Function Neural Network with Adaptive Structure
via Particle Swarm Optimization

429

5. Simulations and Results
5.1 Setting of simulation

The six nonlinear functions with different complexities are tested here. These tested
functions are listed as follows:

Ex. Tested function Range

1
)1(

)12)(2(
2x
xxy

+
−−

=]12,8[−∈x

2
x

x
y

)sin(
=]10,10[−∈x

3 2/22 2

)21(1.1 xexxy −+−=]5,5[−∈x

4
2

)cos1()
2

sin(5.0 xxy +
+=]8.10,5.4[−∈x

5)
10
2sin()

5
2sin(xxy ππ +=]10,0[∈x

6)
5

2cos()
10

sin(xxy ππ +−=]10,10[−∈x

Table 1. The six tested nonlinear functions

In order to confirm the advantages of the proposed approach, the K-means algorithm
(Moddy & Darken, 1989) and GA-based self-growing RBFNN training algorithm (Yunfei &
Zhang, 2002) are also carries out in these tested functions. Due to (Yunfei & Zhang, 2002)
adopted Simple Genetic Algorithm (SGA) which using binary coding to train RBF structure
for saving computation time, but it will loose some accuracy compared to the real-valued,
i.e., this method may not present the optimal solution. So we implemented it with Real-
value Genetic Algorithm (RGA) to obtain accuracy results.
For every simulation, the training data set consists of 50 input-output data samples taken at
random, and the testing data set includes 75 samples different from the training data set. For
the definition of parameters in the proposed approach, w, c1 and c2 are given 0.12, 0.25 and
0.25 respectively, and the search range of ε is bounded between 0.2 and 1, the particle
number is 10. For the GA-based self-growing RBFNN training algorithm the search range of
ε in the input space is also in the range from 0.2 to 1, the crossover rate Pc is given 0.8, and
mutation rate Pm is given 0.01, the population size is 10. For the K-means method, the
optimal number of RBF neurons in the hidden layer is chosen to be 30 by experience.

5.2 Simulation results
After simulations, the RMSE of training data, RMSE of testing data, maximal error and
number of hidden node will be presented in tables for each case. In these tables, the three
involved algorithms are denotes as PSO-based, GA-based (Yunfei & Zhang, 2002) and K-
means (Moddy & Darken, 1989). Additionally, the real data and approximated data will be
shown in the same figure; meantime, the error from each approximation will be presented
by figures. There three sub-figures in each figure, the results from the left sub-figure to the

Particle Swarm Optimization

430

right sub-figure are generated by PSO-based approach, GA-based approach and K-means
approach, respectively.
Example 1.

 PSO-based GA-based K-means
RMSE for training data 0.0332 0.0584 0.1552
RMSE for testing data 0.0520 0.0786 0.1962

Maximal error 0.3852 0.2355 0.9508
Number of hidden node 33 29 30

Table 2. Comparison between the three approaches in example 1

Figure 3. Curves of RBFNN output and real data in example 1. (solid-line represents the real
data, dashed-line represents the output data)

Figure 4. The errors between the real data and approximations in example 1
Example 2.

 PSO-based GA-based K-means
RMSE for training data 0.0035 0.0046 0.0234
RMSE for testing data 0.0099 0.0113 0.0357

Maximal error 0.0460 0.0509 0.1006
Number of hidden node 28 28 30

Table 3. Comparison between the three approaches in example 2

A Radial Basis Function Neural Network with Adaptive Structure
via Particle Swarm Optimization

431

Figure 5. Curves of RBFNN output and real data in example 2. (solid-line represents the real
data, dashed-line represents the output data)

Figure 6. The errors between the real data and approximations in example 2
Example 3.

 PSO-based GA-based K-means
RMSE for training data 0.0056 0.0173 0.1271
RMSE for testing data 0.0057 0.0188 0.0803

Maximal error 0.0134 0.0432 0.2441
Number of hidden node 24 22 30

Table 4. Comparison between the three approaches in example 3

Figure 7. Curves of RBFNN output and real data in example 3. (solid-line represents the real
data, dashed-line represents the output data)

Particle Swarm Optimization

432

Figure 8. The errors between the real data and approximations in example 3
Example 4.

 PSO-based GA-based K-means
RMSE for training data 0.0079 0.0112 0.0337
RMSE for testing data 0.0192 0.0292 0.0740

Maximal error 0.1217 0.0939 0.1854
Number of hidden node 19 31 30

Table 5. Comparison between the three approaches in example 4

Figure 9. Curves of RBFNN output and real data in example 4. (solid-line represents the real
data, dashed-line represents the output data)

Figure 10. The errors between the real data and approximations in example 4

A Radial Basis Function Neural Network with Adaptive Structure
via Particle Swarm Optimization

433

Example 5.

 PSO-based GA-based K-means
RMSE for training data 0.0460 0.0519 0.0637
RMSE for testing data 0.0546 0.0564 0.0867

Maximal error 0.3056 0.3236 0.2208
Number of hidden node 20 21 30

Table 6. Comparison between the three approaches in example 5

Figure 11. Curves of RBFNN output and real data in example 5. (solid-line represents the
real data, dashed-line represents the output data)

Figure 12. The errors between the real data and approximations in example 5
Example 6.

 PSO-based GA-based K-means
RMSE for training data 0.0079 0.0092 0.0690
RMSE for testing data 0.0439 0.0509 0.0859

Maximal error 0.2159 0.2486 0.1855
Number of hidden node 29 27 30

Table 7. Comparison between the three approaches in example 6

Particle Swarm Optimization

434

Figure 13. Curves of RBFNN output and real data in example 6. (solid-line represents the
real data, dashed-line represents the output data)

Figure 14. The errors between the real data and approximations in example 6

5.3 Discussion
In the simulation results in tables, PSO-based approach has lower RMSE for training data
and testing data. It means that over fitting does not happen in the proposed approach. From
figures of the curves of RBFNN output and real data, the approximated curves by PSO-
based approach is closer to the real data than these by others. From figures of the
approximated errors, it could be shown that PSO-based approach results small error in most
of sample, whereas the K-means approach has largest error.
We know that RBFNN needs different number of hidden node and cluster radius for
different complexities. K-means approach usually performs a larger error because it is not
able to decide a suitable number of hidden node. Though GA-based approach decides a
suitable number of hidden node, its cluster radius is not good enough to classify whole data.
The proposed approach is able to find out the optimal cluster radius to further decide a
number of hidden node because PSO has better capacity of global searching than GA.

6. Conclusion
This paper has presented a novel approach for self-structure RBFNN. A very important step
for the RBFNN training is to decide a proper number of hidden node. If the number of
hidden node does not chosen properly, the RBFNN may present poor global generalization
capability, slow training speed, and the requirement of large memory space. Therefore, to

A Radial Basis Function Neural Network with Adaptive Structure
via Particle Swarm Optimization

435

decide a suitable cluster distance factor (ε) is the crucial condition for creating an optimal
self-structure RBFNN. This paper proposed a PSO-based approach for searching the optimal
ε ; further, RBFNN is able to determine the optimal number of hidden node automatically.
For proofing benefits of the proposed PSO-based approach, the simulations consisting of six
nonlinear system modeling were tested; meanwhile, GA-based approach and K-means
approach were also carried out for comparison. Simulation results show that the PSO-
RBFNN algorithm outperforms the GA-RBFNN and K-means methods by the minimal
training RMSE and the minimal testing RMSE.

7. References
Aiguo, S. & Jiren, L. (1998). Evolving Gaussian RBF network for nonlinear time series

modeling and prediction, IEEE Electronics Letters, Vol. 34 (12), pp. 1241-1243
Broomhead, D. S. & Lowe, D. (1988). Multivariable functional interpolation and adaptive

networks, Complex Systems, Vol. 2, pp. 321-355
Back, T.; Hammel, U. & Schwefel, H. P. (1997). Evolutionary computation: comments on the

history and current state, IEEE Trans. on Evolutionary Computation, Vol. 1, pp. 3-17
Chen, S.; Wu, Y. & Luk, B. L. (1999). Combined genetic algorithm optimization and

regularized orthogonal least squares learning for radial basis function networks,
IEEE Trans. on Neural Networks, Vol. 10 (5), pp. 1239-1243

Chen, S. (1995). Nonlinear time series modeling and prediction using Gaussian RBF
networks with enhances clustering and RLS learning, Electronics Letters, Vol. 31, No.
2, pp. 117-118

Eberhart, R. C. & Kennedy, J. (1995). A new optimizer using particle swarm theory,
Proceeding of 6th Int. Symp. Micro Machine and Human Science, pp. 39-43

Freeman, J. A. S. & Saad, D. (1995). Learning and generalization in radial basis function
networks, Neural Computation, Vo. 9 (7), pp. 1601-1622

Gudise, V. G. & Venayagamoorthy, G. K. (2003). Comparison of Particle Swarm
Optimization and Backpropagation as Training Algorithms for Neural Networks,
Proceeding of IEEE Swarm Intelligence Symposium, pp. 110-117

Karayiannis, N.B & Mi, G.W. (1997). Growing radial basis neural networks : merging
supervised and unsupervised learning with network growth techniques, IEEE
Trans. on Neural Networks, Vol. 8 (6), pp. 1492-1506

Lin, C. L.; Hsieh, S. T.; Sun, T. Y. & Liu, C. C. (2005). PSO-based learning rate adjustment for
blind source separation, Proceeding of International Symposium on Intelligent Signal
Processing and Communications Systems, pp. 181-184

Lowe, D. (1989). Adaptive radial basis function nonlinearities, and the problem of
generalization, Procedings of IEE International Conference on Artificial Neural Networks,
pp. 171-175

Moddy, Y. & Darken, C. J. (1989). Fast learning in network of locally tuned processing
unites, Neural computation, Vol.1, pp. 281-294

Song, A. & Lu, J. (1988). Evolving Gaussian RBF network for nonlinear time series modeling
and prediction, Electronics Letters, Vol. 34, No.12, pp. 1241-1243

Particle Swarm Optimization

436

Sun, T. Y.; Hsieh, S. T. & Lin, C. W. (2005). Particle Swarm Optimization Incorporated with
Disturbance for Improving the Efficiency of Macrocell Overlap Removal and
Placement, Proceeding of The 2005 International Conference on Artificial Intelligence, pp.
122-125

Yunfei, B. & Zhang, L. (2002). Genetic algorithm based self-growing training for RBF neural
Network, IEEE Neural Networks, Vol. 1, pp. 840-845

Zheng, N.; Zhang, Z.; Shi, G. & Qiao, Y. (1999). Self-creating and adaptive learning of RBF
networks: merging soft-completion clustering algorithm with network growth
technique, Proceeding of International Joint Conference on Neural Networks, Vol. 2, pp.
1131-1135

27

A Novel Binary Coding Particle Swarm
Optimization for Feeder Reconfiguration

Men-Shen Tsai and Wu-Chang Wu
National Taipei University of Technology

Taipei, Taiwan

1. Introduction
Power distribution systems are formed by many inter-connected feeders. Each feeder is
further partitioned into many load-zones by switches. These switches can be divided into
two categories: normally closed sectionalizing-switches and normally opened tie-switches.
During normal operation, the structure of distribution system must be maintained in radial
structure by properly adjusting the status of the switches. The distribution system can be
reconfigured by changing the status of these switches while maintaining the radial
structure. The feeder reconfiguration serves several purposes, for example, reducing power
losses, maintaining load balance and enhancing service reliability. The mean of a switch
operation plan is that by changing the status of sectionalizing-switches and tie-switches,
loads can be transferred from one feeder to an adjacent feeder to redistribute loads without
violating the operation limitations. However, great deals of switches exist on distribution
systems. The number of possible solutions for feeder reconfiguration is increased in
exponential order when the number of switches on distribution system increases. Thus
selecting the best switch operation plan from all feasible solutions can be considered as an
NP-Complete problem. Because the status of switches can be represented as ‘1‘ or ‘0’, the
problem of feeder reconfiguration can also be regarded as ‘1’ and ‘0’ permutation
combinatorial optimization problems.
Researchers studied the feeder reconfiguration problems using different methods in the past
decades. The results of these researches provide acceptable solutions for feeder
reconfiguration problems. Heuristic methods to minimize power losses and improve the
searching speed were proposed in (Baran & Wu, 1989). Soft computing approaches were
applied to the problem extensively as well, for example, neural network (Kim et al., 1993),
simulated annealing (SA) (Chang & Kuo, 1994), genetic algorithm (GA) (Nara et al., 1992;
Kitayama & Matsumoto, 1995) and evolutionary programming (EP) (Hsiao, 2004; Hsu &
Tsai, 2005). Algorithms based on concept of mimicking swarm intelligent are popular in
recent years. For instance, ant colony optimization (ACO) (Teng & Lui, 2003; Carpaneto &
Chicco, 2004; Khoa & Phan, 2006) and particle swarm optimization (PSO) (Chang & Lu,
2002) are the algorithms that can be applied to the field of optimization problems. These
algorithms are applied to the problems of power distribution system gradually.
This research will apply the concept of PSO algorithm that is a novel and suitable algorithm
for solving combinatorial optimization problems. Kennedy and Eberhart (Kennedy &

Particle Swarm Optimization

438

Eberhart, 1995; Shi & Eberhart, 1998) proposed PSO (typical PSO) in 1995. The PSO can be
treated as the branch of the evolutionary algorithms and it introduces the concept of swarm
intelligent. There are many similarities between PSO and Genetic Algorithm (GA). Both
algorithms produce an initial solution set randomly at first. Through iterations of the
evolution process, optimal solution can be obtained. The major difference between GA and
PSO is that PSO has no explicit selection, crossover and mutation operations (Eberhart &
Shi, 1998). Searching process in PSO is based on the previous best solution of a particle and
the best solution of the population so far to update particle’s information. That means the
particles will share the best information between each other and lead the particles moving
toward the target. Due to the searching mechanism designed in PSO, the probability of
falling into local solution for PSO algorithm can be reduced. Also, the concept of PSO is
simple and is easy to implement than GA. Thus, PSO can be a powerful algorithm to aid and
speed up the decision-making process for feeder reconfiguration problems to identify the
best switching plan.
As mentioned previously, feeder reconfiguration problems are non-linear discrete
optimization problems. However, the typical PSO is designed for continuous function
optimization problems; it is not designed for discrete function optimization problems.
Fortunately, Kennedy and Eberhart proposed a modified version of PSO called Binary
Particle Swarm Optimization (BPSO) that can be used to solve discrete function
optimization problems (Eberhart & Kennedy, 1997). Although BPSO can be applied to solve
the discrete optimization problems, there are still problems when BPSO is applied for feeder
reconfiguration problems. In feeder reconfiguration problems, there are a large number of
tie-switches. Randomly choosing the locations of these tie-switches will cause outages or
non-radial structure in distribution systems. In (Chang & Lu, 2002), BPSO is used to solve
the feeder reconfiguration problems and the method they proposed avoided the problem of
unsuitable numbers of tie-switches. The concept of (Chang & Lu, 2002) is based on BPSO
and the moving velocity of particle is defined in terms of probabilities. Instead of BPSO used
in (Chang & Lu, 2002), this research tries to construct a more feasible discrete PSO scheme
based on typical PSO for feeder reconfiguration. The method proposed in this research
modifies the operators of PSO’s formula based on the characteristics of both the status of
switches and the shift operator to construct the binary coding particle swarm optimization
for feeder reconfiguration. Minimizing total line losses and load balancing without violating
operation constraints and maintaining radial structure are the two objective functions in this
research. The simulations will be performed and the results are used to compare the
proposed method, the method proposed in (Chang & Lu, 2002) and BPSO to verify the
performance and effectiveness. A distribution system in Taiwan Power Company (TPC) is
used in this study to verify the stability and usefulness of the proposed algorithm.

2. Problem Statement
There are all kinds of loads on distribution systems and these loads distributed non-evenly
on the distribution feeders. The uneven load distribution on feeders may cause the
conductor overloading or transformer load unbalancing on distribution systems during
emergency operation. Fig. 1 is a simple 3-feeder distribution system. The ampacity of each
feeder is 300A. The total loads on each feeder are 105A, 250A and 200A respectively. This
configuration is considered as an unbalanced distribution system when the feeder loading is
concerned. The feeder reconfiguration can be performed by opening/closing of

A Novel Binary Coding Particle Swarm Optimization for Feeder Reconfiguration

439

sectionalizing-switches and tie-switches on distribution systems to reduce line losses or
increase the system reliability. Therefore, feeder reconfiguration can redistribute the loads
and is a common practice for the distribution system operators to avoid the problems of the
conductor/transformer overloading or unbalancing on distribution feeders or transformers.
Fig. 2 is the result of feeder reconfiguration from Fig. 1. The loads on each feeder are 185A,
190A and 180A respectively after reconfiguration. As a result, the system is operated in a
more balanced way. However, some constraints should be considered during feeder
reconfiguration. These constraints include: the radial structure of distribution system must
be maintained, all zones must be served, feeder capacity should not be exceeded and feeder
voltage profile should be maintained. As mentioned earlier, the feeder reconfiguration
problems can be treated as ‘1’ & ‘0’ permutation combinatorial optimization problems. ‘1’
represents a normally closed switch; while ‘0’ represents a normally opened switch.
Considering a simple system shown in Fig. 1, the order of switch permutation is sw1, sw2,
…, sw11 in turn. Thus, the status of switch permutation of the system in Fig. 1 can be
expressed as [1 1 0 1 1 1 1 0 1 1 1]. The result of feeder reconfiguration is shown in Fig. 2, and
the switch permutation becomes [1 1 1 0 1 1 1 1 0 1 1].

Figure 1. A simple 3-feeders distribution system

Figure 2. Result of feeder reconfiguration

Some objectives such as minimize the total line losses, minimize the numbers of operating
switches, minimize voltage drop and load balance index are considered during feeder
reconfiguration in general. Two objectives are considered in this research. The first is to
minimize the total line losses during normal operation. By doing so, the operation of
distribution system will be more economic and effective. The second objective is to
distribute loads on feeders evenly. Balanced feeder loads can increase the opportunity of

Particle Swarm Optimization

440

load transfer during emergency conditions and improve system reliability. The method
proposed in this research also ensures that structure is maintained in radial and the
ampacity of each conductor is kept within allowable limits. “Concentric load model” is used
in this research for calculating branch currents. The line losses can be formulated as follows:

2

1

Re
n

loss i i
i

F I z
=

⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠
∑

(1)

where Floss is the total real power losses of distribution feeders, n is the total numbers of
zones in distribution system, Ii is the current magnitude of the i-th zone and zi is the line
impendence of the i-th zone. The load balance index is expressed as following:

()∑∑

= =
−=

k

m

k

n
nmbalanceload CapCapF

1 1

2
_

 (2)

where k is number of feeder. Capm or Capn represents the total load of feeder m and n
respectively. The total feeder loads can be calculated as following:

∑=

j
jii LoadCap ,

(3)

where, Loadi,j ∈ Feederi, i is the feeder number, and j is the load zone number within feeder
i. In order to calculate the fitness value of the system represented by a particle, the method
proposed in (Hsu & Tsai, 2005) is used to integrate the two object functions.

3. Particle Swarm Optimization
3.1 Typical Particle Swarm Optimization
A considerable amount of incredible social behavior and great intelligent exist in nature
such as ant colonies, bird flocking, animal herding and fish schooling. Although the ability
of individual is limited, the population can achieve the difficult target though cooperation
with each other. Note that there is no centralized control in population. The behavior of
individual depends on interacting with one another and with their environment only. These
simple behaviors among individuals can lead population make themselves toward global
behavior. Thus, completing a goal by aggregating the individuals and cooperating with each
other that could be called swarm intelligent. Particle Swarm Optimization is one of the
optimization algorithms provided with the concept of swarm intelligent. Original concept of
PSO came from the study of simulating behavior of bird flocking to look for food. A possible
solution for each problem can be represented as a particle that is just like a bird flocking in a
D-dimensional searching space. Each individual particle has a fitness value that is evaluated
by a fitness function to pick a good experience for itself and population respectively. The
particles of population is initialized randomly first. A particle changed its searching
direction based on two values or experiences during each iteration. The first one is the best
searching experience of individual so far and it is called pbest. Another one is the best result
obtained so far by any particle in the population and it is called gbest. When pbest and gbest
are obtained, a particle updates its velocity and position based on (4) and (5). Lastly, the

A Novel Binary Coding Particle Swarm Optimization for Feeder Reconfiguration

441

algorithm will check the results every iteration until the best solution is found or
termination conditions are satisfied.

 () ()ididid
new
id xgbestrandcxpbestrandcwvv −××+−××+= () () 21 (4)

new
idid

new
id vxx += (5)

In the above equations, vid is the original velocity of the i-th particle, new
idv is the new

velocity of the i-th particle, w is the inertia weight, c1 and c2 are the acceleration constants, xid

is the original position of the i-th particle, new
idx is the new position of the i-th particle and

rand() is a random number ranging between 0 and 1.

x

y

new
idx

idx
idv

pbest

gbest
new
idv

inertia

social cognition

Figure 3. Searching diagram of typical PSO

In (4), the first part is the inertia (habitual behavior), which represents the particle trusts its
own status at present location and provides a basic momentum. The second part is the
cognition (self-knowledge) or memory, which represents the particle is attracted by its own
previous best position and moving toward to it. The third part is the social (social
knowledge) or cooperation, which represents the particle is attracted by the best position so
far in population and moving toward to it. There are restrictions among these three parts
and can be used to determine the major performance of the algorithm. The purpose of
updating formula is to lead particles moving toward compound vector of inertia part,
cognition part and social part. By doing so, the opportunity for particle to reach the target
(optimal solution) will be increased. The inertia weight in the formula is used to adjust
searching areas. A larger inertia weight will motivate the algorithm toward a global search;
a smaller value will force the PSO toward a local search. The searching diagram of typical
PSO is shown in Fig. 3.

3.2 Binary Particle Swarm Optimization
Kennedy and Eberhart proposed a binary version of PSO for discrete problems (Eberhart &
Kennedy, 1997). In the binary PSO version, the particle’s personal best and global best is still
updated as in the typical version as described in (4). The elements inside xid, pbest and gbest

Particle Swarm Optimization

442

of BPSO are either `1‘ or `0‘. Therefore, a particle flies in a search space restricted to zero
and one. The speed of the particle must be constrained to the interval [0, 1]. A logistic

sigmoid transformation function)(new
idvS shown in (6) can be used to limit the speed of

particle.

new
idv

new
id

e
)S(v

−+
=

1

1

(6)

The update equation of BPSO can be done in two steps. First, (4) is used to update the
velocity of the particle and the sigmoid function, (6), is used to limit the velocity in the
interval [0, 1]. Second, the new position of the particle is obtained using (7) shown below:

() 1 then x) S(vrand() if new
id

new
id =<

 0 else xnew
id = (7)

where, rand() is a uniform random number in the range [0, 1].
Since the relevant variables are derived from the changes of probabilities, the concept of
BPSO is different from the typical PSO. It is hard to identify the relation between the current
status and previous status of a particle. The selection of parameters, such as inertia weight,
acceleration constants, etc., is also problematic.

3.3 Binary Coding Particle Swarm Optimization
Through the discussion of typical PSO and BPSO in the previous section, the PSO algorithm
cannot be applied to feeder reconfiguration directly. Therefore, this research tries to
construct a more feasible discrete PSO scheme based on the concept of typical PSO for
feeder reconfiguration. The typical PSO must be modified based on the characteristics of
distribution feeder operations. Two issues will be considered in the modification process.
The first one is the problem of feeder reconfiguration is ‘1’ & ‘0’ permutation combinatorial
optimization problem. The second issue is utilizing the shift operator that is used in
computer programming languages. The shift operator and shift operator set defined in this
research using these two aspects. Shift operator and shift operator set can be used to
construct the binary coding particle swarm optimization for distribution feeder
reconfiguration. These two definitions and the proposed binary coding PSO will be
discussed.

3.3.1 Shift Operator
Suppose m sectionalizing switches (normally closed, N.C.) and n tie switches (normally
opened, N.O.) exist on a distribution system. The permutation combination of the status all
switches (s=m+n) is [S1, S2, …, Ss] and it will be called ‘sequence of switch states’, or SSS, in the
rest of this paper. The shift operator is defined as SO (Biti, DirectionL,R, Stepc) and it means that
an action will change the position of an N.O. in SSS. Biti is the index of i-th switch in SSS.
DirectionL,R indicates the direction of left or right shifting on the i-th switch. Stepc is the
number of shifting steps. The new permutation in SSS is defined as SSS’=SSS <+> SO. The
symbol, ‘<+>’, represents the shift operator. It will be applied to SSS to get a new SSS’.

A Novel Binary Coding Particle Swarm Optimization for Feeder Reconfiguration

443

A case is used to explain the operating process of shift operator. A simple distribution
system shown in Fig. 4 has four feeders, nine N.C.s and three N.O.es. The SSS of this system
is denoted as [1 0 1 0 1 1 1 1 1 1 0 1]. Supposing an SO(4, R, 1) is applied on this SSS. The
process of operation is described as Fig. 5. When an N.O. shifts, a ‘1’ (N.C.) needs to be set at
its original position to maintain system structure.

Sectionalizing Switch

Tie Switch

fd1

fd2

fd3

fd4

S1 S2 S3

S4 S6

S7

S10

S11S12

S8

S9

S5

Figure 4. A simple 4-feeders distribution system

Figure 5. Basic operating process of shift operator

3.3.2 Shift Operator Set
A set with at least one or more shift operators is called shift operator set (SOS). An SOS
represents all actions about how to set or shift normal open switches on distribution
systems. The definition of shift operator set is shown in (8).

 { }nSOSOSOSOS ,...,, 21= (8)

where n is the number of shift operators.
Considering two SSSes, SSS1 and SSS2, a set of shift operators which transfers SSS1 to SSS2
needs to be identified. Two SSSes, SSS1=[1 0 1 0 1 1 1 1 1 1 0 1] and SSS2=[1 1 1 1 0 1 1 0 1 0 1
1], are used to explain how the shift operators are obtained. By comparing the position of
normally opened switch one by one in these two SSSes, the SOS can be acquired. The
determination of the shift operator set and the result are shown as Fig. 6. In this example,
SOS={ SO1, SO2, SO3}= SSS2 Θ SSS1. The symbol, ‘ Θ ’, is used to represent an action to get
the shift operators from SSS1 to SSS2.
Base on the concept of above process, (pbest - xid) and (gbest - xid) in (4) can be rewritten as
(pbest Θ xid) and (gbest Θ xid) respectively. The xid, pbest and gbest represent different

Particle Swarm Optimization

444

SSSes in this sketch. This process will transfer an SSS to a new one which is closer to the best
switch plan.

Figure 6. Decision process of shift operator set

3.3.3 Constructing Binary Coding PSO
The definition of shift operator and shift operator set are discussed in previous sections. The
velocity update formulas (4) and (5) of PSO can be reestablished to solve the problem of
feeder reconfiguration. The new velocity update formula for the proposed binary coding
PSO is as below:

)) (()()) (()()(ididid
new
id xgbestrandxpbestrandvwv Θ〈×〉⊕Θ〈×〉⊕⊗= (9)

new
idid

new
id vxx 〈+〉= (10)

The symbol, ‘ ⊕ ’, shown in (9) is used for combining two shift operator sets. The symbol,
‘ ⊗ ’, is the operator that is used to shift the number of steps. The symbol, ‘ 〈×〉 ’, is used to

select the number of shift operator, SO, in (pbest Θ xid) or (gbest Θ xid) randomly. xid is the
original SSS of the i-th particle; pbest is the best SSS of the i-th particle; gbest is the best SSS
of any particle in the population. vid is the original shift operator set of the i-th particle,

new
idv is the new shift operator set of the i-th particle. new

idx is the new SSS of the i-th particle.
rand() is a random number with a range of [1, n] where n is the number of SO in SOS.
In Eq. (9), w is the inertia weight. The role of w is used for adjusting searching areas. The
searching areas are reduced progressively when the number of iteration increases. The
inertia weight can be calculated as (11).

max

max

max ShiftStep
iteration

iterationiterationw now ×−=

(11)

A simple example is used to show how the proposed method works. Based on the system
shown in Fig. 4, xid, pbest and gbest represent different SSSes are given:

xid : [1 0 1 0 1 1 1 1 1 1 0 1]
pbest : [1 1 1 1 0 1 1 0 1 0 1 1]
gbest : [1 1 0 1 0 1 1 1 0 1 1 1]

A Novel Binary Coding Particle Swarm Optimization for Feeder Reconfiguration

445

The SOS can be derived from (pbest Θ xid) and (gbest Θ xid) as:

 (pbest Θ xid) = {(2, R, 3), (4, R, 4), (11, L, 1)}
 (gbest Θ xid) = {(2, R, 1), (4, R, 1), (11, L, 2)}

The three parts in (9) can be expressed as following:

w ⊗ vid = {(2, L, 3), (4, L, 2), (11, R, 2)}
 rand() 〈×〉 (pbest Θ xid) = {(2, R, 3), (4, R, 4) , (11, L, 1)}

rand() 〈×〉 (gbest Θ xid) = {(2, R, 1), (11, L, 2)}

According to (9), the new
idv contains eight SOes, (2, L, 3), (2, R, 3), (2, R, 1), (4, L, 2), (4, R, 4),

(11, R, 2), (11, L, 1) and (11, L, 2). Combining these eight SOes, the final new
idv contains three

SOes, (2, R, 1), (4, R, 2) and (11, L, 1). Finally the new SSS, new
idx , will be [1 1 0 1 1 0 1 1 1 0 1

1] according to (10).
The procedure of proposed binary coding PSO is outlined as below:
a. Determine the size of population and other parameters such as number of iterations

and maximum shift steps.
b. Initialize the SSS and shift operator sets randomly to produce particles.
c. Evaluate the fitness value for each particle.
d. Compare the present fitness value of i-th particle with its historical best fitness value. If

the present value is better than pbest, update the information including SSS and fitness
value of pbest.

e. Compare present fitness value with the best historical fitness value of any particle in
population. If the present fitness value is better than gbest, update the information
including SSS and fitness value for gbest.

f. Update the shift operator set and generate a new SSS of the particle according to (9) and
(10), respectively.

g. If stop criterion is satisfied then stop, otherwise go to step c). In this research, the stop
criterion is the iteration count reaches the maximum number of iteration.

4. Experimental Results
To verify the performance of the proposed algorithm and compare with algorithms of
typical BPSO (Eberhart & Kennedy, 1997) and modified BPSO (Chang & Lu, 2002) for feeder
reconfiguration problem, a four-feeder distribution system is used. This distribution system
is taken from Taoyuan division, Taiwan Power Company, Taiwan. The system has 24
sectionalizing-switches, 8 tie-switches and 28 load-zones, as shown in Fig. 7. The capacity of
each feeder is shown in Table 1. The objective functions are: minimizing feeder loss and load
balancing index without violating operation constraints. The proposed method and the
algorithms described in (Eberhart & Kennedy, 1997) and (Chang & Lu, 2002) were
implemented using Java language for comparison purposes. Relevant parameters are set as
follows. The size of population is 10 for all methods. Maximum number of iteration is set to
1000 for all methods as well. The inertia weight, learning factor of c1 and c2 for the methods

Particle Swarm Optimization

446

of typical BPSO (Eberhart & Kennedy, 1997) and modified BPSO (Chang & Lu, 2002) are set
to 0.8, 2.0 and 2.0, respectively. The settings of these parameters can be referred to (Chang &
Lu, 2002). In order to obtain the results and calculate the average performance, 10 runs were
performed for each method.
The comparisons of the results from the three algorithms are shown in Table 2. The Max,
Min and Average in Table 2 indicate the maximum, minimum and average fitness value,
running time, losses and load balancing index values in 10 runs respectively. The typical
BPSO is not able to get a better result than proposed algorithm due to the higher probability
of inadequate number of tie-switches represented by particles. Although the running time of
typical BPSO is less than proposed method, the average values of losses and load balancing
index of typical BPSO are higher than proposed method. The modified BPSO is able to avoid
the problem of inadequate number of tie-switches represented in each particle. On the other
hand, the result of proposed method is better than other two methods. Beside the execution
time of proposed method is two seconds longer than BPSO, all the other outcomes of
proposed method are superior to other methods. The feeders which represent of maximum
fitness value of feeder reconfiguration of the typical BPSO method, modified BPSO and
proposed method are shown in Fig. 8, Fig. 9 and Fig. 10 respectively. Table 3 lists the
comparison of total loads of each feeder obtained from the three methods. All the results
indicate that the proposed method provides better and more reliable solutions than typical
BPSO and modified BPSO methods for minimizing line losses and load balancing problem.

Feeder ID F1 F2 F3 F4

Capacity (Amp) 500 500 250 500

Table 1. Capacity of each feeder

Figure 7. A 4-feeders distribution system for testing

A Novel Binary Coding Particle Swarm Optimization for Feeder Reconfiguration

447

Method Typical
BPSO

Modified
BPSO

Binary
coding PSO

Max 0.8759 0.9121 0.9234

Min 0.8058 0.8844 0.8898 Fitness
Value

Average 0.8594 0.8992 0.9032

Max 6625 11015 8734

Min 5250 8812 8110
Running

Time
(msec)

Average 6212 10359 8354

Max 515kW 405kW 364kW

Min 339kW 335kW 312kW Loss

Average 404kW 365kW 329kW

Max 525928 434216 264648

Min 184712 183368 169112
Load

Balance
Index

Average 329504 294859 208328

Table 2. Results and comparisons of three algorithms

Feeder ID
Method F1 F2 F3 F4

Original system 176 146 171 203

Typical BPSO 124 312 122 138

Modified BPSO 139 232 122 203

Binary Coding PSO 139 227 110 220

Table 3. The comparison of the feeder loading

Particle Swarm Optimization

448

Figure 8. The final feeder configuration found by the typical BPSO method

Figure 9. The final feeder configuration found by the modified BPSO method

Figure 10. The final feeder configuration found by the proposed method

A Novel Binary Coding Particle Swarm Optimization for Feeder Reconfiguration

449

5. Conclusion
Particle Swarm Optimization is a novel and powerful algorithm for continuous and discrete
functions optimization problems. In this work, the concept of typical PSO is modified and
applied to the feeder reconfiguration problems. Feeder reconfiguration problems are non-
linear discrete optimization problems in nature; and further, there are some defects to use
typical BPSO directly for feeder reconfiguration. This research try to construct a binary
coding particle swarm optimization based on typical PSO to solve this problem. The
operators of typical PSO algorithm have been reviewed and redefined in this research to fit
the application of distribution feeder reconfiguration. In addition, minimizing total line
losses and load balancing without violating operation constraints are the objective functions
used in this research. The experimental results show that the proposed method can solve the
feeder reconfiguration problem more effectively.

6. Acknowledgement
This research was supported by the National Science Council, Taiwan under contract NSC
97-2221-E-027-110.

7. References
Baran M.E. and Wu F.F. (1989). Network Reconfiguration in Distribution Systems for Loss

Reduction and Load Balancing, IEEE Trans. on Power Delivery, vol. 4, no.2, April
1989, pp. 1401-1407.

Chang H. C. and Kuo C. C. (1994). Network reconfiguration in distribution system using
simulated annealing, Elect. Power Syst. Res, vol. 29, May 1994, pp. 227-238.

Chang R.F. and Lu C.N. (2002). Feeder Reconfiguration for Load Factor Improvement, IEEE
Power Engineering Society Winter Meeting, Vol. 2, 27-31 Jan. 2002, pp.980-984.

Carpaneto E. and Chicco G. (2004). Ant-Colony Search-Based Minimum Losses
Reconfiguration of Distribution Systems, Proc. IEEE Melecon 2004, pp.971-974,
Dubrovnik, Croatia.

Eberhart R.C. and Kennedy J. (1997). A Discrete Binary Version of the Particle Swarm
Algorithm, In Proceedings of IEEE International Conference on Systems, Man, and
Cybernetics, vol. 5, pp.4104-4108, 1997.

Eberhart R.C. and Shi Y. (1998). Comparison between Genetic Algorithms and Particle
Swarm Optimization, The 7th Annual Conference on Evolutionary Programming, San
Diego, USA, 1998.

Hsiao Ying Tung. (2004). Mutiobjective Evolution Programming Method for Feeder
Reconfiguration, IEEE Trans. on Power Systems, Vol. 19, No. 1 pp. 594-599, February
2004.

Hsu Fu-Yuan and Tsai Men-Shen. (2005). A Multi-Objective Evolution Programming
Method for Feeder Reconfiguration of Power Distribution System, Proc. of the 13th
Conf. on Intelligent Systems Application to Power Systems, pp.55-60, November 2005.

Kim H., Ko Y. and Jung K.H. (1993). Artificial Neural Networks Based Feeder
Reconfiguration for Loss Reduction in Distribution Systems, IEEE Trans. on Power
Delivery, vol. 8, no. 3, July 1993, pp. 1356-1366.

Particle Swarm Optimization

450

Kennedy J. and Eberhart R. C. (1995). Particle Swarm Optimization, Proceedings IEEE Int’l.
Conf. on Neural Networks, IV, pp.1942-1948, 1995.

Kitayama M. and Matsumoto K. (1995). An Optimization Method for Distribution System
Configuration Based on Genetic Algorithm, Proceedings of IEE APSCOM, pp. 614-
619, 1995.

Khoa T.Q.D. and Phan B.T.T. (2006). Ant Colony Search based loss minimum for
reconfiguration of distribution systems, 2006 IEEE Power India Conference. Page(s):
6pp, April 2006.

Nara K., Shiose A., Kitagawa M. and Ishihara T. (1992). Implementation of Genetic
Algorithm for Distribution Systems Loss Minimum Reconfiguration, IEEE Trans. on
Power Systems, vol.7, no. 3, August 1992, pp. 1044-1051.

Shi Y. and Eberhart R.C. (1998). A modified particle swarm optimizer, IEEE International
Conference on Evolutionary Programming, pp.69-73, May 1998, Alaska.

Teng Jen-Hao and Lui Yi-Hwa (2003). A Novel ACS-Based Optimum Switch Relocation
Method, IEEE Trans. on Power Systems, vol. 18, no. 1, February 2003, pp.113-120.

28

Particle Swarms for Continuous, Binary, and
Discrete Search Spaces

Lisa Osadciw and Kalyan Veeramachaneni
Department of Electrical Engineering and Computer Science, Syracuse University

NY, U.S.A.

1. Introduction
Swarm Intelligence is an adaptive computing technique that gains knowledge from the
collective behavior of a decentralized system composed of simple agents interacting locally
with each other and the environment. There is no centralized command or control dictating
the behavior of these agents. The local interactions among these agents cause a global
pattern to emerge from which problems are solved. The foundation of swarming theory was
given in 1969. Two scientists, Keller and Segel, in their paper, “Slime mold aggregation”,
challenged the traditional pacemaker theory [47]. They suggested that the slime mold
aggregation is a result of mutual interactions among different cells rather than the
traditional belief that the aggregation is directed by a pacemaker cell. This theory became
the basis for swarm theory. In emergent systems, an interconnected system of rel- atively
simple agents self-organize to form a more complex, adaptive, higher-level behav- ior. To
attain this complex behavior, these elements follow simple rules (e.g., the rule defined by
the “Social Impact Theory” [18]). Examples of such systems can be found abundant in
nature including ant colonies, bird flocking, animal herding, honey bees, bac- teria, and
many more. These natural systems are optimizing using certain criteria during local
interactions so that the routes optimize as ants trace the way to food. The ants may be
designed to achieve goals other than locating food adding more dimensions to the basic
algorithm. From closely observing these highly decentralized behaviors, a “swarm-like”
algorithm emerges such as the Ant Colony Optimization (ACO) and Particle Swarm Opti-
mization (PSO). The ACO and PSO have been applied successfully to solve real-world
optimization problems in engineering and telecommunication [8, 9]. Swarm Intelligence
algorithms have many features in common with Evolutionary Algorithms. Evolutionary
algorithms are population based stochastic algorithms in which the population evolves over
a number of iterations using simple operations. Like EA, SI models are population- based.
The system is randomly initialized with a population of individuals, i.e., potential solutions.
These individuals move in search patterns over many iterations following sim- ple rules,
which mimic the social and cognitive behavior of insects or animals as they try to locate a
prize or optima. Unlike EA, SI based algorithms do not use evolutionary opera- tors such as
crossover and mutation.
Particle Swarm Optimization algorithm (PSO) was originally by Kennedy and Eber- hart in
1995 [18], and with social and cognitive behavior, has become widely used for optimization

Particle Swarm Optimization

452

problems found in engineering and computer science. PSO was inspired by insect swarms
and has since proven to be a powerful competitor to other evolutionary algorithms such as
genetic algorithms [41].
Comparisons between PSO and the standard Genetic algorithms (another kind of evo-
lutionary algorithms) have been done analytically based on performance in [41]. Com-
pared to Genetic algorithms the PSO tends to converge more quickly to the best solution.
The PSO algorithm simulates social behavior by sharing information concerning the best
solution. An attraction of some sort is formed with these “better” solutions helping improve
their own best solution until all converge to the single “best” solution. Each par- ticle
representing a single intersection of all search dimensions.
The particles evaluate their positions using a fitness that is in the form of a mathemati- cal
measure using the solution dimensions. Particles in a local neighborhood share memo- ries
of their “best” positions; then they use those memories to adjust their own velocities and,
thus, positions. The original PSO formulae developed by Kennedy and Eberhart were
modified by Shi and Eberhart [68] with the introduction of an inertia parameter, ω , that
was shown empirically to improve the overall performance of PSO.
The number of successful applications of swarm optimization algorithms is increasing
exponentially. The most recent uses of these algorithms include cluster head identification in
wireless sensor networks in [69], shortest communication route in sensor networks in [9]
and identifying optimal hierarchy in decentralized sensor networks.
In the next section the particle swarm for continuous search spaces is presented. The
continuous particle swarm optimization algorithm has been a research topic for more than
decade. The affect of the parameters on the convergence of the swarm has been well stud-
ied in. The neighborhood topolgies and different variations are presented extensively in. In
this chapter we will focus on the binary and the discrete version of the algorithm. The
binary version of the algorithm is presented in section 2.2 and the discrete version of the
algorithm is presented in section 2.3. The binary and the discrete version of the algorithm-
make the particles search in the probablistic search space. The infinite range of the veloci-
ties are transformed into a bounded probabilistic space. The transformations and the
algorithms are detailed in this chapter. The affect of the parameters are briefly detailed in
this chapter. The performance of these algorithms are presented on simple functions. The
chapter is accompanied by a code written in MATLAB that can be used by the readers.

2. Particle Swarms for Continuous Spaces
The PSO formulae define each particle as a potential solution to a problem in a D-
dimensional space with the ith particle represented as 1 2 3(, , ,.......)i i i i iDX x x x x= . Each particle
also maintains a memory of its previous best position, designated as pbest,

1 2 3(, , ,.......)i i i i iDP p p p p= , and a velocity along each dimension represented as

1 2 3(, , ,.......)i i i i iDV v v v v= . In each generation, the previous best, pbest, of the particle com-bines
with the best fitness in the local neighborhood, designated gbest. A velocity is com- puted
using these values along each dimension moving the particle to a new solution. The portion
of the adjustment to the velocity influenced by the individual’s previous best posi- tion is
considered as the cognition component, and the portion influenced by the best in the
neighborhood is the social component.
In early versions of the algorithm, these formulae are

Particle Swarms for Continuous, Binary, and Discrete Search Spaces

453

 (1)

 (2)

Constants 1ψ and 2ψ determine the relative influence of the social and the cognition
components, and the weights on these components are set to influence the motion to a new
solution. Often this is same value to give each component (the cognition and the social
learning rates) equal weight. A constant, maxV , is often used to limit the velocities of the
particles and improve the resolution of the search space.
The algorithm is primarily used to search continuous search spaces. The pseudocode of the
algorithm for the continuous search spaces is shown in Figure 1.

Algorithm PSO:
 For t= 1 to the max. bound of the number on generations,

For i=1 to the population size,
For d=1 to the problem dimensionality,

Apply the velocity update equation:

where Pi is the best position visited so far by Xi,

Pg is the best position visited so far by any particle
Limit magnitude:

Update Position:

End- for-d;
Compute fitness of ;
If needed, update historical information regarding Pi and Pg;

End-for-i;
Terminate if Pg meets problem requirements;

End-for-t;
End algorithm.

Figure 1. Pseudocode for the Continuous PSO Algorithm
Example 1: Continuous PSO on a simple spheres function : Minimize the function

The MATLAB code for the above problem as solved by the particle swarm optimiza- tion
algorithm is provided along with the chapter. In the following solution 10 particles are

Particle Swarm Optimization

454

randomly intialized in the search space. The evolution of the particles after 10, 100 and 1000
iterations in the search space are shown for a 2-D problem.

3. Binary Search Spaces
The binary version of the Particle swarm optimization is needed for discrete, binary search
spaces. Many variables in the sensor management problems are binary, for example the
fusion rule for binary hypothesis testing is binary valued. A sigmoid function trans- forms
the infinite range of the velocities to a requisite 0 or 1. The sigmoid function is

 (3)

where Vid is the velocity of the ith particle along the dth dimension. The velocity update
equation remains the same as section 2.1. The position update equation is modified as

 (4)

where idρ is a random number drawn from a uniform distribution between 0,1U ⎡ ⎤⎣ ⎦ .
These formula are iterated repeatedly over each dimension of each particle, and updating
the pbest vector if a better solution is found. This is similar to the PSO for continuous search
spaces.
By following the above procedure, we transform the entire continuous velocity space,

,−∞ ∞⎡ ⎤⎣ ⎦ , is transformed into a one or zero for that dimension. The probability of 1
and probability of zero for different velocities is shown in Figure 2.

Figure 2. Probability of Xid =1 and Xid=0 given the Vid

Algorithm Binary PSO:
For t= 1 to the max. bound of the number on generations,

For i=1 to the population size,
For d=1 to the problem dimensionality,

Apply the velocity update equation:

Particle Swarms for Continuous, Binary, and Discrete Search Spaces

455

where Pi is the best position visited so far by Xi,

Pg is the best position visited so far by any particle
Limit magnitude:

Update Position:

End- for-d;
Compute fitness of ;
If needed, update historical information regarding Pi and Pg;

End-for-i;
Terminate if Pg meets problem requirements;

End-for-t;
End algorithm.

Figure 3. Pseudocode for the Binary PSO Algorithm

Example 2: Goldberg’s Order-Three Problem
Groups of three bits are combined to form disjoint subsets and the fitness is evaluated using

where each si is a disjoint 3-bit substring of x and

where |si| denotes the sum of the bits in the 3-bit substring

.

2. 3 Particle Swarms for Discrete Multi Valued Search Spaces
Extending this binary model of PSO, a discrete multi-valued particle swarm for any range of
discrete values is described in detail. Many real world optimization problems, including
signal design, power management in sensor networks, and scheduling have vari- ables
which have discrete multi-values. This need is increasing as more problems are being solved
by particle swarm optimization based algorithm [73, 74]. It can be argued instead that

Particle Swarm Optimization

456

discrete variables can be transformed into an equivalent binary representation, and the
binary PSO can simply be used. However, the range of the discrete variables does not
typically correspond to a power of 2 for the equivalent binary representation. This then
generates a range of values exceeding the real range resulting in an unbalanced conver-
gence and more iterations than necessary. For example, a discrete variable ranging from 0
to5 [0,1,2,3,4,5] requires a minimum of three bit binary representation, which ranges
between [0-7]. Special conditions need to be added reducing the algorithms efficiency to
manage the values beyond the original maximum, which in this example is, 6 & 7. Another
important factor is that the Hamming distances between the two discrete values, undergoes
a non-linear transformation using the equivalent binary representation. This often adds to
the complexity to the search process. The inefficiency emerges as an increase in the
dimensions of the particle adding more variables to the search. For these reasons, a discrete
multi valued PSO is more efficient and should be used for discrete ranges greater than 2.
Previously, researchers simply enhanced the performance of the binary PSO to fix the
efficiency. Al-Kazemi, et al. [75], improved the original binary PSO algorithm by modify-
ing the way particles interact. The research on designing a PSO for discrete multi-valued
problems, however, has been sparse. In MVPSO [74], Jim, et al, extended the binary PSO by
creating a multi dimensional particle. Each dimension of the original problem is subdi-
vided into three dimensions for a ternary problem. Each dimension of the particle is a real
valued number and is transformed into a number in the range of [0 1] using the sigmoid
function. After a series of transformations, the three numbers ultimately represent the
probability of having a one of three discrete values for a ternary system. The extra trans-
formations bring us closer to the new discrete multi-valued PSO except many operations are
added. The transition of a particle or position update is probabilistic similar to the binary
PSO.
For discrete multi valued optimization problems, the range of variables lie between 0 and
M-1, where ‘M’ implies an M-ary number system. The same velocity update and par- ticle
representation are used in this algorithm. The position update equation is, however, change
as follows.
1. Transform the velocity using

(5)

2. A number is the generated using a normal distribution with idS=μ and σ as

parameters.

 (6)
3. The number is rounded to the closest discrete variable with the end points fixed.

 (7)

 (8)
4. . The velocity update equation remains the same as (1). The positions of the particles are

discrete values between 0 and M-1. Now for any given Sid, we have an associated
probability for any number between [0, M-1]. However, the probability of drawing a
num- ber randomly reduces based on its distance from Sid according to the Figure 4. In

Particle Swarms for Continuous, Binary, and Discrete Search Spaces

457

the subsection, the relation between Sid and the probability of a discrete variables is
given.

Figure 4. Transformation of the Particle Velocity to a Discrete Variable

Figure 5. Probabilities of Different Digits Given a Particular S

Particle Swarm Optimization

458

Probability of a discrete value ‘m’: For a given S, a number is generated using a normal
distribution with the mean as S and standard deviation σ for an M-ary system. Based on
this normal distribution and equation (7), the probability for a specific discrete variables
given S can be calculated based on the area under that region of the Gaussian curve. For
example for a ternary system, given an S = 0.9 and σ = 0.8, the areas of the Gaussian curve
that will contribute to different digits are shown in Figure 5. For a Sid, the probability of a
discrete variable having a value ‘m’ is given by:
m=0,

(9)

where Q is the error function. The function g(x) is

(10)

with m in the range 1 to M-2, the conditional probability of achieving Xid given a previous
Sid value is

(11)

For m = M-1, the conditional probability is

(12)

Note that

 (13)
One can significantly control the performance of the algorithm using these equations. For
example, controlling the σ controls the standard deviation of the Gaussian and, hence, the
probabilities of various discrete variables.

Algorithm Discrete PSO:
For t= 1 to the max. bound of the number on generations,

For i=1 to the population size,

Particle Swarms for Continuous, Binary, and Discrete Search Spaces

459

For d=1 to the problem dimensionality,
Apply the velocity update equation:

where Pi is the best position visited so far by Xi,

Pg is the best position visited so far by any particle
Limit magnitude:

Update Position:

End- for-d;
Compute fitness of ;
If needed, update historical information regarding Pi and Pg;

End-for-i;
Terminate if Pg meets problem requirements;

End-for-t;
End algorithm.

Figure 6. Psuedo Code for Particle Swarms for Discrete Multi Valued Search Spaces

Example 3: Sastry-Veermachaneni-Osadciw Function for Ternary Systems
Groups of three digits are combined to form disjoint subsets and the fitness is evalu- ated using

where each si is a disjoint 3-bit substring of x and

where |si | denotes the sum of the digits in the 3-digit substring.

2.4 Particle Swarms for Mixed Search Spaces
Mixed search spaces imply that the solution to the problem is composed of binary, dis- crete
and continuous variables. The solution can be any combination of two. The particle swarm

Particle Swarm Optimization

460

optimization algorithms operators work independently on each dimension making it
possible for mixing different variable types into one single particle. In Genetic algo- rithms,
however, the crossover operator needs to be designed independently for the differ- ent
variable types. The swarm algorithm will call upon the different position update formulae
based on the type of the variable. The pseudo code is given in the following fig ure.
Algorithm PSO for Mixed Search Spaces:

For t= 1 to the max. bound of the number on generations,
For i=1 to the population size,

For d=1 to the problem dimensionality,
Apply the velocity update equation:

where Pi is the best position visited so far by Xi,

Pg is the best position visited so far by any particle
Limit magnitude:

Update Position:
if Xid is continuous valued

else if Xid is binary valued

elseif Xid is discrete valued

End- for-d;
Compute fitness of (X�it + 1�);
If needed, update historical information regarding Pi and Pg;

End-for-i;
Terminate if Pg meets problem requirements;

End-for-t;
End algorithm.

Figure 7. Pseudo code for mixed search spaces

29

Application of Particle Swarm Optimization
Algorithm in Smart Antenna Array Systems

May M.M. Wagih and Hassan M. Elkamchouchi
Alexandria University, Faculty of Engineering

Egypt

1. Introduction
In wireless applications the antenna pattern is shaped so as to cancel interfering signals
(placing nulls) and produce or steer a strong beam towards the wanted signal according to
signal direction of arrival (DOA). Such antenna system is called smart antenna array.
This chapter presents the efficiency of Particle Swarm Optimization algorithm (PSO)
compared to Genetic algorithm (GA) in solving antenna array pattern synthesis problem.
Also PSO is applied to determine optimal antenna elements feed that provide null
(minimum power) in the directions of the interfering signals while to maximize of radiation
in the direction of the useful signal. Application for PSO algorithm in Direct Data Domain
Least Squares (D3LS) approach that is used to estimate incoming signal is illustrated.
Due to environment changing the target goal is changing so modification in the algorithm is
proposed to provide optimal solution for varying real time target (to track the desired users
and reject interference sources). The problem is formulated and solved by means of the
proposed algorithm. Examples are simulated to demonstrate the effectiveness and the
design flexibility of PSO in the framework of electromagnetic synthesis of linear arrays.

2. Smart Antenna Array System Overview
The ability to communicate with people on the move has evolved remarkably since Marconi
first demonstrated radio’s ability to provide continuous contact with ships sailing the
English Channel in 1897. There onwards, new wireless methods and services have been
adopted. Smart antenna system represents one of the valuable parts that support the
increasing requirement and needs to higher quality wireless services.
Smart antenna systems processes signals arriving from different directions to detect
(estimate) desired signal direction of arrival DOA. Biased on the estimated DOA the
beamformer optimize antenna elements weights such that the radiation pattern of the
antenna array is adjusted to minimize a certain error function or to maximize a certain
reward function derived by the adaptive algorithm. Figure 1. Presents block diagram for
Smart antenna system. Smart antenna processing core is represented in three areas the
adaptive algorithms the DOA estimation algorithm and the beamformer control.
One of the simplest geometries for an array is a linear array in which the centers of the
antenna elements are aligned along a straight line. For simplicity consider the uniformly

Particle Swarm Optimization

462

spaced linear array of N elements and that there is M signals received. We assume that K
samples are observed by the array then output vector ܆ሺ݊ሻ is

ሺ݊ሻ܆ ൌ ሺ݊ሻ܁ሻߠሺۯ ݊ ,ሺ݊ሻ۽ ൌ 1,2, ሺ݊ሻ is ሺܰ܆ (1) .… ൈ ሻߠሺۯ ,ሻ matrix of array output signals at any given instant (sampling time) nܭ
is ሺܰ ൈ ܯሺ݊ሻ is ሺ܁ ,ሻ steering matrixܯ ൈ ሺ݊ሻ is noise matrix. The array۽ ,ሻ signal matrixܭ
steering matrix (array manifold) ۯሺߠሻ is

ሻߠሺۯ ൌ ሾ܉ሺߠଵሻ, ,ଶሻߠሺ܉ ڮ ڮ ሻሿ (2)ۼߠሺ܉

Where

ሻߠሺ܉ ൌ ቂ1, exp ቀଶగௗ ୱ୧୬ ఏఒ ቁ , ڮ ڮ exp ቀଶగௗሺNିଵሻ ୱ୧୬ ఏMఒ ቁቃ , (3) ݅ ൌ 1,2, … . M ܉ሺߠሻ is the response of the linear array to the ݅௧ source arriving from direction ሺߠሻ. The
array manifold is defined as the one-dimensional manifold composed of all the steering
vectors as ߠ ranges over all possible angles i.e. ߠ א ሾ0, . ሿߨ2

Figure 1. Block diagram of smart antenna array system and linear array signal model

The array manifold used to calibrate the array for direction finding estimation. Each element
output is multiplied by a complex weight ݓכ, suggested by the adaptive algorithm then the
beamformer update the phase and amplitude relation between the branches, and sum them
to give information signal ܇ሺnሻ

ሺ݊ሻ܇ ൌ ܅ ሺ݊ሻ (4)܆ሺ݊ሻ்܅ ൌ ሾݓଵ ݓଶ ݓଷ … ேሿݓ
3. PSO for Smart Antenna System
The smart antenna changes their directional pattern with the help of few adjustable
parameters in according to the estimation and analysis to received signal, environment and

Beamforming

Noise Signals

Sensor Geometry

DOA
Estimation

Adaptive
Algorithm

Useful
Information

Useful
Information

SM
S2S1

Application of Particle Swarm Optimization Algorithm in Smart Antenna Array Systems

463

pre-known information to improve the performance and capacity of the system. A
promising way for the determination of a suitable parameter configuration for the antenna
is the application of heuristic optimization procedures.
Pattern synthesis problem (beamforming) is continuous varying target real time problem
that needs fast optimal solution to adjust array pattern and support for the service required.
Also the controlling parameters are limited due to practical design and cost aspects.
Consequently Enhancement to PSO algorithm is proposed to support for these two major
needs.

3.1 PSO and Dynamic Real Environment Optimization
For real time dynamic environment problem the goal value changes, original PSO algorithm
has no method for detecting this change and the particles are still influenced by their
memories of the original goal position. If the change in the goal is small, this problem is self-
correcting. Subsequent fitness evaluations will result in positions closer to the new goal
location replacing earlier position ܆ vectors, and the swarm should follow, and eventually
intersect the moving goal.
However, if the movement of the goal is more pronounced, it moves too far from the swarm
for subsequent fitness evaluations to return values better than the current personal best ۾௧
vector, and the particles do not track the moving goal. A proposed attempt to rectify this
problem by having the particles periodically replaces their ۾௧ vector with their current ܆௧
vector, thus “forgetting” their experiences to that point. This differs from a restart, in that
the particles, in retaining their current location, have retained the profits from their previous
experiences, but are forced to redefine their relationship to the goal at that point. Figure 2
present flow chart for the proposed PSO algorithm to support for varying dynamic target
optimization problem.

Figure 2. Dynamic Particle Swarm Algorithm

Initialize population with random position(x) and velocity (v)
vectors

For each Iteration

Update Goal value

Update agent’s velocity, and
position

Goalnew-Goal old>ε

For each agent

Evaluate Fitness

Apply forgetting rule for all
agents local best= X

Update global best value

Update local best value

yes

No

Particle Swarm Optimization

464

3.2 PSO and bounded search space
Constraint is usually set to the array parameters these constraints may be spatial, for
example, that the interelement spacing be greater than a prescribed value or that the
element positions be within specified limits. Other type of design constraint is the excitation
where it may require that the elements feed is phase only or amplitude and that the current-
taper ratio be less than or equal to a prescribed value.
Introducing constraint to the PSO will decrease degree of freedom. Search time will also
increase if the concept of accept and after the each particle movement for each iteration
according to boundaries. However, if we can convert the problem to an unconstrained one
initially through using suitable transformations of the constraint parameter this will
eliminate time lost in explore and probability of rejecting the particle movement. Illustration
for such solution will be clear in next section while simulation.

4. PSO use for pattern synthesis
This section objects to reformulate and define antenna array adaptive beamforming in term
of an optimization problem. Problem Search Space represented by array pattern controlling
parameters is identified. Fitness function that measures the deviation of the optimal
proposed solution from the target is defined.

Figure 3.Linear array geometry

Let us consider the linear array of ܯ non-uniformly spaced point source isotropic elements
located along a straight line at the positions ݔ , where ݇ ൌ 0, … , ܯ െ 1. The beam pattern
function ܲሺݑሻ of the array, is defined as follows,

 ܲሺݑሻ ൌ ቤ ࣅ࣊݁ݓ ୀିࡹ࢛࢞ ቤ

ݓ ൌן expሺ݆ߚሻ

ሻݑሺ ൌ ฬ ן ݁ሺమഏഊ ௫ೖ௨ାఉೖሻெିଵୀ ฬ (5)

Where ݓ is the weight coefficient of the ݇௧ element, ߣ is the background wavelength, ݑ ൌsin ߠ െ sin ఖ the incident angle of the impinging plane wave and the steeringߠ and ߠ ఖ, beingߠ
angle of the array, respectively. In order to generate a beam pattern (BP) that attain specific
characteristics e.g., sidelobes level (SLL) lower than a fixed threshold or reproduces a

Application of Particle Swarm Optimization Algorithm in Smart Antenna Array Systems

465

desired shape ௗܲሺݑሻ, initially we have to identify the array designing parameters and their
boundaries i.e. The particle search space in PSO algorithm.
let vector ࣀ be defined as follow, ࣀ ൌ ሾܯ, ,ݔ … ;ெିଵݔ ݓ … . ;ெିଵݓ ;ሿ்ܦ
Where, ܯ is number of array elements, ሾݔ, … ݓெିଵሿ is array elements spacing vector, ሾݔ … . ݓ ெିଵሿ is array elements feed vector generally represented asݓ ൌן boundary limits has to be taken in account when solving the problem to ࣀ .is array length ܦ ሻ, finallyߚሺ݆ ݔ݁
facilitate practical and cost design needs.
Then a quantized measure for the solution distance from the target required should be
defined, this value will be function of the search space parameter vector ࣀ. Generally for
antenna array pattern synthesis most of the well known target consideration is the main
beam ெ݂, total pattern ݂, sidelobe level ௌ݂, number, location and width of nulls ݂௨,
number of array elements ே݂ then we can us define global antenna array fitness function ݂,
as follows:

 ݂ሺࣀሻ ൌ ଵభಳುሺࣀሻାమಾಳሺࣀሻାయೄಽಽሺࣀሻାరೠሺࣀሻାఱಿ ሺࣀതሻ (6)

Where

 ݂ሺࣀሻ ൌ න ቀ ௗܲሺݑሻ ܳ⁄ െ ௗܲሺݑሻቁ א௨ݑ݀ (7)

 ெ݂ሺࣀሻ ൌ ቆන ቀ ௗܲሺݑሻ ܳ⁄ െ ௗܲሺݑሻቁ ெא௨ ݑ݀ ቇ
ୀଵ (8)

 ௌ݂ሺࣀሻ ൌ ொ௫ሼಳሺ௨ሻሽ ௦௧௧ݑ ݎ݂ ݑ 1 (9)

 ݂௨ሺࣀሻ ൌ ቆන ቀ ௗܲሺݑሻ ܳ⁄ െ ௗܲሺݑሻቁ ேא௨ݑ݀ ቇ
ୀଵ

ܤ ܰ ൌ ௨ݑ േ ௨ݑ∆0.5 (10)

 ே݂ሺࣀሻ ൌ (11) ;ܯ

Where ݑ௦௧௧ being a value that allows excluding the main lobe from the calculation of the
SLL. Moreover, ܳ is a normalizing constant, ܤ represents visible region ; while ௗܲሺݑሻ
represents the desired BP shape. ܤܯ represents the range of values covering the Main beam,
mb number of beams in the pattern, ܰܤ corresponds to the nulls locations and ݈݊ is number
of nulls required. Finally, ܿ୧ are coefficients that identify each criteria value.
It is often necessary to impose a constraint on the interelement spacing to minimize the
mutual coupling effects. For and array with an even number of elements the constraint may
be expressed as follow

ଵݔ ௗଶ ݔ , െ ିଵݔ ݀ ݅ ൌ 2,3, … … (12) ܯ

The above constrain can be represented using the following transformation: ݔଵ ൌ ௗଶ ሺݔଵ́ሻଶ ݔଶ ൌ ቀௗଶ ݀ቁ ሺݔଵ́ሻଶ ሺݔଶ́ሻଶ

Particle Swarm Optimization

466

Generally

ሺݔሻ ൌ ൬݅ െ 12൰ ݀ ሺݔ́ሻଶ , ݅ ൌ 1,2, … . ܯ
ୀଵ

For odd elements number array

 ሺݔሻ ൌ ሺ݅ െ 1ሻ݀ ሺݔ́ሻଶ , ݅ ൌ 2, … . ሺܯ െ 1ሻ/2ିଵୀଵ (13)

Solving using equation 10 allows minimization to be carried out with the new primed
variables, and it is readily seen that the constraints are always satisfied.
Another type of constraint on spacing’s usually imposed is the one requiring the elements to
lie within a specified range mainly required to avoid unacceptable practical array
dimensions. Stated mathematically in the following form:

 ܽ ݔ ܾ ݅ ൌ 1,2, … . (14) ܯ

the transformation to be used in this case is

ݔ ൌ ܽ ሺܾ െ ܽሻ ଶ݊݅ݏ ప́ݔ (15)

It is sometimes necessary to constrain the current taper to be within specified limits. That is,

ܫ ܫ േ ݅ ,ܥ ൌ 1,2, …. (16)

It is easily verified that the transformation of the form in equation (15) will transform the
constrained space into an unconstrained one

ܫ ൌ ܫ ܥ ݊݅ݏ పሖܫ (17)

Next section will investigate the efficiency of the PSO for solving linear array configuration
compared to other algorithms.

4.1 PSO and GA for Pattern Synthesis
To validate the PSO approach, initially we apply PSO, to find the optimized element weight
to achieve the Chebyshev pattern for 10 equispaced isotropic elements with λ/2 interelement
spacing antenna array of minimum SLL of 26dB, and compare its performance to GA, for
solving the same problem. The sample points, are chosen 300 equally distributed points over ݑ on a personal computer with a Pentium IV processor running at 1GHz. The target beam
will be ௗܲ

 ௗܲ ൌ 2.79 ݏܿ ݑ 2.49 ݏܿ ݑ3 െ 0.97 ݏܿ ݑ5 1.35 ݏܿ ݑ7 ݏܿ ݑ9

We consider 10 elements symmetric array with amplitude excitation only i.e. ߚ ൌ 0 then ࣀ ൌ ݓ … . ቀಾమݓ ቁିଵ൨் ; ܯ ൌ 10

ାሺெݓ ଶ⁄ ሻ ൌ ሺெݓ ଶ⁄ ሻିሺାଵሻ ݇ ൌ 0, … ܯ 2⁄

݂ሺࣀሻ ൌ 2 כ ൭ ௗܲሺݑሻܳ െ ௗܲሺݑሻ൱ א௨ݑ݀ ; 0 ݎ݂ ݑ 1

Application of Particle Swarm Optimization Algorithm in Smart Antenna Array Systems

467

ௌ݂ሺࣀሻ ൌ ଶ௫ೠೞೌೝರೠರభሼಳሺ௨ሻሽ ݑ௦௧௧ ൌ 0.25 ሺࣀሻ ൌ ଵೄಽಽሺࣀതሻାಳುሺࣀതሻ
Figure 4 presents the output pattern explored over the optimization process by one particle
until it reaches the optimum solution. Corresponding proposed elements weigh for these
local minima is as listed in Table 1.

Iteration No ࢝, ,࢝ ૢ࢝ ,࢝ ૡ࢝ ,࢝ ૠ࢝ ,࢝ ࢝ Max. SLL࢝
dB

P1 (5) 0.3292 0.5337 0.7030 0.9883 1 -20
P2 (30) 0.3543 0.3243 0.5679 1 0.7044 -15
P3 (78) 0.3521 0.4688 0.7158 0.8378 1 -12
P4 (122) 0.3574 0.4850 0.7055 0.8921 1 -26

Table 1. Optimum proposed weight corresponding to one particle

Figure 4, 5 shows behavior of the fitness values for solutions explored versus the number of
iterations for one particle. Dotted curve represents the gbest fitness value where it intersects
with the particles. Note that although the particle has achieved good fitness value in its
exploring journey it was not trapped at these local minima at P1, P2, P3, P4.

Figure 4. Explored solution for one particle at iteration 5, 30, 80, 120 compared to target
pattern

Figure 6 present comparisons between the fitness error per iteration for GA and PSO
algorithms solving the above problem with same initial random feed using PSO and Genetic
algorithm. It can be noticed the performance difference in reaching optimum solution is not
big only difference comes for the time per iteration in each algorithm. According to output
in Table 1 that the optimized proposed element feeds is the same for both algorithms.

0 20 40 60 80 100 120 140 160 180
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Theta degrees

N
or

m
al

iz
ed

 A
rra

y
Fa

ct
or

 d
B

P4
P3
P2
P1
PT

Particle Swarm Optimization

468

Figure 5. Behavior of the fitness function per iteration for one particle, dotted curve
represent behavior of gbest fitness value per iteration

Figure 6. Fitness per iteration behavior for PSO algorithm and GA algorithm

Next section will search the capabilities of the PSO for solving array configuration. A
simulation for steering single beam, introducing multiple beams in DOA and introducing
nulls in the imposed directions by controlling the excitations of the array elements feed or the
elements spacing represented in term of λ. also the adaptive ability of PSO for changing the
problem target in runtime is presented such feature is to be useful in digital beamforming.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

20

40

60

80

100

Iteration Number

%
 F

itn
es

s
er

ro
r

P3 P4

P1

P2

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

10

20

30

40

50

60

70

Iteration number

%
 F

itn
es

s
er

ro
r

GA
PSO

Application of Particle Swarm Optimization Algorithm in Smart Antenna Array Systems

469

Algorithm/
Normalized
weight

,࢝ ૢ࢝ ,࢝ ,࢝ ૡ࢝ ,࢝ ૠ࢝ ,࢝ ࢝ No. of࢝
Iteration

Total
time
min.

PSO 0.3574 0.4850 0.7055 0.8921 1.000 115 2

GA 0.3563 0.4845 0.7055 0.891 1.000 122 9

Table 2. Optimum proposed weight corresponding to PSO, GA algorithm

4.2 PSO and Pattern Synthesis Phase Control
The phase-only null synthesizing is attractive since in a phased array the required controls
are available at no extra cost [Steyskal, H.,1986]. This section will illustrate different
scenarios for pattern shaping using PSO to search suitable phase feed to fullfill-required
pattern. Initially consider it is required to Introduce single null at direction ߠ ൌ50˚ and
SLL<30dB with same mainbeam. PSO evaluated element weighting which fulfilled the
requirements of the design using fitness function equation 6.
Figure 7, shows the output pattern after 200, iteration notice that the SLL criterion is not
achieved.

 Figure 7. Pattern proposed after 200 iteration for null at 50˚

Now let us consider the target is moved. Assume it is required to steer the mainbeam to be
at ߠ ൌ110˚ and presence of interference at ߠ ൌ150˚. PSO evaluated antenna array elements’
phase which fulfill these requirements of the design output proposed pattern as Figure 8a
shows the output pattern after 50, iteration as can be notices although that the SLL< 20dB
was not achieved as the maximum level is 18dB. Assume surrounding environment is stable
so the algorithm is to continue search for better feeding solution Figure 8b shows the
proposed pattern corresponding after 500 iteration maximum SLL of -22dB was achieved
and also the null width and is increased. Figure 9 shows the total fitness value per iteration
curve corresponding to Figure 7 and Figure 8.

0 20 40 60 80 100 120 140 160 180
-80

-70

-60

-50

-40

-30

-20

-10

0
fig

Theta (degree)

N
or
m
al
iz
ed

 A
rra

y
Fa

ct
or
 d
B

Particle Swarm Optimization

470

 Figure 8. a) Pattern proposed for mainbeam steered to 110˚ and null at 150˚ after 50
iterations

Figure 8. b) Pattern proposed for mainbeam steered to 110˚ and null at 150˚ after 500
iteration

Figure 9. Fitness per iteration curve corresponding to figure 7, 8

0 20 40 60 80 100 120 140 160 180
-100

-80

-60

-40

-20

0

Theta degree

N
or

m
al

iz
ed

 A
rra

y
Fa

ct
or

 d
B

0 20 40 60 80 100 120 140 160 180
-100

-80

-60

-40

-20

0

Theta degree

N
or

m
al

iz
ed

 A
rra

y
Fa

ct
or

 d
B

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration Number

Fi
tn

es
s

V
al

ue

Application of Particle Swarm Optimization Algorithm in Smart Antenna Array Systems

471

4.3 PSO and Pattern Synthesis Phase – Position Control
The phase-only synthesis with equal element spacing requires a large number of elements
compared to the amplitude only arrays. Controlling the inter element space and elements
phases feed we can have the potential to circumvent this design challenge. Theoretically, the
unequal spacing of antenna elements corresponds to nonuniform sampling of signals in the
time domain.[H. Unz, 1960] .
 The PSO is applied to search for the optimum element phases and positions of the uniform
amplitude linear arrays to achieve target pattern and minimum side lobe level .We only
consider symmetric arrays for the next results however same can be applied for non
symmetric array. Synthesis of an unequally spaced array is carried out separately for the
position-only and the position-phase cases for various limits in the distance between the
elements. The number of elements considered for the PSO-based synthesis is 32; hence the
number of parameters to be optimized is 16 for the position- only synthesis and 32 for the
phase-position synthesis.
The PSO synthesis results of positions and phases for the cases when ݀௫ ൌ 0.6λ and ݀௫ ൌ λ array patterns are shown in Figure. 10 and 11, respectively. From Figure 10, we can
see that the maximum SLL for the position-phase synthesis is lower than that for the
position-only synthesis. In Figure 11 When ݀௫ ൌ λ, the maximum SLL of the position-
phase synthesis and position-only synthesis is 23.34 and 22.53 dB, respectively
For the case ݀௫ ൌ λ , The time taken to reach -20 dB SLL was about 10 min, and the total
time taken for 300 iterations was about 23 min for a swarm of 320 agents. The simulations
were carried out on a PC based on an Intel Pentium-IV 3-GHz processor.
 We can conclude that for smaller, ݀௫the element phases have a larger effect in lowering
the SLL of an unequally spaced array with no significant difference in the directivity From
Figures 10–11.

 Figure 10. Array patterns for the PSO-based position-only (dashed line) the position-phase
(solid line) for ݀௫ ൌ 0.6λ

0 20 40 60 80 100 120 140 160 180
-60

-50

-40

-30

-20

-10

0

Theta degree

A
rra

y
Fa

ct
or
 d
B

Particle Swarm Optimization

472

Figure 11. Array patterns for the PSO-based position-only (dashed line) the position-phase
(solid line) for ݀௫ ൌ λ

We have seen that the unequally spaced array derived using the position-phase synthesis
has lowered SLL compared to that of the unequally spaced arrays derived using the
position-only synthesis. Let us consider the PSO-based position-phase synthesis and phase-
only synthesis for designing a pencil beam array.

Figure 12. Array patterns for the PSO -based position-phase synthesis (solid line) and the
phase-only synthesis (dashed line) of a pencil beam array of 60 elements

The number of elements has to increase to meet beam requirement we consider symmetric
array of 60 elements. For the position-phase synthesis, the prior limits assumed in the
minimum and maximum distance between the elements are ݀ ൌ 0.5λ and ݀௫ ൌ 0.7λ,
respectively. For phase-only synthesis, the uniform distances between the elements are

0 20 40 60 80 100 120 140 160 180
-80

-70

-60

-50

-40

-30

-20

-10

0

Angle degree

N
or

m
al

iz
ed

 A
rra

y
Fa

ct
or

 d
B

0 20 40 60 80 100 120 140 160 180
-60

-50

-40

-30

-20

-10

0

Theta degree

A
rra

y
Fa

ct
or

 d
B

Application of Particle Swarm Optimization Algorithm in Smart Antenna Array Systems

473

assumed to be 0.5λ. Figure 12 shows the corresponding array patterns shows the phases and
positions derived using the PSO-based phase-only synthesis and position-phase synthesis
we can see that for the position-phase synthesis, the SLL is lower compared to that of the
phase-only synthesis.

5. PSO Application in Smart Antenna Array Signal Estimation
Conventional adaptive beamforming algorithms are based on a stationary environment.
Assume that the desired signal and interferers are not correlated. Using statistical theory,
one requires several successive snapshots of the data to form a covariance matrix of the
interference with independent identically distributed secondary data[B. D. Van, IEEE 1986].
The snapshots accumulation is quite time consuming. Thus when the environment becomes
nonstationary, an inaccurate covariance matrix is derived, which results in that the
interference cannot be rejected. Therefore the adaptive processing using a single snapshot
[Markus E. Ali] is more suitable for a dynamic environment. A direct data domain least
squares (D3LS) algorithm [T. K. Sarkar, 2000] has been developed to analyze the received
data using a single snapshot.
Although the D3LS algorithm has certain advantages, it has some drawbacks such that the
degrees of freedom are limited to nearly half. Furthermore it is shown by simulations that
while the jammers can be rejected, the main lobe of the antenna beam pattern is often
deviated from the direction of the desired signal and the sidelobe level is relative high.

5.1 Algorithm Formulation
 Consider an array composed of ܰ sensors separated by a distance as shown in Figure 1. We
assume that narrowband signals consisting of the desired signal plus possibly coherent
multipath and jammers with center frequency °݂ are impinging on the array from various
angles, with the constraint. For sake of simplicity, we assume that the incident fields are
coplanar and that they are located in the far field of the array.
Each received signal ݔሺ݇ሻ includes additive, zero mean, Gaussian noise. Time is
represented by the ݇௧ time sample. Thus, for Xሺtሻ ൌ ሾݔଵሺ݇ሻ ଶሺ݇ሻݔ Nሺ݇ሻሿTݔ

ሺ݇ሻݔ ൌ ሾ തܽሺߠଵሻ തܽሺߠଶሻ …. തܽሺߠெሻሿ. ێێۏ
ۍێ ۑۑےெሺ݇ሻݏڭڭଶሺ݇ሻݏଵሺ݇ሻݏ

ېۑ ത݊ሺ݇ሻ (19)

തܽሺߠሻ is ܯ-elements array steering vector for the ߠ direction of arrival, ߣ wavelength and ݀
is the elements interspacing distance. ݏҧሺ݇ሻ is the vector of incident signals at time ݇ and ത݊ሺ݇ሻ
is noise vector at each array element m, zero mean, variance. Then for ܣҧ ൌ ሾ തܽሺߠଵሻ തܽሺߠଶሻ …. തܽሺߠሻሿெൈ
matrix of steering vectors തܽሺߠሻ

 Xഥ ൌ .ҧܣ ҧሺ݇ሻݏ ത݊ሺ݇ሻ (20)

Thus, each of the D-complex signals arrives at angles ߠ and is intercepted by the M antenna
elements. It is assumed the number of arriving signals D < M. It is understood that the
arriving signals are time varying and thus our calculations are based upon time snapshots of

Particle Swarm Optimization

474

the incoming signal. Obviously if the transmitters are moving, the matrix of steering vectors
is changing with time and the corresponding arrival angles are changing.
Let ܵ be the complex voltage induced in the nth array element at a particular instance of
time due to a signal of unity amplitude coming from a direction ߠ௦,

 ܵ ൌ ݔ݁ ቂ݆2ߨ ቄሺିଵሻௗఒ ௦ሻቅቃ (21)ߠሺ݊݅ݏ

Let ݔ be the complex voltages that are measured at the nth element due to the actual signal,
jammers and thermal noise

ݔ ൌ ௦ܵߙ Interference Noise (22)

ݔ ൌ ௦ܵߙ ቆܣ݁ݔ ൬݆ ଶగሺିଵሻௗఒ ൯൰ቇߠ൫݊݅ݏ ݊ିଵ
ୀଵ (23)

Where ߙ௦ denotes the complex amplitude of the desired SOI, ܣ and ߠ are the amplitude
and direction of arrival of the jammer signal, ݊ is the thermal noise at the nth element.
There are ܦ jammers and ܦ ൏ ܯ െ 1/2. With ܵ and ܺ (n=0,…,M) the known received
signal data, one can construct the matrix X and S such that

ࢄ ൌ ൦࢞ ࢞ … ࢞ࡸ࢞ ࢞ … ڭାࡸ࢞ ڭ … ࡸ࢞ڭ ାࡸ࢞ … ࡹ࢞ ൪ሺࡸାሻൈሺࡸାሻ ࡿ ൌ ൦࢙ ࢙ … ࢙ࡸ࢙ ࢙ … ڭାࡸ࢙ ڭ … ࡸ࢙ڭ ାࡸ࢙ … ࡹ࢙ ൪ሺࡸାሻൈሺࡸାሻ (24)

From equations (21) and (23) the matrix U ൌ X െ represents the contribution due to ,ࡿ௦ߙ
signal multipaths, interferes, clutter and thermal noise (i.e., all the undesired components of
the signals except SOI). In an adaptive beamforming, the adaptive weight vector w is chosen
in such a way that the contribution from the jammers and thermal noise are minimized to
enhance the output signal to interference plus noise ratio (SINR). Hence, the following
generalized eigenvalue problem is obtained.

 UW ൌ ሺX െ ௦ܵሻܹߙ ൌ ഥݓ (25) 0 ൌ ሾݓଵ ݓଶ ேሿ்ݓ .…

Note that U(1,1) and U(1,2) elements of the interference plus noise matrix, are given by

 ܷሺ1,1ሻ ൌ ଵܺ െ ௗଵ (26)ܵߙ

 ܷሺ1,2ሻ ൌ ܺଶ െ ௗଶ (27)ܵߙ

Where ଵܺ and ܺଶ are the voltages received at antenna elements 1 and 2 due to the signal,
jammer, clutter and noise where as ܵௗଵ and ܵௗଶ are the values of the SOI only at those
elements due to a signal of unit strength, let us define Z as follow

ݖ ൌ ݔ݁ ቂ݆2ߨ ቄௗఒ ௦ሻቃ (28)ߠሺ݊݅ݏ

Then ܷሺ1,1ሻ െ ଵܷሺ1,2ሻ contains no component of the desired signal. In general, the sameିݖ
is true for ܷሺ݅, ݆ሻ െ ,ଵܷሺ݅ିݖ ݆ 1ሻ, ሺ݅ ൌ 1, … , ܮ 1, ݆ ൌ 1, … , ሻܮ . Therefore one can form a
square matrix F of dimension L+1, generated from ܷ. Therefore, in such way, one can form a

Application of Particle Swarm Optimization Algorithm in Smart Antenna Array Systems

475

reduced rank matrix combined with a constraint that the gain of the subarray is C in the
directionߠ௦, then one can obtain equation given as follow

 ൦ ܼ ܼଵ … ܼܺ െ ܼିଵ ଵܺ … … ܺ െ ܼିଵܺାଵڭ ڭ ڭ ଷ݂ڭ െ ସ݂ܼିଵ … … ܺெିଵ െ ܼିଵܺெ൪ ൦ ܹܹଵܹڭ൪ ൌ ൦C000൪ (29)

To obtain the desired signal component, equation (5.14) is represented as

 ሾFሿሾWሿ ൌ ሾYሿ (30)

Using any optimization algorithm to solve equation (30) for, optimum weight vector [W]
that provide maximum signal gain through minimizing objective function represented as
equation (31)

ሺW୧ሻߞ ൌ ԡሾFሿሾWሿିYԡԡYԡ 10ି (31)

Consequently SOI the signal component ߙ may be estimated from

 α ൌ ଵC ∑ ሾW୧X୧ሿ୧ୀL୧ୀ (32)

The algorithm above is referred to as a “forward method” in the literature [8]. [6],[11]. note
we can reformulate the problem using the same data to obtain independent estimate for the
solution. This can be achieved by two methods:
a. By reversing the data sequence and then complex conjugating each term of that

sequence (Backward method)
b. By combining the (forward-backwards method) to double the given data and thereby

increase the number of weights (degrees of freedom) significantly over that of either the
forward or backward method alone. The number of degrees of freedom can reach to 1 ሺܰ െ 1ሻ/1.5.

to investigate the method let us we consider recovering signal using the previous presented
algorithm let us consider a single tone signal with specs as table (3) received by liner array
of 10 elements linear array.

 Magnitude in V Phase DOA in degree
Signal 1 0 45°
Jammer #1 1.25 0 75°
Jammer # 2 2 0 60°
Jammer #3 0.5 0 0°

Table 3. Incident signal characteristics

The sampling frequency is 10 ݂; Using PSO algorithm as an optimization tools to solve the
optimum W୧ for the objective equation (31) value for each iteration we get Wଵ= (1.2996248637+j*0.0724160744), Wଶ=(0.9415241429+j*-0,3236468668) Wଷ=(-0.9898155714+j*-0.1071454180), Wସ = (- 1.2513334352+j*0.3583762104)

Using these weights in equation 32 to get the value of SOI amplitude
The first ten samplings of the signal and the system output are compared as follow

Particle Swarm Optimization

476

Initial transmitted signal Estimated signal

1 0.9999-j0.000003154
0.809+j0.5877 0.809+j0.5877
0.309+j0.951 0.309+j0.951
-0.309+j0.951 -0.309+j0951
-0.809+j0.5877 -0.809+j0.5877
-1 -0.90.999+j0000003154
-0.809-j0.587 -0.809+j0.5877
-0.309-j0.951 -0.309-j0.951
0.3090-j0.951 0.309-j0.951
0.809-j0.5877 0.80.90-j0.5877

Table 4. Output estimated signal using D3LS and PSO algorithm as an optimization method

The total CPU time taken for the above results is 1.19 sec. PSO is less computational
operations compared to conjugate gradient method.

6. Conclusion
PSO application for solving different numerical problems in smart antenna is illustrated.
Improvement is proposed to the algorithm to support the continuous real time varying
target problem. Also a solution is proposed to overcome the case of bounded search space
through introducing of transformation function. Simulation for different scenarios is solved
with the aid of PSO. Synthesis of an adaptive Beamforming using the phase only control
where target is dynamic over time has been presented. PSO was introduced to solve
position-only and position-phase synthesis, which is a bounded search space problem.
Finally an investigation for using PSO to estimate signal amplitude though D3LS approach
is presented.

7. References
H. Unz, Linear arrays with arbitrarily distributed elements, IEEE Trans. Antennas Propagat.,

vol. AP-8, pp. 222–223, Mar. 1960
B. D. Van Veen and K. M. Buckley, Beamforming: a versatile approach to spatial filtering,

IEEE SSP Mag., Apr.1988, pp. 4-24
Markus E. Ali and Franz Schreib, Adaptive Single Snapshot Beamforming: A New Concept

for the Rejection of Nonstationary and Coherent Interferers, IEEE Trans. On Signal
Processing, Vol. 40, No. 12, Dec.1992, pp. 3055-3058.

Steyskal, H., R. A. Shore, and R. L. Haupt, Methods for null control and their effects on
radiation pattern, IEEE Trans. On Antenna and Propagation, Vol. 34, 404–409, 1986.

2. Steyskal, H., Simple method for pattern nulling by phaseperturbation, IEEE Trans. on
Antenna and Propagation, Vol. 31,163–166, 1983.

T. K. Sarkar and J. Koh, A Pragmatic Approach to Adaptive Antennas, IEEE Antennas and
Propagation Magazine, Vol. 42, No. 2, Apr. 2000, pp.39-53

